]> Git Repo - J-linux.git/blob - drivers/net/ethernet/sfc/rx_common.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / net / ethernet / sfc / rx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
18
19 /* This is the percentage fill level below which new RX descriptors
20  * will be added to the RX descriptor ring.
21  */
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25                  "RX descriptor ring refill threshold (%)");
26
27 /* RX maximum head room required.
28  *
29  * This must be at least 1 to prevent overflow, plus one packet-worth
30  * to allow pipelined receives.
31  */
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
33
34 /* Check the RX page recycle ring for a page that can be reused. */
35 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
36 {
37         struct efx_nic *efx = rx_queue->efx;
38         struct efx_rx_page_state *state;
39         unsigned int index;
40         struct page *page;
41
42         if (unlikely(!rx_queue->page_ring))
43                 return NULL;
44         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
45         page = rx_queue->page_ring[index];
46         if (page == NULL)
47                 return NULL;
48
49         rx_queue->page_ring[index] = NULL;
50         /* page_remove cannot exceed page_add. */
51         if (rx_queue->page_remove != rx_queue->page_add)
52                 ++rx_queue->page_remove;
53
54         /* If page_count is 1 then we hold the only reference to this page. */
55         if (page_count(page) == 1) {
56                 ++rx_queue->page_recycle_count;
57                 return page;
58         } else {
59                 state = page_address(page);
60                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
61                                PAGE_SIZE << efx->rx_buffer_order,
62                                DMA_FROM_DEVICE);
63                 put_page(page);
64                 ++rx_queue->page_recycle_failed;
65         }
66
67         return NULL;
68 }
69
70 /* Attempt to recycle the page if there is an RX recycle ring; the page can
71  * only be added if this is the final RX buffer, to prevent pages being used in
72  * the descriptor ring and appearing in the recycle ring simultaneously.
73  */
74 static void efx_recycle_rx_page(struct efx_channel *channel,
75                                 struct efx_rx_buffer *rx_buf)
76 {
77         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
78         struct efx_nic *efx = rx_queue->efx;
79         struct page *page = rx_buf->page;
80         unsigned int index;
81
82         /* Only recycle the page after processing the final buffer. */
83         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
84                 return;
85
86         index = rx_queue->page_add & rx_queue->page_ptr_mask;
87         if (rx_queue->page_ring[index] == NULL) {
88                 unsigned int read_index = rx_queue->page_remove &
89                         rx_queue->page_ptr_mask;
90
91                 /* The next slot in the recycle ring is available, but
92                  * increment page_remove if the read pointer currently
93                  * points here.
94                  */
95                 if (read_index == index)
96                         ++rx_queue->page_remove;
97                 rx_queue->page_ring[index] = page;
98                 ++rx_queue->page_add;
99                 return;
100         }
101         ++rx_queue->page_recycle_full;
102         efx_unmap_rx_buffer(efx, rx_buf);
103         put_page(rx_buf->page);
104 }
105
106 /* Recycle the pages that are used by buffers that have just been received. */
107 void efx_recycle_rx_pages(struct efx_channel *channel,
108                           struct efx_rx_buffer *rx_buf,
109                           unsigned int n_frags)
110 {
111         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
112
113         if (unlikely(!rx_queue->page_ring))
114                 return;
115
116         do {
117                 efx_recycle_rx_page(channel, rx_buf);
118                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
119         } while (--n_frags);
120 }
121
122 void efx_discard_rx_packet(struct efx_channel *channel,
123                            struct efx_rx_buffer *rx_buf,
124                            unsigned int n_frags)
125 {
126         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
127
128         efx_recycle_rx_pages(channel, rx_buf, n_frags);
129
130         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
131 }
132
133 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
134 {
135         unsigned int bufs_in_recycle_ring, page_ring_size;
136         struct efx_nic *efx = rx_queue->efx;
137
138         bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
139         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
140                                             efx->rx_bufs_per_page);
141         rx_queue->page_ring = kcalloc(page_ring_size,
142                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
143         if (!rx_queue->page_ring)
144                 rx_queue->page_ptr_mask = 0;
145         else
146                 rx_queue->page_ptr_mask = page_ring_size - 1;
147 }
148
149 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
150 {
151         struct efx_nic *efx = rx_queue->efx;
152         int i;
153
154         if (unlikely(!rx_queue->page_ring))
155                 return;
156
157         /* Unmap and release the pages in the recycle ring. Remove the ring. */
158         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
159                 struct page *page = rx_queue->page_ring[i];
160                 struct efx_rx_page_state *state;
161
162                 if (page == NULL)
163                         continue;
164
165                 state = page_address(page);
166                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
167                                PAGE_SIZE << efx->rx_buffer_order,
168                                DMA_FROM_DEVICE);
169                 put_page(page);
170         }
171         kfree(rx_queue->page_ring);
172         rx_queue->page_ring = NULL;
173 }
174
175 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
176                                struct efx_rx_buffer *rx_buf)
177 {
178         /* Release the page reference we hold for the buffer. */
179         if (rx_buf->page)
180                 put_page(rx_buf->page);
181
182         /* If this is the last buffer in a page, unmap and free it. */
183         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
184                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
185                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
186         }
187         rx_buf->page = NULL;
188 }
189
190 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
191 {
192         struct efx_nic *efx = rx_queue->efx;
193         unsigned int entries;
194         int rc;
195
196         /* Create the smallest power-of-two aligned ring */
197         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
198         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
199         rx_queue->ptr_mask = entries - 1;
200
201         netif_dbg(efx, probe, efx->net_dev,
202                   "creating RX queue %d size %#x mask %#x\n",
203                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
204                   rx_queue->ptr_mask);
205
206         /* Allocate RX buffers */
207         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
208                                    GFP_KERNEL);
209         if (!rx_queue->buffer)
210                 return -ENOMEM;
211
212         rc = efx_nic_probe_rx(rx_queue);
213         if (rc) {
214                 kfree(rx_queue->buffer);
215                 rx_queue->buffer = NULL;
216         }
217
218         return rc;
219 }
220
221 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
222 {
223         unsigned int max_fill, trigger, max_trigger;
224         struct efx_nic *efx = rx_queue->efx;
225         int rc = 0;
226
227         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
228                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
229
230         /* Initialise ptr fields */
231         rx_queue->added_count = 0;
232         rx_queue->notified_count = 0;
233         rx_queue->granted_count = 0;
234         rx_queue->removed_count = 0;
235         rx_queue->min_fill = -1U;
236         efx_init_rx_recycle_ring(rx_queue);
237
238         rx_queue->page_remove = 0;
239         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
240         rx_queue->page_recycle_count = 0;
241         rx_queue->page_recycle_failed = 0;
242         rx_queue->page_recycle_full = 0;
243
244         rx_queue->old_rx_packets = rx_queue->rx_packets;
245         rx_queue->old_rx_bytes = rx_queue->rx_bytes;
246
247         /* Initialise limit fields */
248         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
249         max_trigger =
250                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
251         if (rx_refill_threshold != 0) {
252                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
253                 if (trigger > max_trigger)
254                         trigger = max_trigger;
255         } else {
256                 trigger = max_trigger;
257         }
258
259         rx_queue->max_fill = max_fill;
260         rx_queue->fast_fill_trigger = trigger;
261         rx_queue->refill_enabled = true;
262
263         /* Initialise XDP queue information */
264         rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
265                               rx_queue->core_index, 0);
266
267         if (rc) {
268                 netif_err(efx, rx_err, efx->net_dev,
269                           "Failure to initialise XDP queue information rc=%d\n",
270                           rc);
271                 efx->xdp_rxq_info_failed = true;
272         } else {
273                 rx_queue->xdp_rxq_info_valid = true;
274         }
275
276         /* Set up RX descriptor ring */
277         efx_nic_init_rx(rx_queue);
278 }
279
280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
281 {
282         struct efx_rx_buffer *rx_buf;
283         int i;
284
285         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
286                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
287
288         del_timer_sync(&rx_queue->slow_fill);
289         if (rx_queue->grant_credits)
290                 flush_work(&rx_queue->grant_work);
291
292         /* Release RX buffers from the current read ptr to the write ptr */
293         if (rx_queue->buffer) {
294                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
295                      i++) {
296                         unsigned int index = i & rx_queue->ptr_mask;
297
298                         rx_buf = efx_rx_buffer(rx_queue, index);
299                         efx_fini_rx_buffer(rx_queue, rx_buf);
300                 }
301         }
302
303         efx_fini_rx_recycle_ring(rx_queue);
304
305         if (rx_queue->xdp_rxq_info_valid)
306                 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
307
308         rx_queue->xdp_rxq_info_valid = false;
309 }
310
311 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
312 {
313         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
314                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
315
316         efx_nic_remove_rx(rx_queue);
317
318         kfree(rx_queue->buffer);
319         rx_queue->buffer = NULL;
320 }
321
322 /* Unmap a DMA-mapped page.  This function is only called for the final RX
323  * buffer in a page.
324  */
325 void efx_unmap_rx_buffer(struct efx_nic *efx,
326                          struct efx_rx_buffer *rx_buf)
327 {
328         struct page *page = rx_buf->page;
329
330         if (page) {
331                 struct efx_rx_page_state *state = page_address(page);
332
333                 dma_unmap_page(&efx->pci_dev->dev,
334                                state->dma_addr,
335                                PAGE_SIZE << efx->rx_buffer_order,
336                                DMA_FROM_DEVICE);
337         }
338 }
339
340 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
341                          struct efx_rx_buffer *rx_buf,
342                          unsigned int num_bufs)
343 {
344         do {
345                 if (rx_buf->page) {
346                         put_page(rx_buf->page);
347                         rx_buf->page = NULL;
348                 }
349                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
350         } while (--num_bufs);
351 }
352
353 void efx_rx_slow_fill(struct timer_list *t)
354 {
355         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
356
357         /* Post an event to cause NAPI to run and refill the queue */
358         efx_nic_generate_fill_event(rx_queue);
359         ++rx_queue->slow_fill_count;
360 }
361
362 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
363 {
364         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
365 }
366
367 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
368  *
369  * @rx_queue:           Efx RX queue
370  *
371  * This allocates a batch of pages, maps them for DMA, and populates
372  * struct efx_rx_buffers for each one. Return a negative error code or
373  * 0 on success. If a single page can be used for multiple buffers,
374  * then the page will either be inserted fully, or not at all.
375  */
376 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
377 {
378         unsigned int page_offset, index, count;
379         struct efx_nic *efx = rx_queue->efx;
380         struct efx_rx_page_state *state;
381         struct efx_rx_buffer *rx_buf;
382         dma_addr_t dma_addr;
383         struct page *page;
384
385         count = 0;
386         do {
387                 page = efx_reuse_page(rx_queue);
388                 if (page == NULL) {
389                         page = alloc_pages(__GFP_COMP |
390                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
391                                            efx->rx_buffer_order);
392                         if (unlikely(page == NULL))
393                                 return -ENOMEM;
394                         dma_addr =
395                                 dma_map_page(&efx->pci_dev->dev, page, 0,
396                                              PAGE_SIZE << efx->rx_buffer_order,
397                                              DMA_FROM_DEVICE);
398                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
399                                                        dma_addr))) {
400                                 __free_pages(page, efx->rx_buffer_order);
401                                 return -EIO;
402                         }
403                         state = page_address(page);
404                         state->dma_addr = dma_addr;
405                 } else {
406                         state = page_address(page);
407                         dma_addr = state->dma_addr;
408                 }
409
410                 dma_addr += sizeof(struct efx_rx_page_state);
411                 page_offset = sizeof(struct efx_rx_page_state);
412
413                 do {
414                         index = rx_queue->added_count & rx_queue->ptr_mask;
415                         rx_buf = efx_rx_buffer(rx_queue, index);
416                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
417                                            EFX_XDP_HEADROOM;
418                         rx_buf->page = page;
419                         rx_buf->page_offset = page_offset + efx->rx_ip_align +
420                                               EFX_XDP_HEADROOM;
421                         rx_buf->len = efx->rx_dma_len;
422                         rx_buf->flags = 0;
423                         ++rx_queue->added_count;
424                         get_page(page);
425                         dma_addr += efx->rx_page_buf_step;
426                         page_offset += efx->rx_page_buf_step;
427                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
428
429                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
430         } while (++count < efx->rx_pages_per_batch);
431
432         return 0;
433 }
434
435 void efx_rx_config_page_split(struct efx_nic *efx)
436 {
437         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
438                                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
439                                       EFX_RX_BUF_ALIGNMENT);
440         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
441                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
442                 efx->rx_page_buf_step);
443         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
444                 efx->rx_bufs_per_page;
445         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
446                                                efx->rx_bufs_per_page);
447 }
448
449 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
450  * @rx_queue:           RX descriptor queue
451  *
452  * This will aim to fill the RX descriptor queue up to
453  * @rx_queue->@max_fill. If there is insufficient atomic
454  * memory to do so, a slow fill will be scheduled.
455  *
456  * The caller must provide serialisation (none is used here). In practise,
457  * this means this function must run from the NAPI handler, or be called
458  * when NAPI is disabled.
459  */
460 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
461 {
462         struct efx_nic *efx = rx_queue->efx;
463         unsigned int fill_level, batch_size;
464         int space, rc = 0;
465
466         if (!rx_queue->refill_enabled)
467                 return;
468
469         /* Calculate current fill level, and exit if we don't need to fill */
470         fill_level = (rx_queue->added_count - rx_queue->removed_count);
471         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
472         if (fill_level >= rx_queue->fast_fill_trigger)
473                 goto out;
474
475         /* Record minimum fill level */
476         if (unlikely(fill_level < rx_queue->min_fill)) {
477                 if (fill_level)
478                         rx_queue->min_fill = fill_level;
479         }
480
481         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
482         space = rx_queue->max_fill - fill_level;
483         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
484
485         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
486                    "RX queue %d fast-filling descriptor ring from"
487                    " level %d to level %d\n",
488                    efx_rx_queue_index(rx_queue), fill_level,
489                    rx_queue->max_fill);
490
491         do {
492                 rc = efx_init_rx_buffers(rx_queue, atomic);
493                 if (unlikely(rc)) {
494                         /* Ensure that we don't leave the rx queue empty */
495                         efx_schedule_slow_fill(rx_queue);
496                         goto out;
497                 }
498         } while ((space -= batch_size) >= batch_size);
499
500         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
501                    "RX queue %d fast-filled descriptor ring "
502                    "to level %d\n", efx_rx_queue_index(rx_queue),
503                    rx_queue->added_count - rx_queue->removed_count);
504
505  out:
506         if (rx_queue->notified_count != rx_queue->added_count)
507                 efx_nic_notify_rx_desc(rx_queue);
508 }
509
510 /* Pass a received packet up through GRO.  GRO can handle pages
511  * regardless of checksum state and skbs with a good checksum.
512  */
513 void
514 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
515                   unsigned int n_frags, u8 *eh, __wsum csum)
516 {
517         struct napi_struct *napi = &channel->napi_str;
518         struct efx_nic *efx = channel->efx;
519         struct sk_buff *skb;
520
521         skb = napi_get_frags(napi);
522         if (unlikely(!skb)) {
523                 struct efx_rx_queue *rx_queue;
524
525                 rx_queue = efx_channel_get_rx_queue(channel);
526                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
527                 return;
528         }
529
530         if (efx->net_dev->features & NETIF_F_RXHASH &&
531             efx_rx_buf_hash_valid(efx, eh))
532                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
533                              PKT_HASH_TYPE_L3);
534         if (csum) {
535                 skb->csum = csum;
536                 skb->ip_summed = CHECKSUM_COMPLETE;
537         } else {
538                 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
539                                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
540         }
541         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
542
543         for (;;) {
544                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
545                                    rx_buf->page, rx_buf->page_offset,
546                                    rx_buf->len);
547                 rx_buf->page = NULL;
548                 skb->len += rx_buf->len;
549                 if (skb_shinfo(skb)->nr_frags == n_frags)
550                         break;
551
552                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
553         }
554
555         skb->data_len = skb->len;
556         skb->truesize += n_frags * efx->rx_buffer_truesize;
557
558         skb_record_rx_queue(skb, channel->rx_queue.core_index);
559
560         napi_gro_frags(napi);
561 }
562
563 struct efx_rss_context_priv *efx_find_rss_context_entry(struct efx_nic *efx,
564                                                         u32 id)
565 {
566         struct ethtool_rxfh_context *ctx;
567
568         WARN_ON(!mutex_is_locked(&efx->net_dev->ethtool->rss_lock));
569
570         ctx = xa_load(&efx->net_dev->ethtool->rss_ctx, id);
571         if (!ctx)
572                 return NULL;
573         return ethtool_rxfh_context_priv(ctx);
574 }
575
576 void efx_set_default_rx_indir_table(struct efx_nic *efx, u32 *indir)
577 {
578         size_t i;
579
580         for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); i++)
581                 indir[i] = ethtool_rxfh_indir_default(i, efx->rss_spread);
582 }
583
584 /**
585  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
586  * @spec: Specification to test
587  *
588  * Return: %true if the specification is a non-drop RX filter that
589  * matches a local MAC address I/G bit value of 1 or matches a local
590  * IPv4 or IPv6 address value in the respective multicast address
591  * range.  Otherwise %false.
592  */
593 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
594 {
595         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
596             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
597                 return false;
598
599         if (spec->match_flags &
600             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
601             is_multicast_ether_addr(spec->loc_mac))
602                 return true;
603
604         if ((spec->match_flags &
605              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
606             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
607                 if (spec->ether_type == htons(ETH_P_IP) &&
608                     ipv4_is_multicast(spec->loc_host[0]))
609                         return true;
610                 if (spec->ether_type == htons(ETH_P_IPV6) &&
611                     ((const u8 *)spec->loc_host)[0] == 0xff)
612                         return true;
613         }
614
615         return false;
616 }
617
618 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
619                            const struct efx_filter_spec *right)
620 {
621         if ((left->match_flags ^ right->match_flags) |
622             ((left->flags ^ right->flags) &
623              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
624                 return false;
625
626         return memcmp(&left->vport_id, &right->vport_id,
627                       sizeof(struct efx_filter_spec) -
628                       offsetof(struct efx_filter_spec, vport_id)) == 0;
629 }
630
631 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
632 {
633         BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
634         return jhash2((const u32 *)&spec->vport_id,
635                       (sizeof(struct efx_filter_spec) -
636                        offsetof(struct efx_filter_spec, vport_id)) / 4,
637                       0);
638 }
639
640 #ifdef CONFIG_RFS_ACCEL
641 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
642                         bool *force)
643 {
644         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
645                 /* ARFS is currently updating this entry, leave it */
646                 return false;
647         }
648         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
649                 /* ARFS tried and failed to update this, so it's probably out
650                  * of date.  Remove the filter and the ARFS rule entry.
651                  */
652                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
653                 *force = true;
654                 return true;
655         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
656                 /* ARFS has moved on, so old filter is not needed.  Since we did
657                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
658                  * not be removed by efx_rps_hash_del() subsequently.
659                  */
660                 *force = true;
661                 return true;
662         }
663         /* Remove it iff ARFS wants to. */
664         return true;
665 }
666
667 static
668 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
669                                        const struct efx_filter_spec *spec)
670 {
671         u32 hash = efx_filter_spec_hash(spec);
672
673         lockdep_assert_held(&efx->rps_hash_lock);
674         if (!efx->rps_hash_table)
675                 return NULL;
676         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
677 }
678
679 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
680                                         const struct efx_filter_spec *spec)
681 {
682         struct efx_arfs_rule *rule;
683         struct hlist_head *head;
684         struct hlist_node *node;
685
686         head = efx_rps_hash_bucket(efx, spec);
687         if (!head)
688                 return NULL;
689         hlist_for_each(node, head) {
690                 rule = container_of(node, struct efx_arfs_rule, node);
691                 if (efx_filter_spec_equal(spec, &rule->spec))
692                         return rule;
693         }
694         return NULL;
695 }
696
697 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
698                                        const struct efx_filter_spec *spec,
699                                        bool *new)
700 {
701         struct efx_arfs_rule *rule;
702         struct hlist_head *head;
703         struct hlist_node *node;
704
705         head = efx_rps_hash_bucket(efx, spec);
706         if (!head)
707                 return NULL;
708         hlist_for_each(node, head) {
709                 rule = container_of(node, struct efx_arfs_rule, node);
710                 if (efx_filter_spec_equal(spec, &rule->spec)) {
711                         *new = false;
712                         return rule;
713                 }
714         }
715         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
716         *new = true;
717         if (rule) {
718                 memcpy(&rule->spec, spec, sizeof(rule->spec));
719                 hlist_add_head(&rule->node, head);
720         }
721         return rule;
722 }
723
724 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
725 {
726         struct efx_arfs_rule *rule;
727         struct hlist_head *head;
728         struct hlist_node *node;
729
730         head = efx_rps_hash_bucket(efx, spec);
731         if (WARN_ON(!head))
732                 return;
733         hlist_for_each(node, head) {
734                 rule = container_of(node, struct efx_arfs_rule, node);
735                 if (efx_filter_spec_equal(spec, &rule->spec)) {
736                         /* Someone already reused the entry.  We know that if
737                          * this check doesn't fire (i.e. filter_id == REMOVING)
738                          * then the REMOVING mark was put there by our caller,
739                          * because caller is holding a lock on filter table and
740                          * only holders of that lock set REMOVING.
741                          */
742                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
743                                 return;
744                         hlist_del(node);
745                         kfree(rule);
746                         return;
747                 }
748         }
749         /* We didn't find it. */
750         WARN_ON(1);
751 }
752 #endif
753
754 int efx_probe_filters(struct efx_nic *efx)
755 {
756         int rc;
757
758         mutex_lock(&efx->mac_lock);
759         rc = efx->type->filter_table_probe(efx);
760         if (rc)
761                 goto out_unlock;
762
763 #ifdef CONFIG_RFS_ACCEL
764         if (efx->type->offload_features & NETIF_F_NTUPLE) {
765                 struct efx_channel *channel;
766                 int i, success = 1;
767
768                 efx_for_each_channel(channel, efx) {
769                         channel->rps_flow_id =
770                                 kcalloc(efx->type->max_rx_ip_filters,
771                                         sizeof(*channel->rps_flow_id),
772                                         GFP_KERNEL);
773                         if (!channel->rps_flow_id)
774                                 success = 0;
775                         else
776                                 for (i = 0;
777                                      i < efx->type->max_rx_ip_filters;
778                                      ++i)
779                                         channel->rps_flow_id[i] =
780                                                 RPS_FLOW_ID_INVALID;
781                         channel->rfs_expire_index = 0;
782                         channel->rfs_filter_count = 0;
783                 }
784
785                 if (!success) {
786                         efx_for_each_channel(channel, efx) {
787                                 kfree(channel->rps_flow_id);
788                                 channel->rps_flow_id = NULL;
789                         }
790                         efx->type->filter_table_remove(efx);
791                         rc = -ENOMEM;
792                         goto out_unlock;
793                 }
794         }
795 #endif
796 out_unlock:
797         mutex_unlock(&efx->mac_lock);
798         return rc;
799 }
800
801 void efx_remove_filters(struct efx_nic *efx)
802 {
803 #ifdef CONFIG_RFS_ACCEL
804         struct efx_channel *channel;
805
806         efx_for_each_channel(channel, efx) {
807                 cancel_delayed_work_sync(&channel->filter_work);
808                 kfree(channel->rps_flow_id);
809                 channel->rps_flow_id = NULL;
810         }
811 #endif
812         efx->type->filter_table_remove(efx);
813 }
814
815 #ifdef CONFIG_RFS_ACCEL
816
817 static void efx_filter_rfs_work(struct work_struct *data)
818 {
819         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
820                                                               work);
821         struct efx_nic *efx = efx_netdev_priv(req->net_dev);
822         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
823         int slot_idx = req - efx->rps_slot;
824         struct efx_arfs_rule *rule;
825         u16 arfs_id = 0;
826         int rc;
827
828         rc = efx->type->filter_insert(efx, &req->spec, true);
829         if (rc >= 0)
830                 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
831                 rc %= efx->type->max_rx_ip_filters;
832         if (efx->rps_hash_table) {
833                 spin_lock_bh(&efx->rps_hash_lock);
834                 rule = efx_rps_hash_find(efx, &req->spec);
835                 /* The rule might have already gone, if someone else's request
836                  * for the same spec was already worked and then expired before
837                  * we got around to our work.  In that case we have nothing
838                  * tying us to an arfs_id, meaning that as soon as the filter
839                  * is considered for expiry it will be removed.
840                  */
841                 if (rule) {
842                         if (rc < 0)
843                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
844                         else
845                                 rule->filter_id = rc;
846                         arfs_id = rule->arfs_id;
847                 }
848                 spin_unlock_bh(&efx->rps_hash_lock);
849         }
850         if (rc >= 0) {
851                 /* Remember this so we can check whether to expire the filter
852                  * later.
853                  */
854                 mutex_lock(&efx->rps_mutex);
855                 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
856                         channel->rfs_filter_count++;
857                 channel->rps_flow_id[rc] = req->flow_id;
858                 mutex_unlock(&efx->rps_mutex);
859
860                 if (req->spec.ether_type == htons(ETH_P_IP))
861                         netif_info(efx, rx_status, efx->net_dev,
862                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
863                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
864                                    req->spec.rem_host, ntohs(req->spec.rem_port),
865                                    req->spec.loc_host, ntohs(req->spec.loc_port),
866                                    req->rxq_index, req->flow_id, rc, arfs_id);
867                 else
868                         netif_info(efx, rx_status, efx->net_dev,
869                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
870                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
871                                    req->spec.rem_host, ntohs(req->spec.rem_port),
872                                    req->spec.loc_host, ntohs(req->spec.loc_port),
873                                    req->rxq_index, req->flow_id, rc, arfs_id);
874                 channel->n_rfs_succeeded++;
875         } else {
876                 if (req->spec.ether_type == htons(ETH_P_IP))
877                         netif_dbg(efx, rx_status, efx->net_dev,
878                                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
879                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
880                                   req->spec.rem_host, ntohs(req->spec.rem_port),
881                                   req->spec.loc_host, ntohs(req->spec.loc_port),
882                                   req->rxq_index, req->flow_id, rc, arfs_id);
883                 else
884                         netif_dbg(efx, rx_status, efx->net_dev,
885                                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
886                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
887                                   req->spec.rem_host, ntohs(req->spec.rem_port),
888                                   req->spec.loc_host, ntohs(req->spec.loc_port),
889                                   req->rxq_index, req->flow_id, rc, arfs_id);
890                 channel->n_rfs_failed++;
891                 /* We're overloading the NIC's filter tables, so let's do a
892                  * chunk of extra expiry work.
893                  */
894                 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
895                                                      100u));
896         }
897
898         /* Release references */
899         clear_bit(slot_idx, &efx->rps_slot_map);
900         dev_put(req->net_dev);
901 }
902
903 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
904                    u16 rxq_index, u32 flow_id)
905 {
906         struct efx_nic *efx = efx_netdev_priv(net_dev);
907         struct efx_async_filter_insertion *req;
908         struct efx_arfs_rule *rule;
909         struct flow_keys fk;
910         int slot_idx;
911         bool new;
912         int rc;
913
914         /* find a free slot */
915         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
916                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
917                         break;
918         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
919                 return -EBUSY;
920
921         if (flow_id == RPS_FLOW_ID_INVALID) {
922                 rc = -EINVAL;
923                 goto out_clear;
924         }
925
926         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
927                 rc = -EPROTONOSUPPORT;
928                 goto out_clear;
929         }
930
931         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
932                 rc = -EPROTONOSUPPORT;
933                 goto out_clear;
934         }
935         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
936                 rc = -EPROTONOSUPPORT;
937                 goto out_clear;
938         }
939
940         req = efx->rps_slot + slot_idx;
941         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
942                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
943                            rxq_index);
944         req->spec.match_flags =
945                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
946                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
947                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
948         req->spec.ether_type = fk.basic.n_proto;
949         req->spec.ip_proto = fk.basic.ip_proto;
950
951         if (fk.basic.n_proto == htons(ETH_P_IP)) {
952                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
953                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
954         } else {
955                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
956                        sizeof(struct in6_addr));
957                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
958                        sizeof(struct in6_addr));
959         }
960
961         req->spec.rem_port = fk.ports.src;
962         req->spec.loc_port = fk.ports.dst;
963
964         if (efx->rps_hash_table) {
965                 /* Add it to ARFS hash table */
966                 spin_lock(&efx->rps_hash_lock);
967                 rule = efx_rps_hash_add(efx, &req->spec, &new);
968                 if (!rule) {
969                         rc = -ENOMEM;
970                         goto out_unlock;
971                 }
972                 if (new)
973                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
974                 rc = rule->arfs_id;
975                 /* Skip if existing or pending filter already does the right thing */
976                 if (!new && rule->rxq_index == rxq_index &&
977                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
978                         goto out_unlock;
979                 rule->rxq_index = rxq_index;
980                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
981                 spin_unlock(&efx->rps_hash_lock);
982         } else {
983                 /* Without an ARFS hash table, we just use arfs_id 0 for all
984                  * filters.  This means if multiple flows hash to the same
985                  * flow_id, all but the most recently touched will be eligible
986                  * for expiry.
987                  */
988                 rc = 0;
989         }
990
991         /* Queue the request */
992         dev_hold(req->net_dev = net_dev);
993         INIT_WORK(&req->work, efx_filter_rfs_work);
994         req->rxq_index = rxq_index;
995         req->flow_id = flow_id;
996         schedule_work(&req->work);
997         return rc;
998 out_unlock:
999         spin_unlock(&efx->rps_hash_lock);
1000 out_clear:
1001         clear_bit(slot_idx, &efx->rps_slot_map);
1002         return rc;
1003 }
1004
1005 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1006 {
1007         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1008         struct efx_nic *efx = channel->efx;
1009         unsigned int index, size, start;
1010         u32 flow_id;
1011
1012         if (!mutex_trylock(&efx->rps_mutex))
1013                 return false;
1014         expire_one = efx->type->filter_rfs_expire_one;
1015         index = channel->rfs_expire_index;
1016         start = index;
1017         size = efx->type->max_rx_ip_filters;
1018         while (quota) {
1019                 flow_id = channel->rps_flow_id[index];
1020
1021                 if (flow_id != RPS_FLOW_ID_INVALID) {
1022                         quota--;
1023                         if (expire_one(efx, flow_id, index)) {
1024                                 netif_info(efx, rx_status, efx->net_dev,
1025                                            "expired filter %d [channel %u flow %u]\n",
1026                                            index, channel->channel, flow_id);
1027                                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1028                                 channel->rfs_filter_count--;
1029                         }
1030                 }
1031                 if (++index == size)
1032                         index = 0;
1033                 /* If we were called with a quota that exceeds the total number
1034                  * of filters in the table (which shouldn't happen, but could
1035                  * if two callers race), ensure that we don't loop forever -
1036                  * stop when we've examined every row of the table.
1037                  */
1038                 if (index == start)
1039                         break;
1040         }
1041
1042         channel->rfs_expire_index = index;
1043         mutex_unlock(&efx->rps_mutex);
1044         return true;
1045 }
1046
1047 #endif /* CONFIG_RFS_ACCEL */
This page took 0.0889 seconds and 4 git commands to generate.