]> Git Repo - J-linux.git/blob - drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / gpu / drm / msm / dsi / phy / dsi_phy_14nm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/delay.h>
9
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_14nm.xml.h"
13
14 #define PHY_14NM_CKLN_IDX       4
15
16 /*
17  * DSI PLL 14nm - clock diagram (eg: DSI0):
18  *
19  *         dsi0n1_postdiv_clk
20  *                         |
21  *                         |
22  *                 +----+  |  +----+
23  *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
24  *                 +----+  |  +----+
25  *                         |           dsi0n1_postdivby2_clk
26  *                         |   +----+  |
27  *                         o---| /2 |--o--|\
28  *                         |   +----+     | \   +----+
29  *                         |              |  |--| n2 |-- dsi0pll
30  *                         o--------------| /   +----+
31  *                                        |/
32  */
33
34 #define POLL_MAX_READS                  15
35 #define POLL_TIMEOUT_US                 1000
36
37 #define VCO_REF_CLK_RATE                19200000
38 #define VCO_MIN_RATE                    1300000000UL
39 #define VCO_MAX_RATE                    2600000000UL
40
41 struct dsi_pll_config {
42         u64 vco_current_rate;
43
44         u32 ssc_en;     /* SSC enable/disable */
45
46         /* fixed params */
47         u32 plllock_cnt;
48         u32 ssc_center;
49         u32 ssc_adj_period;
50         u32 ssc_spread;
51         u32 ssc_freq;
52
53         /* calculated */
54         u32 dec_start;
55         u32 div_frac_start;
56         u32 ssc_period;
57         u32 ssc_step_size;
58         u32 plllock_cmp;
59         u32 pll_vco_div_ref;
60         u32 pll_vco_count;
61         u32 pll_kvco_div_ref;
62         u32 pll_kvco_count;
63 };
64
65 struct pll_14nm_cached_state {
66         unsigned long vco_rate;
67         u8 n2postdiv;
68         u8 n1postdiv;
69 };
70
71 struct dsi_pll_14nm {
72         struct clk_hw clk_hw;
73
74         struct msm_dsi_phy *phy;
75
76         /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
77         spinlock_t postdiv_lock;
78
79         struct pll_14nm_cached_state cached_state;
80
81         struct dsi_pll_14nm *slave;
82 };
83
84 #define to_pll_14nm(x)  container_of(x, struct dsi_pll_14nm, clk_hw)
85
86 /*
87  * Private struct for N1/N2 post-divider clocks. These clocks are similar to
88  * the generic clk_divider class of clocks. The only difference is that it
89  * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
90  */
91 struct dsi_pll_14nm_postdiv {
92         struct clk_hw hw;
93
94         /* divider params */
95         u8 shift;
96         u8 width;
97         u8 flags; /* same flags as used by clk_divider struct */
98
99         struct dsi_pll_14nm *pll;
100 };
101
102 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
103
104 /*
105  * Global list of private DSI PLL struct pointers. We need this for bonded DSI
106  * mode, where the master PLL's clk_ops needs access the slave's private data
107  */
108 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
109
110 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
111                                     u32 nb_tries, u32 timeout_us)
112 {
113         bool pll_locked = false, pll_ready = false;
114         void __iomem *base = pll_14nm->phy->pll_base;
115         u32 tries, val;
116
117         tries = nb_tries;
118         while (tries--) {
119                 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
120                 pll_locked = !!(val & BIT(5));
121
122                 if (pll_locked)
123                         break;
124
125                 udelay(timeout_us);
126         }
127
128         if (!pll_locked)
129                 goto out;
130
131         tries = nb_tries;
132         while (tries--) {
133                 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
134                 pll_ready = !!(val & BIT(0));
135
136                 if (pll_ready)
137                         break;
138
139                 udelay(timeout_us);
140         }
141
142 out:
143         DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
144
145         return pll_locked && pll_ready;
146 }
147
148 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
149 {
150         /* fixed input */
151         pconf->plllock_cnt = 1;
152
153         /*
154          * SSC is enabled by default. We might need DT props for configuring
155          * some SSC params like PPM and center/down spread etc.
156          */
157         pconf->ssc_en = 1;
158         pconf->ssc_center = 0;          /* down spread by default */
159         pconf->ssc_spread = 5;          /* PPM / 1000 */
160         pconf->ssc_freq = 31500;        /* default recommended */
161         pconf->ssc_adj_period = 37;
162 }
163
164 #define CEIL(x, y)              (((x) + ((y) - 1)) / (y))
165
166 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
167 {
168         u32 period, ssc_period;
169         u32 ref, rem;
170         u64 step_size;
171
172         DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
173
174         ssc_period = pconf->ssc_freq / 500;
175         period = (u32)VCO_REF_CLK_RATE / 1000;
176         ssc_period  = CEIL(period, ssc_period);
177         ssc_period -= 1;
178         pconf->ssc_period = ssc_period;
179
180         DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
181             pconf->ssc_spread, pconf->ssc_period);
182
183         step_size = (u32)pconf->vco_current_rate;
184         ref = VCO_REF_CLK_RATE;
185         ref /= 1000;
186         step_size = div_u64(step_size, ref);
187         step_size <<= 20;
188         step_size = div_u64(step_size, 1000);
189         step_size *= pconf->ssc_spread;
190         step_size = div_u64(step_size, 1000);
191         step_size *= (pconf->ssc_adj_period + 1);
192
193         rem = 0;
194         step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
195         if (rem)
196                 step_size++;
197
198         DBG("step_size=%lld", step_size);
199
200         step_size &= 0x0ffff;   /* take lower 16 bits */
201
202         pconf->ssc_step_size = step_size;
203 }
204
205 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
206 {
207         u64 multiplier = BIT(20);
208         u64 dec_start_multiple, dec_start, pll_comp_val;
209         u32 duration, div_frac_start;
210         u64 vco_clk_rate = pconf->vco_current_rate;
211         u64 fref = VCO_REF_CLK_RATE;
212
213         DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
214
215         dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
216         dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
217
218         pconf->dec_start = (u32)dec_start;
219         pconf->div_frac_start = div_frac_start;
220
221         if (pconf->plllock_cnt == 0)
222                 duration = 1024;
223         else if (pconf->plllock_cnt == 1)
224                 duration = 256;
225         else if (pconf->plllock_cnt == 2)
226                 duration = 128;
227         else
228                 duration = 32;
229
230         pll_comp_val = duration * dec_start_multiple;
231         pll_comp_val = div_u64(pll_comp_val, multiplier);
232         do_div(pll_comp_val, 10);
233
234         pconf->plllock_cmp = (u32)pll_comp_val;
235 }
236
237 static u32 pll_14nm_kvco_slop(u32 vrate)
238 {
239         u32 slop = 0;
240
241         if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
242                 slop =  600;
243         else if (vrate > 1800000000UL && vrate < 2300000000UL)
244                 slop = 400;
245         else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
246                 slop = 280;
247
248         return slop;
249 }
250
251 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
252 {
253         u64 vco_clk_rate = pconf->vco_current_rate;
254         u64 fref = VCO_REF_CLK_RATE;
255         u32 vco_measure_time = 5;
256         u32 kvco_measure_time = 5;
257         u64 data;
258         u32 cnt;
259
260         data = fref * vco_measure_time;
261         do_div(data, 1000000);
262         data &= 0x03ff; /* 10 bits */
263         data -= 2;
264         pconf->pll_vco_div_ref = data;
265
266         data = div_u64(vco_clk_rate, 1000000);  /* unit is Mhz */
267         data *= vco_measure_time;
268         do_div(data, 10);
269         pconf->pll_vco_count = data;
270
271         data = fref * kvco_measure_time;
272         do_div(data, 1000000);
273         data &= 0x03ff; /* 10 bits */
274         data -= 1;
275         pconf->pll_kvco_div_ref = data;
276
277         cnt = pll_14nm_kvco_slop(vco_clk_rate);
278         cnt *= 2;
279         cnt /= 100;
280         cnt *= kvco_measure_time;
281         pconf->pll_kvco_count = cnt;
282 }
283
284 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
285 {
286         void __iomem *base = pll->phy->pll_base;
287         u8 data;
288
289         data = pconf->ssc_adj_period;
290         data &= 0x0ff;
291         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
292         data = (pconf->ssc_adj_period >> 8);
293         data &= 0x03;
294         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
295
296         data = pconf->ssc_period;
297         data &= 0x0ff;
298         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
299         data = (pconf->ssc_period >> 8);
300         data &= 0x0ff;
301         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
302
303         data = pconf->ssc_step_size;
304         data &= 0x0ff;
305         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
306         data = (pconf->ssc_step_size >> 8);
307         data &= 0x0ff;
308         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
309
310         data = (pconf->ssc_center & 0x01);
311         data <<= 1;
312         data |= 0x01; /* enable */
313         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
314
315         wmb();  /* make sure register committed */
316 }
317
318 static void pll_db_commit_common(struct dsi_pll_14nm *pll,
319                                  struct dsi_pll_config *pconf)
320 {
321         void __iomem *base = pll->phy->pll_base;
322         u8 data;
323
324         /* confgiure the non frequency dependent pll registers */
325         data = 0;
326         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
327
328         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
329
330         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
331         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
332         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
333
334         data = pconf->pll_vco_div_ref & 0xff;
335         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
336         data = (pconf->pll_vco_div_ref >> 8) & 0x3;
337         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
338
339         data = pconf->pll_kvco_div_ref & 0xff;
340         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
341         data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
342         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
343
344         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
345
346         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
347
348         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
349
350         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
351
352         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
353
354         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
355
356         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
357
358         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
359
360         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
361
362         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
363 }
364
365 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
366 {
367         void __iomem *cmn_base = pll_14nm->phy->base;
368
369         /* de assert pll start and apply pll sw reset */
370
371         /* stop pll */
372         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
373
374         /* pll sw reset */
375         dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
376         wmb();  /* make sure register committed */
377
378         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
379         wmb();  /* make sure register committed */
380 }
381
382 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
383                                struct dsi_pll_config *pconf)
384 {
385         void __iomem *base = pll->phy->pll_base;
386         void __iomem *cmn_base = pll->phy->base;
387         u8 data;
388
389         DBG("DSI%d PLL", pll->phy->id);
390
391         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
392
393         pll_db_commit_common(pll, pconf);
394
395         pll_14nm_software_reset(pll);
396
397         /* Use the /2 path in Mux */
398         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
399
400         data = 0xff; /* data, clk, pll normal operation */
401         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
402
403         /* configure the frequency dependent pll registers */
404         data = pconf->dec_start;
405         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
406
407         data = pconf->div_frac_start & 0xff;
408         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
409         data = (pconf->div_frac_start >> 8) & 0xff;
410         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
411         data = (pconf->div_frac_start >> 16) & 0xf;
412         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
413
414         data = pconf->plllock_cmp & 0xff;
415         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
416
417         data = (pconf->plllock_cmp >> 8) & 0xff;
418         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
419
420         data = (pconf->plllock_cmp >> 16) & 0x3;
421         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
422
423         data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
424         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
425
426         data = pconf->pll_vco_count & 0xff;
427         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
428         data = (pconf->pll_vco_count >> 8) & 0xff;
429         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
430
431         data = pconf->pll_kvco_count & 0xff;
432         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
433         data = (pconf->pll_kvco_count >> 8) & 0x3;
434         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
435
436         /*
437          * High nibble configures the post divider internal to the VCO. It's
438          * fixed to divide by 1 for now.
439          *
440          * 0: divided by 1
441          * 1: divided by 2
442          * 2: divided by 4
443          * 3: divided by 8
444          */
445         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
446
447         if (pconf->ssc_en)
448                 pll_db_commit_ssc(pll, pconf);
449
450         wmb();  /* make sure register committed */
451 }
452
453 /*
454  * VCO clock Callbacks
455  */
456 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
457                                      unsigned long parent_rate)
458 {
459         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
460         struct dsi_pll_config conf;
461
462         DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
463             parent_rate);
464
465         dsi_pll_14nm_config_init(&conf);
466         conf.vco_current_rate = rate;
467
468         pll_14nm_dec_frac_calc(pll_14nm, &conf);
469
470         if (conf.ssc_en)
471                 pll_14nm_ssc_calc(pll_14nm, &conf);
472
473         pll_14nm_calc_vco_count(pll_14nm, &conf);
474
475         /* commit the slave DSI PLL registers if we're master. Note that we
476          * don't lock the slave PLL. We just ensure that the PLL/PHY registers
477          * of the master and slave are identical
478          */
479         if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
480                 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
481
482                 pll_db_commit_14nm(pll_14nm_slave, &conf);
483         }
484
485         pll_db_commit_14nm(pll_14nm, &conf);
486
487         return 0;
488 }
489
490 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
491                                                   unsigned long parent_rate)
492 {
493         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
494         void __iomem *base = pll_14nm->phy->pll_base;
495         u64 vco_rate, multiplier = BIT(20);
496         u32 div_frac_start;
497         u32 dec_start;
498         u64 ref_clk = parent_rate;
499
500         dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
501         dec_start &= 0x0ff;
502
503         DBG("dec_start = %x", dec_start);
504
505         div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
506                                 & 0xf) << 16;
507         div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
508                                 & 0xff) << 8;
509         div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
510                                 & 0xff;
511
512         DBG("div_frac_start = %x", div_frac_start);
513
514         vco_rate = ref_clk * dec_start;
515
516         vco_rate += ((ref_clk * div_frac_start) / multiplier);
517
518         /*
519          * Recalculating the rate from dec_start and frac_start doesn't end up
520          * the rate we originally set. Convert the freq to KHz, round it up and
521          * convert it back to MHz.
522          */
523         vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
524
525         DBG("returning vco rate = %lu", (unsigned long)vco_rate);
526
527         return (unsigned long)vco_rate;
528 }
529
530 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
531 {
532         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
533         void __iomem *base = pll_14nm->phy->pll_base;
534         void __iomem *cmn_base = pll_14nm->phy->base;
535         bool locked;
536
537         DBG("");
538
539         if (unlikely(pll_14nm->phy->pll_on))
540                 return 0;
541
542         if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
543                 dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
544
545         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
546         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
547
548         locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
549                                          POLL_TIMEOUT_US);
550
551         if (unlikely(!locked)) {
552                 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
553                 return -EINVAL;
554         }
555
556         DBG("DSI PLL lock success");
557         pll_14nm->phy->pll_on = true;
558
559         return 0;
560 }
561
562 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
563 {
564         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
565         void __iomem *cmn_base = pll_14nm->phy->base;
566
567         DBG("");
568
569         if (unlikely(!pll_14nm->phy->pll_on))
570                 return;
571
572         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
573
574         pll_14nm->phy->pll_on = false;
575 }
576
577 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
578                 unsigned long rate, unsigned long *parent_rate)
579 {
580         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
581
582         if      (rate < pll_14nm->phy->cfg->min_pll_rate)
583                 return  pll_14nm->phy->cfg->min_pll_rate;
584         else if (rate > pll_14nm->phy->cfg->max_pll_rate)
585                 return  pll_14nm->phy->cfg->max_pll_rate;
586         else
587                 return rate;
588 }
589
590 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
591         .round_rate = dsi_pll_14nm_clk_round_rate,
592         .set_rate = dsi_pll_14nm_vco_set_rate,
593         .recalc_rate = dsi_pll_14nm_vco_recalc_rate,
594         .prepare = dsi_pll_14nm_vco_prepare,
595         .unprepare = dsi_pll_14nm_vco_unprepare,
596 };
597
598 /*
599  * N1 and N2 post-divider clock callbacks
600  */
601 #define div_mask(width) ((1 << (width)) - 1)
602 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
603                                                       unsigned long parent_rate)
604 {
605         struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
606         struct dsi_pll_14nm *pll_14nm = postdiv->pll;
607         void __iomem *base = pll_14nm->phy->base;
608         u8 shift = postdiv->shift;
609         u8 width = postdiv->width;
610         u32 val;
611
612         DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
613
614         val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
615         val &= div_mask(width);
616
617         return divider_recalc_rate(hw, parent_rate, val, NULL,
618                                    postdiv->flags, width);
619 }
620
621 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
622                                             unsigned long rate,
623                                             unsigned long *prate)
624 {
625         struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
626         struct dsi_pll_14nm *pll_14nm = postdiv->pll;
627
628         DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
629
630         return divider_round_rate(hw, rate, prate, NULL,
631                                   postdiv->width,
632                                   postdiv->flags);
633 }
634
635 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
636                                          unsigned long parent_rate)
637 {
638         struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
639         struct dsi_pll_14nm *pll_14nm = postdiv->pll;
640         void __iomem *base = pll_14nm->phy->base;
641         spinlock_t *lock = &pll_14nm->postdiv_lock;
642         u8 shift = postdiv->shift;
643         u8 width = postdiv->width;
644         unsigned int value;
645         unsigned long flags = 0;
646         u32 val;
647
648         DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
649             parent_rate);
650
651         value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
652                                 postdiv->flags);
653
654         spin_lock_irqsave(lock, flags);
655
656         val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
657         val &= ~(div_mask(width) << shift);
658
659         val |= value << shift;
660         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
661
662         /* If we're master in bonded DSI mode, then the slave PLL's post-dividers
663          * follow the master's post dividers
664          */
665         if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
666                 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
667                 void __iomem *slave_base = pll_14nm_slave->phy->base;
668
669                 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
670         }
671
672         spin_unlock_irqrestore(lock, flags);
673
674         return 0;
675 }
676
677 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
678         .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
679         .round_rate = dsi_pll_14nm_postdiv_round_rate,
680         .set_rate = dsi_pll_14nm_postdiv_set_rate,
681 };
682
683 /*
684  * PLL Callbacks
685  */
686
687 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
688 {
689         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
690         struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
691         void __iomem *cmn_base = pll_14nm->phy->base;
692         u32 data;
693
694         data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
695
696         cached_state->n1postdiv = data & 0xf;
697         cached_state->n2postdiv = (data >> 4) & 0xf;
698
699         DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
700             cached_state->n1postdiv, cached_state->n2postdiv);
701
702         cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
703 }
704
705 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
706 {
707         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
708         struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
709         void __iomem *cmn_base = pll_14nm->phy->base;
710         u32 data;
711         int ret;
712
713         ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
714                                         cached_state->vco_rate, 0);
715         if (ret) {
716                 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
717                               "restore vco rate failed. ret=%d\n", ret);
718                 return ret;
719         }
720
721         data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
722
723         DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
724             cached_state->n1postdiv, cached_state->n2postdiv);
725
726         dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
727
728         /* also restore post-dividers for slave DSI PLL */
729         if (phy->usecase == MSM_DSI_PHY_MASTER) {
730                 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
731                 void __iomem *slave_base = pll_14nm_slave->phy->base;
732
733                 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
734         }
735
736         return 0;
737 }
738
739 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
740 {
741         struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
742         void __iomem *base = phy->pll_base;
743         u32 clkbuflr_en, bandgap = 0;
744
745         switch (phy->usecase) {
746         case MSM_DSI_PHY_STANDALONE:
747                 clkbuflr_en = 0x1;
748                 break;
749         case MSM_DSI_PHY_MASTER:
750                 clkbuflr_en = 0x3;
751                 pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
752                 break;
753         case MSM_DSI_PHY_SLAVE:
754                 clkbuflr_en = 0x0;
755                 bandgap = 0x3;
756                 break;
757         default:
758                 return -EINVAL;
759         }
760
761         dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
762         if (bandgap)
763                 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
764
765         return 0;
766 }
767
768 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
769                                                 const char *name,
770                                                 const struct clk_hw *parent_hw,
771                                                 unsigned long flags,
772                                                 u8 shift)
773 {
774         struct dsi_pll_14nm_postdiv *pll_postdiv;
775         struct device *dev = &pll_14nm->phy->pdev->dev;
776         struct clk_init_data postdiv_init = {
777                 .parent_hws = (const struct clk_hw *[]) { parent_hw },
778                 .num_parents = 1,
779                 .name = name,
780                 .flags = flags,
781                 .ops = &clk_ops_dsi_pll_14nm_postdiv,
782         };
783         int ret;
784
785         pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
786         if (!pll_postdiv)
787                 return ERR_PTR(-ENOMEM);
788
789         pll_postdiv->pll = pll_14nm;
790         pll_postdiv->shift = shift;
791         /* both N1 and N2 postdividers are 4 bits wide */
792         pll_postdiv->width = 4;
793         /* range of each divider is from 1 to 15 */
794         pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
795         pll_postdiv->hw.init = &postdiv_init;
796
797         ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
798         if (ret)
799                 return ERR_PTR(ret);
800
801         return &pll_postdiv->hw;
802 }
803
804 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
805 {
806         char clk_name[32];
807         struct clk_init_data vco_init = {
808                 .parent_data = &(const struct clk_parent_data) {
809                         .fw_name = "ref",
810                 },
811                 .num_parents = 1,
812                 .name = clk_name,
813                 .flags = CLK_IGNORE_UNUSED,
814                 .ops = &clk_ops_dsi_pll_14nm_vco,
815         };
816         struct device *dev = &pll_14nm->phy->pdev->dev;
817         struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
818         int ret;
819
820         DBG("DSI%d", pll_14nm->phy->id);
821
822         snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
823         pll_14nm->clk_hw.init = &vco_init;
824
825         ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
826         if (ret)
827                 return ret;
828
829         snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
830
831         /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
832         n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
833                         &pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
834         if (IS_ERR(n1_postdiv))
835                 return PTR_ERR(n1_postdiv);
836
837         snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
838
839         /* DSI Byte clock = VCO_CLK / N1 / 8 */
840         hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
841                         n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
842         if (IS_ERR(hw))
843                 return PTR_ERR(hw);
844
845         provided_clocks[DSI_BYTE_PLL_CLK] = hw;
846
847         snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
848
849         /*
850          * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
851          * on the way. Don't let it set parent.
852          */
853         n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
854                         clk_name, n1_postdiv, 0, 1, 2);
855         if (IS_ERR(n1_postdivby2))
856                 return PTR_ERR(n1_postdivby2);
857
858         snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
859
860         /* DSI pixel clock = VCO_CLK / N1 / 2 / N2
861          * This is the output of N2 post-divider, bits 4-7 in
862          * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
863          */
864         hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
865                         0, 4);
866         if (IS_ERR(hw))
867                 return PTR_ERR(hw);
868
869         provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
870
871         return 0;
872 }
873
874 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
875 {
876         struct platform_device *pdev = phy->pdev;
877         struct dsi_pll_14nm *pll_14nm;
878         int ret;
879
880         if (!pdev)
881                 return -ENODEV;
882
883         pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
884         if (!pll_14nm)
885                 return -ENOMEM;
886
887         DBG("PLL%d", phy->id);
888
889         pll_14nm_list[phy->id] = pll_14nm;
890
891         spin_lock_init(&pll_14nm->postdiv_lock);
892
893         pll_14nm->phy = phy;
894
895         ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
896         if (ret) {
897                 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
898                 return ret;
899         }
900
901         phy->vco_hw = &pll_14nm->clk_hw;
902
903         return 0;
904 }
905
906 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
907                                      struct msm_dsi_dphy_timing *timing,
908                                      int lane_idx)
909 {
910         void __iomem *base = phy->lane_base;
911         bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
912         u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
913         u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
914         u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
915         u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
916         u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
917         u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
918                                    timing->hs_halfbyte_en;
919
920         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
921                       DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
922         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
923                       DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
924         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
925                       DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
926         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
927                       DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
928         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
929                       DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
930         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
931                       DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
932         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
933                       halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
934         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
935                       DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
936                       DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
937         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
938                       DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
939         dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
940                       DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
941 }
942
943 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
944                                struct msm_dsi_phy_clk_request *clk_req)
945 {
946         struct msm_dsi_dphy_timing *timing = &phy->timing;
947         u32 data;
948         int i;
949         int ret;
950         void __iomem *base = phy->base;
951         void __iomem *lane_base = phy->lane_base;
952         u32 glbl_test_ctrl;
953
954         if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
955                 DRM_DEV_ERROR(&phy->pdev->dev,
956                               "%s: D-PHY timing calculation failed\n",
957                               __func__);
958                 return -EINVAL;
959         }
960
961         data = 0x1c;
962         if (phy->usecase != MSM_DSI_PHY_STANDALONE)
963                 data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
964         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
965
966         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
967
968         /* 4 data lanes + 1 clk lane configuration */
969         for (i = 0; i < 5; i++) {
970                 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
971                               0x1d);
972
973                 dsi_phy_write(lane_base +
974                               REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
975                 dsi_phy_write(lane_base +
976                               REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
977                               (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
978
979                 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
980                               (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
981                 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
982                 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
983                               0);
984                 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
985                               0x88);
986
987                 dsi_14nm_dphy_set_timing(phy, timing, i);
988         }
989
990         /* Make sure PLL is not start */
991         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
992
993         wmb(); /* make sure everything is written before reset and enable */
994
995         /* reset digital block */
996         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
997         wmb(); /* ensure reset is asserted */
998         udelay(100);
999         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
1000
1001         glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1002         if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1003                 glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004         else
1005                 glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1006         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1007         ret = dsi_14nm_set_usecase(phy);
1008         if (ret) {
1009                 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1010                               __func__, ret);
1011                 return ret;
1012         }
1013
1014         /* Remove power down from PLL and all lanes */
1015         dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1016
1017         return 0;
1018 }
1019
1020 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1021 {
1022         dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1023         dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1024
1025         /* ensure that the phy is completely disabled */
1026         wmb();
1027 }
1028
1029 static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1030         { .supply = "vcca", .init_load_uA = 17000 },
1031 };
1032
1033 static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1034         { .supply = "vcca", .init_load_uA = 73400 },
1035 };
1036
1037 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1038         .has_phy_lane = true,
1039         .regulator_data = dsi_phy_14nm_17mA_regulators,
1040         .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1041         .ops = {
1042                 .enable = dsi_14nm_phy_enable,
1043                 .disable = dsi_14nm_phy_disable,
1044                 .pll_init = dsi_pll_14nm_init,
1045                 .save_pll_state = dsi_14nm_pll_save_state,
1046                 .restore_pll_state = dsi_14nm_pll_restore_state,
1047         },
1048         .min_pll_rate = VCO_MIN_RATE,
1049         .max_pll_rate = VCO_MAX_RATE,
1050         .io_start = { 0x994400, 0x996400 },
1051         .num_dsi_phy = 2,
1052 };
1053
1054 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1055         .has_phy_lane = true,
1056         .regulator_data = dsi_phy_14nm_73p4mA_regulators,
1057         .num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1058         .ops = {
1059                 .enable = dsi_14nm_phy_enable,
1060                 .disable = dsi_14nm_phy_disable,
1061                 .pll_init = dsi_pll_14nm_init,
1062                 .save_pll_state = dsi_14nm_pll_save_state,
1063                 .restore_pll_state = dsi_14nm_pll_restore_state,
1064         },
1065         .min_pll_rate = VCO_MIN_RATE,
1066         .max_pll_rate = VCO_MAX_RATE,
1067         .io_start = { 0xc994400, 0xc996400 },
1068         .num_dsi_phy = 2,
1069 };
1070
1071 const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1072         .has_phy_lane = true,
1073         .regulator_data = dsi_phy_14nm_17mA_regulators,
1074         .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1075         .ops = {
1076                 .enable = dsi_14nm_phy_enable,
1077                 .disable = dsi_14nm_phy_disable,
1078                 .pll_init = dsi_pll_14nm_init,
1079                 .save_pll_state = dsi_14nm_pll_save_state,
1080                 .restore_pll_state = dsi_14nm_pll_restore_state,
1081         },
1082         .min_pll_rate = VCO_MIN_RATE,
1083         .max_pll_rate = VCO_MAX_RATE,
1084         .io_start = { 0x1a94400, 0x1a96400 },
1085         .num_dsi_phy = 2,
1086 };
1087
1088 const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1089         .has_phy_lane = true,
1090         .ops = {
1091                 .enable = dsi_14nm_phy_enable,
1092                 .disable = dsi_14nm_phy_disable,
1093                 .pll_init = dsi_pll_14nm_init,
1094                 .save_pll_state = dsi_14nm_pll_save_state,
1095                 .restore_pll_state = dsi_14nm_pll_restore_state,
1096         },
1097         .min_pll_rate = VCO_MIN_RATE,
1098         .max_pll_rate = VCO_MAX_RATE,
1099         .io_start = { 0x5e94400 },
1100         .num_dsi_phy = 1,
1101 };
This page took 0.094189 seconds and 4 git commands to generate.