1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
7 #include <linux/clk-provider.h>
8 #include <linux/delay.h>
12 #include "dsi_phy_14nm.xml.h"
14 #define PHY_14NM_CKLN_IDX 4
17 * DSI PLL 14nm - clock diagram (eg: DSI0):
23 * dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
25 * | dsi0n1_postdivby2_clk
29 * | | |--| n2 |-- dsi0pll
30 * o--------------| / +----+
34 #define POLL_MAX_READS 15
35 #define POLL_TIMEOUT_US 1000
37 #define VCO_REF_CLK_RATE 19200000
38 #define VCO_MIN_RATE 1300000000UL
39 #define VCO_MAX_RATE 2600000000UL
41 struct dsi_pll_config {
44 u32 ssc_en; /* SSC enable/disable */
65 struct pll_14nm_cached_state {
66 unsigned long vco_rate;
74 struct msm_dsi_phy *phy;
76 /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
77 spinlock_t postdiv_lock;
79 struct pll_14nm_cached_state cached_state;
81 struct dsi_pll_14nm *slave;
84 #define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, clk_hw)
87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
88 * the generic clk_divider class of clocks. The only difference is that it
89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
91 struct dsi_pll_14nm_postdiv {
97 u8 flags; /* same flags as used by clk_divider struct */
99 struct dsi_pll_14nm *pll;
102 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
106 * mode, where the master PLL's clk_ops needs access the slave's private data
108 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
110 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
111 u32 nb_tries, u32 timeout_us)
113 bool pll_locked = false, pll_ready = false;
114 void __iomem *base = pll_14nm->phy->pll_base;
119 val = readl(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
120 pll_locked = !!(val & BIT(5));
133 val = readl(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
134 pll_ready = !!(val & BIT(0));
143 DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
145 return pll_locked && pll_ready;
148 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
151 pconf->plllock_cnt = 1;
154 * SSC is enabled by default. We might need DT props for configuring
155 * some SSC params like PPM and center/down spread etc.
158 pconf->ssc_center = 0; /* down spread by default */
159 pconf->ssc_spread = 5; /* PPM / 1000 */
160 pconf->ssc_freq = 31500; /* default recommended */
161 pconf->ssc_adj_period = 37;
164 #define CEIL(x, y) (((x) + ((y) - 1)) / (y))
166 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
168 u32 period, ssc_period;
172 DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
174 ssc_period = pconf->ssc_freq / 500;
175 period = (u32)VCO_REF_CLK_RATE / 1000;
176 ssc_period = CEIL(period, ssc_period);
178 pconf->ssc_period = ssc_period;
180 DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
181 pconf->ssc_spread, pconf->ssc_period);
183 step_size = (u32)pconf->vco_current_rate;
184 ref = VCO_REF_CLK_RATE;
186 step_size = div_u64(step_size, ref);
188 step_size = div_u64(step_size, 1000);
189 step_size *= pconf->ssc_spread;
190 step_size = div_u64(step_size, 1000);
191 step_size *= (pconf->ssc_adj_period + 1);
194 step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
198 DBG("step_size=%lld", step_size);
200 step_size &= 0x0ffff; /* take lower 16 bits */
202 pconf->ssc_step_size = step_size;
205 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
207 u64 multiplier = BIT(20);
208 u64 dec_start_multiple, dec_start, pll_comp_val;
209 u32 duration, div_frac_start;
210 u64 vco_clk_rate = pconf->vco_current_rate;
211 u64 fref = VCO_REF_CLK_RATE;
213 DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
215 dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
216 dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
218 pconf->dec_start = (u32)dec_start;
219 pconf->div_frac_start = div_frac_start;
221 if (pconf->plllock_cnt == 0)
223 else if (pconf->plllock_cnt == 1)
225 else if (pconf->plllock_cnt == 2)
230 pll_comp_val = duration * dec_start_multiple;
231 pll_comp_val = div_u64(pll_comp_val, multiplier);
232 do_div(pll_comp_val, 10);
234 pconf->plllock_cmp = (u32)pll_comp_val;
237 static u32 pll_14nm_kvco_slop(u32 vrate)
241 if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
243 else if (vrate > 1800000000UL && vrate < 2300000000UL)
245 else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
251 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
253 u64 vco_clk_rate = pconf->vco_current_rate;
254 u64 fref = VCO_REF_CLK_RATE;
255 u32 vco_measure_time = 5;
256 u32 kvco_measure_time = 5;
260 data = fref * vco_measure_time;
261 do_div(data, 1000000);
262 data &= 0x03ff; /* 10 bits */
264 pconf->pll_vco_div_ref = data;
266 data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */
267 data *= vco_measure_time;
269 pconf->pll_vco_count = data;
271 data = fref * kvco_measure_time;
272 do_div(data, 1000000);
273 data &= 0x03ff; /* 10 bits */
275 pconf->pll_kvco_div_ref = data;
277 cnt = pll_14nm_kvco_slop(vco_clk_rate);
280 cnt *= kvco_measure_time;
281 pconf->pll_kvco_count = cnt;
284 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
286 void __iomem *base = pll->phy->pll_base;
289 data = pconf->ssc_adj_period;
291 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1);
292 data = (pconf->ssc_adj_period >> 8);
294 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2);
296 data = pconf->ssc_period;
298 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_PER1);
299 data = (pconf->ssc_period >> 8);
301 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_PER2);
303 data = pconf->ssc_step_size;
305 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1);
306 data = (pconf->ssc_step_size >> 8);
308 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2);
310 data = (pconf->ssc_center & 0x01);
312 data |= 0x01; /* enable */
313 writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER);
315 wmb(); /* make sure register committed */
318 static void pll_db_commit_common(struct dsi_pll_14nm *pll,
319 struct dsi_pll_config *pconf)
321 void __iomem *base = pll->phy->pll_base;
324 /* confgiure the non frequency dependent pll registers */
326 writel(data, base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET);
328 writel(1, base + REG_DSI_14nm_PHY_PLL_TXCLK_EN);
330 writel(48, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL);
332 writel(4 << 3, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2);
333 /* pll_wakeup_timer */
334 writel(5, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5);
336 data = pconf->pll_vco_div_ref & 0xff;
337 writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1);
338 data = (pconf->pll_vco_div_ref >> 8) & 0x3;
339 writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2);
341 data = pconf->pll_kvco_div_ref & 0xff;
342 writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1);
343 data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
344 writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2);
346 writel(16, base + REG_DSI_14nm_PHY_PLL_PLL_MISC1);
348 writel(4, base + REG_DSI_14nm_PHY_PLL_IE_TRIM);
350 writel(4, base + REG_DSI_14nm_PHY_PLL_IP_TRIM);
352 writel(1 << 3 | 1, base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR);
354 writel(0 << 3 | 0, base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET);
356 writel(0 << 3 | 0, base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET);
358 writel(4 << 3 | 4, base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET);
360 writel(1 << 4 | 11, base + REG_DSI_14nm_PHY_PLL_PLL_LPF1);
362 writel(7, base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM);
364 writel(1 << 4 | 2, base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL);
367 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
369 void __iomem *cmn_base = pll_14nm->phy->base;
371 /* de assert pll start and apply pll sw reset */
374 writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
377 writel(0x20, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1);
379 wmb(); /* make sure register committed */
381 writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1);
382 wmb(); /* make sure register committed */
385 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
386 struct dsi_pll_config *pconf)
388 void __iomem *base = pll->phy->pll_base;
389 void __iomem *cmn_base = pll->phy->base;
392 DBG("DSI%d PLL", pll->phy->id);
394 writel(0x3c, cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL);
396 pll_db_commit_common(pll, pconf);
398 pll_14nm_software_reset(pll);
400 /* Use the /2 path in Mux */
401 writel(1, cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1);
403 data = 0xff; /* data, clk, pll normal operation */
404 writel(data, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0);
406 /* configure the frequency dependent pll registers */
407 data = pconf->dec_start;
408 writel(data, base + REG_DSI_14nm_PHY_PLL_DEC_START);
410 data = pconf->div_frac_start & 0xff;
411 writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1);
412 data = (pconf->div_frac_start >> 8) & 0xff;
413 writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2);
414 data = (pconf->div_frac_start >> 16) & 0xf;
415 writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3);
417 data = pconf->plllock_cmp & 0xff;
418 writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1);
420 data = (pconf->plllock_cmp >> 8) & 0xff;
421 writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2);
423 data = (pconf->plllock_cmp >> 16) & 0x3;
424 writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3);
426 data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
427 writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN);
429 data = pconf->pll_vco_count & 0xff;
430 writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1);
431 data = (pconf->pll_vco_count >> 8) & 0xff;
432 writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2);
434 data = pconf->pll_kvco_count & 0xff;
435 writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1);
436 data = (pconf->pll_kvco_count >> 8) & 0x3;
437 writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2);
440 * High nibble configures the post divider internal to the VCO. It's
441 * fixed to divide by 1 for now.
448 writel(0 << 4 | 3, base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV);
451 pll_db_commit_ssc(pll, pconf);
453 wmb(); /* make sure register committed */
457 * VCO clock Callbacks
459 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
460 unsigned long parent_rate)
462 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
463 struct dsi_pll_config conf;
465 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
468 dsi_pll_14nm_config_init(&conf);
469 conf.vco_current_rate = rate;
471 pll_14nm_dec_frac_calc(pll_14nm, &conf);
474 pll_14nm_ssc_calc(pll_14nm, &conf);
476 pll_14nm_calc_vco_count(pll_14nm, &conf);
478 /* commit the slave DSI PLL registers if we're master. Note that we
479 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
480 * of the master and slave are identical
482 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
483 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
485 pll_db_commit_14nm(pll_14nm_slave, &conf);
488 pll_db_commit_14nm(pll_14nm, &conf);
493 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
494 unsigned long parent_rate)
496 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
497 void __iomem *base = pll_14nm->phy->pll_base;
498 u64 vco_rate, multiplier = BIT(20);
501 u64 ref_clk = parent_rate;
503 dec_start = readl(base + REG_DSI_14nm_PHY_PLL_DEC_START);
506 DBG("dec_start = %x", dec_start);
508 div_frac_start = (readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
510 div_frac_start |= (readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
512 div_frac_start |= readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
515 DBG("div_frac_start = %x", div_frac_start);
517 vco_rate = ref_clk * dec_start;
519 vco_rate += ((ref_clk * div_frac_start) / multiplier);
522 * Recalculating the rate from dec_start and frac_start doesn't end up
523 * the rate we originally set. Convert the freq to KHz, round it up and
524 * convert it back to MHz.
526 vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
528 DBG("returning vco rate = %lu", (unsigned long)vco_rate);
530 return (unsigned long)vco_rate;
533 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
535 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
536 void __iomem *base = pll_14nm->phy->pll_base;
537 void __iomem *cmn_base = pll_14nm->phy->base;
542 if (unlikely(pll_14nm->phy->pll_on))
545 if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
546 dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
548 writel(0x10, base + REG_DSI_14nm_PHY_PLL_VREF_CFG1);
549 writel(1, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
551 locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
554 if (unlikely(!locked)) {
555 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
559 DBG("DSI PLL lock success");
560 pll_14nm->phy->pll_on = true;
565 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
567 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
568 void __iomem *cmn_base = pll_14nm->phy->base;
572 if (unlikely(!pll_14nm->phy->pll_on))
575 writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
577 pll_14nm->phy->pll_on = false;
580 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
581 unsigned long rate, unsigned long *parent_rate)
583 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
585 if (rate < pll_14nm->phy->cfg->min_pll_rate)
586 return pll_14nm->phy->cfg->min_pll_rate;
587 else if (rate > pll_14nm->phy->cfg->max_pll_rate)
588 return pll_14nm->phy->cfg->max_pll_rate;
593 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
594 .round_rate = dsi_pll_14nm_clk_round_rate,
595 .set_rate = dsi_pll_14nm_vco_set_rate,
596 .recalc_rate = dsi_pll_14nm_vco_recalc_rate,
597 .prepare = dsi_pll_14nm_vco_prepare,
598 .unprepare = dsi_pll_14nm_vco_unprepare,
602 * N1 and N2 post-divider clock callbacks
604 #define div_mask(width) ((1 << (width)) - 1)
605 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
606 unsigned long parent_rate)
608 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
609 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
610 void __iomem *base = pll_14nm->phy->base;
611 u8 shift = postdiv->shift;
612 u8 width = postdiv->width;
615 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
617 val = readl(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
618 val &= div_mask(width);
620 return divider_recalc_rate(hw, parent_rate, val, NULL,
621 postdiv->flags, width);
624 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
626 unsigned long *prate)
628 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
629 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
631 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
633 return divider_round_rate(hw, rate, prate, NULL,
638 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
639 unsigned long parent_rate)
641 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
642 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
643 void __iomem *base = pll_14nm->phy->base;
644 spinlock_t *lock = &pll_14nm->postdiv_lock;
645 u8 shift = postdiv->shift;
646 u8 width = postdiv->width;
648 unsigned long flags = 0;
651 DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
654 value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
657 spin_lock_irqsave(lock, flags);
659 val = readl(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
660 val &= ~(div_mask(width) << shift);
662 val |= value << shift;
663 writel(val, base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
665 /* If we're master in bonded DSI mode, then the slave PLL's post-dividers
666 * follow the master's post dividers
668 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
669 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
670 void __iomem *slave_base = pll_14nm_slave->phy->base;
672 writel(val, slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
675 spin_unlock_irqrestore(lock, flags);
680 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
681 .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
682 .round_rate = dsi_pll_14nm_postdiv_round_rate,
683 .set_rate = dsi_pll_14nm_postdiv_set_rate,
690 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
692 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
693 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
694 void __iomem *cmn_base = pll_14nm->phy->base;
697 data = readl(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
699 cached_state->n1postdiv = data & 0xf;
700 cached_state->n2postdiv = (data >> 4) & 0xf;
702 DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
703 cached_state->n1postdiv, cached_state->n2postdiv);
705 cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
708 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
710 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
711 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
712 void __iomem *cmn_base = pll_14nm->phy->base;
716 ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
717 cached_state->vco_rate, 0);
719 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
720 "restore vco rate failed. ret=%d\n", ret);
724 data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
726 DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
727 cached_state->n1postdiv, cached_state->n2postdiv);
729 writel(data, cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
731 /* also restore post-dividers for slave DSI PLL */
732 if (phy->usecase == MSM_DSI_PHY_MASTER) {
733 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
734 void __iomem *slave_base = pll_14nm_slave->phy->base;
736 writel(data, slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
742 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
744 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
745 void __iomem *base = phy->pll_base;
746 u32 clkbuflr_en, bandgap = 0;
748 switch (phy->usecase) {
749 case MSM_DSI_PHY_STANDALONE:
752 case MSM_DSI_PHY_MASTER:
754 pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
756 case MSM_DSI_PHY_SLAVE:
764 writel(clkbuflr_en, base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN);
766 writel(bandgap, base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP);
771 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
773 const struct clk_hw *parent_hw,
777 struct dsi_pll_14nm_postdiv *pll_postdiv;
778 struct device *dev = &pll_14nm->phy->pdev->dev;
779 struct clk_init_data postdiv_init = {
780 .parent_hws = (const struct clk_hw *[]) { parent_hw },
784 .ops = &clk_ops_dsi_pll_14nm_postdiv,
788 pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
790 return ERR_PTR(-ENOMEM);
792 pll_postdiv->pll = pll_14nm;
793 pll_postdiv->shift = shift;
794 /* both N1 and N2 postdividers are 4 bits wide */
795 pll_postdiv->width = 4;
796 /* range of each divider is from 1 to 15 */
797 pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
798 pll_postdiv->hw.init = &postdiv_init;
800 ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
804 return &pll_postdiv->hw;
807 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
810 struct clk_init_data vco_init = {
811 .parent_data = &(const struct clk_parent_data) {
816 .flags = CLK_IGNORE_UNUSED,
817 .ops = &clk_ops_dsi_pll_14nm_vco,
819 struct device *dev = &pll_14nm->phy->pdev->dev;
820 struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
823 DBG("DSI%d", pll_14nm->phy->id);
825 snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
826 pll_14nm->clk_hw.init = &vco_init;
828 ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
832 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
834 /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
835 n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
836 &pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
837 if (IS_ERR(n1_postdiv))
838 return PTR_ERR(n1_postdiv);
840 snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
842 /* DSI Byte clock = VCO_CLK / N1 / 8 */
843 hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
844 n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
848 provided_clocks[DSI_BYTE_PLL_CLK] = hw;
850 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
853 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
854 * on the way. Don't let it set parent.
856 n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
857 clk_name, n1_postdiv, 0, 1, 2);
858 if (IS_ERR(n1_postdivby2))
859 return PTR_ERR(n1_postdivby2);
861 snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
863 /* DSI pixel clock = VCO_CLK / N1 / 2 / N2
864 * This is the output of N2 post-divider, bits 4-7 in
865 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
867 hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
872 provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
877 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
879 struct platform_device *pdev = phy->pdev;
880 struct dsi_pll_14nm *pll_14nm;
886 pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
890 DBG("PLL%d", phy->id);
892 pll_14nm_list[phy->id] = pll_14nm;
894 spin_lock_init(&pll_14nm->postdiv_lock);
898 ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
900 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
904 phy->vco_hw = &pll_14nm->clk_hw;
909 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
910 struct msm_dsi_dphy_timing *timing,
913 void __iomem *base = phy->lane_base;
914 bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
915 u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
916 u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
917 u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
918 u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
919 u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
920 u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
921 timing->hs_halfbyte_en;
923 writel(DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit),
924 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx));
925 writel(DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero),
926 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx));
927 writel(DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare),
928 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx));
929 writel(DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail),
930 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx));
931 writel(DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst),
932 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx));
933 writel(DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly),
934 base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx));
935 writel(halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0,
936 base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx));
937 writel(DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
938 DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure),
939 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx));
940 writel(DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get),
941 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx));
942 writel(DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0),
943 base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx));
946 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
947 struct msm_dsi_phy_clk_request *clk_req)
949 struct msm_dsi_dphy_timing *timing = &phy->timing;
953 void __iomem *base = phy->base;
954 void __iomem *lane_base = phy->lane_base;
957 if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
958 DRM_DEV_ERROR(&phy->pdev->dev,
959 "%s: D-PHY timing calculation failed\n",
965 if (phy->usecase != MSM_DSI_PHY_STANDALONE)
966 data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
967 writel(data, base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL);
969 writel(0x1, base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
971 /* 4 data lanes + 1 clk lane configuration */
972 for (i = 0; i < 5; i++) {
973 writel(0x1d, lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i));
975 writel(0xff, lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i));
976 writel(i == PHY_14NM_CKLN_IDX ? 0x00 : 0x06,
977 lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i));
979 writel(i == PHY_14NM_CKLN_IDX ? 0x8f : 0x0f,
980 lane_base + REG_DSI_14nm_PHY_LN_CFG3(i));
981 writel(0x10, lane_base + REG_DSI_14nm_PHY_LN_CFG2(i));
982 writel(0, lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i));
983 writel(0x88, lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i));
985 dsi_14nm_dphy_set_timing(phy, timing, i);
988 /* Make sure PLL is not start */
989 writel(0x00, base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
991 wmb(); /* make sure everything is written before reset and enable */
993 /* reset digital block */
994 writel(0x80, base + REG_DSI_14nm_PHY_CMN_CTRL_1);
995 wmb(); /* ensure reset is asserted */
997 writel(0x00, base + REG_DSI_14nm_PHY_CMN_CTRL_1);
999 glbl_test_ctrl = readl(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1000 if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1001 glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1003 glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004 writel(glbl_test_ctrl, base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1005 ret = dsi_14nm_set_usecase(phy);
1007 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1012 /* Remove power down from PLL and all lanes */
1013 writel(0xff, base + REG_DSI_14nm_PHY_CMN_CTRL_0);
1018 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1020 writel(0, phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1021 writel(0, phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0);
1023 /* ensure that the phy is completely disabled */
1027 static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1028 { .supply = "vcca", .init_load_uA = 17000 },
1031 static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1032 { .supply = "vcca", .init_load_uA = 73400 },
1035 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1036 .has_phy_lane = true,
1037 .regulator_data = dsi_phy_14nm_17mA_regulators,
1038 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1040 .enable = dsi_14nm_phy_enable,
1041 .disable = dsi_14nm_phy_disable,
1042 .pll_init = dsi_pll_14nm_init,
1043 .save_pll_state = dsi_14nm_pll_save_state,
1044 .restore_pll_state = dsi_14nm_pll_restore_state,
1046 .min_pll_rate = VCO_MIN_RATE,
1047 .max_pll_rate = VCO_MAX_RATE,
1048 .io_start = { 0x994400, 0x996400 },
1052 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1053 .has_phy_lane = true,
1054 .regulator_data = dsi_phy_14nm_73p4mA_regulators,
1055 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1057 .enable = dsi_14nm_phy_enable,
1058 .disable = dsi_14nm_phy_disable,
1059 .pll_init = dsi_pll_14nm_init,
1060 .save_pll_state = dsi_14nm_pll_save_state,
1061 .restore_pll_state = dsi_14nm_pll_restore_state,
1063 .min_pll_rate = VCO_MIN_RATE,
1064 .max_pll_rate = VCO_MAX_RATE,
1065 .io_start = { 0xc994400, 0xc996400 },
1069 const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1070 .has_phy_lane = true,
1071 .regulator_data = dsi_phy_14nm_17mA_regulators,
1072 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1074 .enable = dsi_14nm_phy_enable,
1075 .disable = dsi_14nm_phy_disable,
1076 .pll_init = dsi_pll_14nm_init,
1077 .save_pll_state = dsi_14nm_pll_save_state,
1078 .restore_pll_state = dsi_14nm_pll_restore_state,
1080 .min_pll_rate = VCO_MIN_RATE,
1081 .max_pll_rate = VCO_MAX_RATE,
1082 .io_start = { 0x1a94400, 0x1a96400 },
1086 const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1087 .has_phy_lane = true,
1089 .enable = dsi_14nm_phy_enable,
1090 .disable = dsi_14nm_phy_disable,
1091 .pll_init = dsi_pll_14nm_init,
1092 .save_pll_state = dsi_14nm_pll_save_state,
1093 .restore_pll_state = dsi_14nm_pll_restore_state,
1095 .min_pll_rate = VCO_MIN_RATE,
1096 .max_pll_rate = VCO_MAX_RATE,
1097 .io_start = { 0x5e94400 },