]> Git Repo - J-linux.git/blob - arch/x86/events/core.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <[email protected]>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86
87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89
90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92
93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94
95 /*
96  * This one is magic, it will get called even when PMU init fails (because
97  * there is no PMU), in which case it should simply return NULL.
98  */
99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100
101 u64 __read_mostly hw_cache_event_ids
102                                 [PERF_COUNT_HW_CACHE_MAX]
103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
105 u64 __read_mostly hw_cache_extra_regs
106                                 [PERF_COUNT_HW_CACHE_MAX]
107                                 [PERF_COUNT_HW_CACHE_OP_MAX]
108                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
109
110 /*
111  * Propagate event elapsed time into the generic event.
112  * Can only be executed on the CPU where the event is active.
113  * Returns the delta events processed.
114  */
115 u64 x86_perf_event_update(struct perf_event *event)
116 {
117         struct hw_perf_event *hwc = &event->hw;
118         int shift = 64 - x86_pmu.cntval_bits;
119         u64 prev_raw_count, new_raw_count;
120         u64 delta;
121
122         if (unlikely(!hwc->event_base))
123                 return 0;
124
125         /*
126          * Careful: an NMI might modify the previous event value.
127          *
128          * Our tactic to handle this is to first atomically read and
129          * exchange a new raw count - then add that new-prev delta
130          * count to the generic event atomically:
131          */
132         prev_raw_count = local64_read(&hwc->prev_count);
133         do {
134                 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135         } while (!local64_try_cmpxchg(&hwc->prev_count,
136                                       &prev_raw_count, new_raw_count));
137
138         /*
139          * Now we have the new raw value and have updated the prev
140          * timestamp already. We can now calculate the elapsed delta
141          * (event-)time and add that to the generic event.
142          *
143          * Careful, not all hw sign-extends above the physical width
144          * of the count.
145          */
146         delta = (new_raw_count << shift) - (prev_raw_count << shift);
147         delta >>= shift;
148
149         local64_add(delta, &event->count);
150         local64_sub(delta, &hwc->period_left);
151
152         return new_raw_count;
153 }
154
155 /*
156  * Find and validate any extra registers to set up.
157  */
158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159 {
160         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161         struct hw_perf_event_extra *reg;
162         struct extra_reg *er;
163
164         reg = &event->hw.extra_reg;
165
166         if (!extra_regs)
167                 return 0;
168
169         for (er = extra_regs; er->msr; er++) {
170                 if (er->event != (config & er->config_mask))
171                         continue;
172                 if (event->attr.config1 & ~er->valid_mask)
173                         return -EINVAL;
174                 /* Check if the extra msrs can be safely accessed*/
175                 if (!er->extra_msr_access)
176                         return -ENXIO;
177
178                 reg->idx = er->idx;
179                 reg->config = event->attr.config1;
180                 reg->reg = er->msr;
181                 break;
182         }
183         return 0;
184 }
185
186 static atomic_t active_events;
187 static atomic_t pmc_refcount;
188 static DEFINE_MUTEX(pmc_reserve_mutex);
189
190 #ifdef CONFIG_X86_LOCAL_APIC
191
192 static inline int get_possible_num_counters(void)
193 {
194         int i, num_counters = x86_pmu.num_counters;
195
196         if (!is_hybrid())
197                 return num_counters;
198
199         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
200                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
201
202         return num_counters;
203 }
204
205 static bool reserve_pmc_hardware(void)
206 {
207         int i, num_counters = get_possible_num_counters();
208
209         for (i = 0; i < num_counters; i++) {
210                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
211                         goto perfctr_fail;
212         }
213
214         for (i = 0; i < num_counters; i++) {
215                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
216                         goto eventsel_fail;
217         }
218
219         return true;
220
221 eventsel_fail:
222         for (i--; i >= 0; i--)
223                 release_evntsel_nmi(x86_pmu_config_addr(i));
224
225         i = num_counters;
226
227 perfctr_fail:
228         for (i--; i >= 0; i--)
229                 release_perfctr_nmi(x86_pmu_event_addr(i));
230
231         return false;
232 }
233
234 static void release_pmc_hardware(void)
235 {
236         int i, num_counters = get_possible_num_counters();
237
238         for (i = 0; i < num_counters; i++) {
239                 release_perfctr_nmi(x86_pmu_event_addr(i));
240                 release_evntsel_nmi(x86_pmu_config_addr(i));
241         }
242 }
243
244 #else
245
246 static bool reserve_pmc_hardware(void) { return true; }
247 static void release_pmc_hardware(void) {}
248
249 #endif
250
251 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
252 {
253         u64 val, val_fail = -1, val_new= ~0;
254         int i, reg, reg_fail = -1, ret = 0;
255         int bios_fail = 0;
256         int reg_safe = -1;
257
258         /*
259          * Check to see if the BIOS enabled any of the counters, if so
260          * complain and bail.
261          */
262         for (i = 0; i < num_counters; i++) {
263                 reg = x86_pmu_config_addr(i);
264                 ret = rdmsrl_safe(reg, &val);
265                 if (ret)
266                         goto msr_fail;
267                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
268                         bios_fail = 1;
269                         val_fail = val;
270                         reg_fail = reg;
271                 } else {
272                         reg_safe = i;
273                 }
274         }
275
276         if (num_counters_fixed) {
277                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
278                 ret = rdmsrl_safe(reg, &val);
279                 if (ret)
280                         goto msr_fail;
281                 for (i = 0; i < num_counters_fixed; i++) {
282                         if (fixed_counter_disabled(i, pmu))
283                                 continue;
284                         if (val & (0x03ULL << i*4)) {
285                                 bios_fail = 1;
286                                 val_fail = val;
287                                 reg_fail = reg;
288                         }
289                 }
290         }
291
292         /*
293          * If all the counters are enabled, the below test will always
294          * fail.  The tools will also become useless in this scenario.
295          * Just fail and disable the hardware counters.
296          */
297
298         if (reg_safe == -1) {
299                 reg = reg_safe;
300                 goto msr_fail;
301         }
302
303         /*
304          * Read the current value, change it and read it back to see if it
305          * matches, this is needed to detect certain hardware emulators
306          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
307          */
308         reg = x86_pmu_event_addr(reg_safe);
309         if (rdmsrl_safe(reg, &val))
310                 goto msr_fail;
311         val ^= 0xffffUL;
312         ret = wrmsrl_safe(reg, val);
313         ret |= rdmsrl_safe(reg, &val_new);
314         if (ret || val != val_new)
315                 goto msr_fail;
316
317         /*
318          * We still allow the PMU driver to operate:
319          */
320         if (bios_fail) {
321                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
322                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
323                               reg_fail, val_fail);
324         }
325
326         return true;
327
328 msr_fail:
329         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
330                 pr_cont("PMU not available due to virtualization, using software events only.\n");
331         } else {
332                 pr_cont("Broken PMU hardware detected, using software events only.\n");
333                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
334                        reg, val_new);
335         }
336
337         return false;
338 }
339
340 static void hw_perf_event_destroy(struct perf_event *event)
341 {
342         x86_release_hardware();
343         atomic_dec(&active_events);
344 }
345
346 void hw_perf_lbr_event_destroy(struct perf_event *event)
347 {
348         hw_perf_event_destroy(event);
349
350         /* undo the lbr/bts event accounting */
351         x86_del_exclusive(x86_lbr_exclusive_lbr);
352 }
353
354 static inline int x86_pmu_initialized(void)
355 {
356         return x86_pmu.handle_irq != NULL;
357 }
358
359 static inline int
360 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
361 {
362         struct perf_event_attr *attr = &event->attr;
363         unsigned int cache_type, cache_op, cache_result;
364         u64 config, val;
365
366         config = attr->config;
367
368         cache_type = (config >> 0) & 0xff;
369         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
370                 return -EINVAL;
371         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
372
373         cache_op = (config >>  8) & 0xff;
374         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
375                 return -EINVAL;
376         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
377
378         cache_result = (config >> 16) & 0xff;
379         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
380                 return -EINVAL;
381         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
382
383         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
384         if (val == 0)
385                 return -ENOENT;
386
387         if (val == -1)
388                 return -EINVAL;
389
390         hwc->config |= val;
391         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
392         return x86_pmu_extra_regs(val, event);
393 }
394
395 int x86_reserve_hardware(void)
396 {
397         int err = 0;
398
399         if (!atomic_inc_not_zero(&pmc_refcount)) {
400                 mutex_lock(&pmc_reserve_mutex);
401                 if (atomic_read(&pmc_refcount) == 0) {
402                         if (!reserve_pmc_hardware()) {
403                                 err = -EBUSY;
404                         } else {
405                                 reserve_ds_buffers();
406                                 reserve_lbr_buffers();
407                         }
408                 }
409                 if (!err)
410                         atomic_inc(&pmc_refcount);
411                 mutex_unlock(&pmc_reserve_mutex);
412         }
413
414         return err;
415 }
416
417 void x86_release_hardware(void)
418 {
419         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
420                 release_pmc_hardware();
421                 release_ds_buffers();
422                 release_lbr_buffers();
423                 mutex_unlock(&pmc_reserve_mutex);
424         }
425 }
426
427 /*
428  * Check if we can create event of a certain type (that no conflicting events
429  * are present).
430  */
431 int x86_add_exclusive(unsigned int what)
432 {
433         int i;
434
435         /*
436          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
437          * LBR and BTS are still mutually exclusive.
438          */
439         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440                 goto out;
441
442         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
443                 mutex_lock(&pmc_reserve_mutex);
444                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
445                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
446                                 goto fail_unlock;
447                 }
448                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
449                 mutex_unlock(&pmc_reserve_mutex);
450         }
451
452 out:
453         atomic_inc(&active_events);
454         return 0;
455
456 fail_unlock:
457         mutex_unlock(&pmc_reserve_mutex);
458         return -EBUSY;
459 }
460
461 void x86_del_exclusive(unsigned int what)
462 {
463         atomic_dec(&active_events);
464
465         /*
466          * See the comment in x86_add_exclusive().
467          */
468         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
469                 return;
470
471         atomic_dec(&x86_pmu.lbr_exclusive[what]);
472 }
473
474 int x86_setup_perfctr(struct perf_event *event)
475 {
476         struct perf_event_attr *attr = &event->attr;
477         struct hw_perf_event *hwc = &event->hw;
478         u64 config;
479
480         if (!is_sampling_event(event)) {
481                 hwc->sample_period = x86_pmu.max_period;
482                 hwc->last_period = hwc->sample_period;
483                 local64_set(&hwc->period_left, hwc->sample_period);
484         }
485
486         if (attr->type == event->pmu->type)
487                 return x86_pmu_extra_regs(event->attr.config, event);
488
489         if (attr->type == PERF_TYPE_HW_CACHE)
490                 return set_ext_hw_attr(hwc, event);
491
492         if (attr->config >= x86_pmu.max_events)
493                 return -EINVAL;
494
495         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
496
497         /*
498          * The generic map:
499          */
500         config = x86_pmu.event_map(attr->config);
501
502         if (config == 0)
503                 return -ENOENT;
504
505         if (config == -1LL)
506                 return -EINVAL;
507
508         hwc->config |= config;
509
510         return 0;
511 }
512
513 /*
514  * check that branch_sample_type is compatible with
515  * settings needed for precise_ip > 1 which implies
516  * using the LBR to capture ALL taken branches at the
517  * priv levels of the measurement
518  */
519 static inline int precise_br_compat(struct perf_event *event)
520 {
521         u64 m = event->attr.branch_sample_type;
522         u64 b = 0;
523
524         /* must capture all branches */
525         if (!(m & PERF_SAMPLE_BRANCH_ANY))
526                 return 0;
527
528         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
529
530         if (!event->attr.exclude_user)
531                 b |= PERF_SAMPLE_BRANCH_USER;
532
533         if (!event->attr.exclude_kernel)
534                 b |= PERF_SAMPLE_BRANCH_KERNEL;
535
536         /*
537          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
538          */
539
540         return m == b;
541 }
542
543 int x86_pmu_max_precise(void)
544 {
545         int precise = 0;
546
547         /* Support for constant skid */
548         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
549                 precise++;
550
551                 /* Support for IP fixup */
552                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
553                         precise++;
554
555                 if (x86_pmu.pebs_prec_dist)
556                         precise++;
557         }
558         return precise;
559 }
560
561 int x86_pmu_hw_config(struct perf_event *event)
562 {
563         if (event->attr.precise_ip) {
564                 int precise = x86_pmu_max_precise();
565
566                 if (event->attr.precise_ip > precise)
567                         return -EOPNOTSUPP;
568
569                 /* There's no sense in having PEBS for non sampling events: */
570                 if (!is_sampling_event(event))
571                         return -EINVAL;
572         }
573         /*
574          * check that PEBS LBR correction does not conflict with
575          * whatever the user is asking with attr->branch_sample_type
576          */
577         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
578                 u64 *br_type = &event->attr.branch_sample_type;
579
580                 if (has_branch_stack(event)) {
581                         if (!precise_br_compat(event))
582                                 return -EOPNOTSUPP;
583
584                         /* branch_sample_type is compatible */
585
586                 } else {
587                         /*
588                          * user did not specify  branch_sample_type
589                          *
590                          * For PEBS fixups, we capture all
591                          * the branches at the priv level of the
592                          * event.
593                          */
594                         *br_type = PERF_SAMPLE_BRANCH_ANY;
595
596                         if (!event->attr.exclude_user)
597                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
598
599                         if (!event->attr.exclude_kernel)
600                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
601                 }
602         }
603
604         if (branch_sample_call_stack(event))
605                 event->attach_state |= PERF_ATTACH_TASK_DATA;
606
607         /*
608          * Generate PMC IRQs:
609          * (keep 'enabled' bit clear for now)
610          */
611         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
612
613         /*
614          * Count user and OS events unless requested not to
615          */
616         if (!event->attr.exclude_user)
617                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
618         if (!event->attr.exclude_kernel)
619                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
620
621         if (event->attr.type == event->pmu->type)
622                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
623
624         if (event->attr.sample_period && x86_pmu.limit_period) {
625                 s64 left = event->attr.sample_period;
626                 x86_pmu.limit_period(event, &left);
627                 if (left > event->attr.sample_period)
628                         return -EINVAL;
629         }
630
631         /* sample_regs_user never support XMM registers */
632         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
633                 return -EINVAL;
634         /*
635          * Besides the general purpose registers, XMM registers may
636          * be collected in PEBS on some platforms, e.g. Icelake
637          */
638         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
639                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
640                         return -EINVAL;
641
642                 if (!event->attr.precise_ip)
643                         return -EINVAL;
644         }
645
646         return x86_setup_perfctr(event);
647 }
648
649 /*
650  * Setup the hardware configuration for a given attr_type
651  */
652 static int __x86_pmu_event_init(struct perf_event *event)
653 {
654         int err;
655
656         if (!x86_pmu_initialized())
657                 return -ENODEV;
658
659         err = x86_reserve_hardware();
660         if (err)
661                 return err;
662
663         atomic_inc(&active_events);
664         event->destroy = hw_perf_event_destroy;
665
666         event->hw.idx = -1;
667         event->hw.last_cpu = -1;
668         event->hw.last_tag = ~0ULL;
669
670         /* mark unused */
671         event->hw.extra_reg.idx = EXTRA_REG_NONE;
672         event->hw.branch_reg.idx = EXTRA_REG_NONE;
673
674         return x86_pmu.hw_config(event);
675 }
676
677 void x86_pmu_disable_all(void)
678 {
679         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
680         int idx;
681
682         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
683                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
684                 u64 val;
685
686                 if (!test_bit(idx, cpuc->active_mask))
687                         continue;
688                 rdmsrl(x86_pmu_config_addr(idx), val);
689                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
690                         continue;
691                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
692                 wrmsrl(x86_pmu_config_addr(idx), val);
693                 if (is_counter_pair(hwc))
694                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
695         }
696 }
697
698 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
699 {
700         return static_call(x86_pmu_guest_get_msrs)(nr, data);
701 }
702 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
703
704 /*
705  * There may be PMI landing after enabled=0. The PMI hitting could be before or
706  * after disable_all.
707  *
708  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
709  * It will not be re-enabled in the NMI handler again, because enabled=0. After
710  * handling the NMI, disable_all will be called, which will not change the
711  * state either. If PMI hits after disable_all, the PMU is already disabled
712  * before entering NMI handler. The NMI handler will not change the state
713  * either.
714  *
715  * So either situation is harmless.
716  */
717 static void x86_pmu_disable(struct pmu *pmu)
718 {
719         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720
721         if (!x86_pmu_initialized())
722                 return;
723
724         if (!cpuc->enabled)
725                 return;
726
727         cpuc->n_added = 0;
728         cpuc->enabled = 0;
729         barrier();
730
731         static_call(x86_pmu_disable_all)();
732 }
733
734 void x86_pmu_enable_all(int added)
735 {
736         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
737         int idx;
738
739         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
740                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
741
742                 if (!test_bit(idx, cpuc->active_mask))
743                         continue;
744
745                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
746         }
747 }
748
749 static inline int is_x86_event(struct perf_event *event)
750 {
751         int i;
752
753         if (!is_hybrid())
754                 return event->pmu == &pmu;
755
756         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
757                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
758                         return true;
759         }
760
761         return false;
762 }
763
764 struct pmu *x86_get_pmu(unsigned int cpu)
765 {
766         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
767
768         /*
769          * All CPUs of the hybrid type have been offline.
770          * The x86_get_pmu() should not be invoked.
771          */
772         if (WARN_ON_ONCE(!cpuc->pmu))
773                 return &pmu;
774
775         return cpuc->pmu;
776 }
777 /*
778  * Event scheduler state:
779  *
780  * Assign events iterating over all events and counters, beginning
781  * with events with least weights first. Keep the current iterator
782  * state in struct sched_state.
783  */
784 struct sched_state {
785         int     weight;
786         int     event;          /* event index */
787         int     counter;        /* counter index */
788         int     unassigned;     /* number of events to be assigned left */
789         int     nr_gp;          /* number of GP counters used */
790         u64     used;
791 };
792
793 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
794 #define SCHED_STATES_MAX        2
795
796 struct perf_sched {
797         int                     max_weight;
798         int                     max_events;
799         int                     max_gp;
800         int                     saved_states;
801         struct event_constraint **constraints;
802         struct sched_state      state;
803         struct sched_state      saved[SCHED_STATES_MAX];
804 };
805
806 /*
807  * Initialize iterator that runs through all events and counters.
808  */
809 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
810                             int num, int wmin, int wmax, int gpmax)
811 {
812         int idx;
813
814         memset(sched, 0, sizeof(*sched));
815         sched->max_events       = num;
816         sched->max_weight       = wmax;
817         sched->max_gp           = gpmax;
818         sched->constraints      = constraints;
819
820         for (idx = 0; idx < num; idx++) {
821                 if (constraints[idx]->weight == wmin)
822                         break;
823         }
824
825         sched->state.event      = idx;          /* start with min weight */
826         sched->state.weight     = wmin;
827         sched->state.unassigned = num;
828 }
829
830 static void perf_sched_save_state(struct perf_sched *sched)
831 {
832         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
833                 return;
834
835         sched->saved[sched->saved_states] = sched->state;
836         sched->saved_states++;
837 }
838
839 static bool perf_sched_restore_state(struct perf_sched *sched)
840 {
841         if (!sched->saved_states)
842                 return false;
843
844         sched->saved_states--;
845         sched->state = sched->saved[sched->saved_states];
846
847         /* this assignment didn't work out */
848         /* XXX broken vs EVENT_PAIR */
849         sched->state.used &= ~BIT_ULL(sched->state.counter);
850
851         /* try the next one */
852         sched->state.counter++;
853
854         return true;
855 }
856
857 /*
858  * Select a counter for the current event to schedule. Return true on
859  * success.
860  */
861 static bool __perf_sched_find_counter(struct perf_sched *sched)
862 {
863         struct event_constraint *c;
864         int idx;
865
866         if (!sched->state.unassigned)
867                 return false;
868
869         if (sched->state.event >= sched->max_events)
870                 return false;
871
872         c = sched->constraints[sched->state.event];
873         /* Prefer fixed purpose counters */
874         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
875                 idx = INTEL_PMC_IDX_FIXED;
876                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
877                         u64 mask = BIT_ULL(idx);
878
879                         if (sched->state.used & mask)
880                                 continue;
881
882                         sched->state.used |= mask;
883                         goto done;
884                 }
885         }
886
887         /* Grab the first unused counter starting with idx */
888         idx = sched->state.counter;
889         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
890                 u64 mask = BIT_ULL(idx);
891
892                 if (c->flags & PERF_X86_EVENT_PAIR)
893                         mask |= mask << 1;
894
895                 if (sched->state.used & mask)
896                         continue;
897
898                 if (sched->state.nr_gp++ >= sched->max_gp)
899                         return false;
900
901                 sched->state.used |= mask;
902                 goto done;
903         }
904
905         return false;
906
907 done:
908         sched->state.counter = idx;
909
910         if (c->overlap)
911                 perf_sched_save_state(sched);
912
913         return true;
914 }
915
916 static bool perf_sched_find_counter(struct perf_sched *sched)
917 {
918         while (!__perf_sched_find_counter(sched)) {
919                 if (!perf_sched_restore_state(sched))
920                         return false;
921         }
922
923         return true;
924 }
925
926 /*
927  * Go through all unassigned events and find the next one to schedule.
928  * Take events with the least weight first. Return true on success.
929  */
930 static bool perf_sched_next_event(struct perf_sched *sched)
931 {
932         struct event_constraint *c;
933
934         if (!sched->state.unassigned || !--sched->state.unassigned)
935                 return false;
936
937         do {
938                 /* next event */
939                 sched->state.event++;
940                 if (sched->state.event >= sched->max_events) {
941                         /* next weight */
942                         sched->state.event = 0;
943                         sched->state.weight++;
944                         if (sched->state.weight > sched->max_weight)
945                                 return false;
946                 }
947                 c = sched->constraints[sched->state.event];
948         } while (c->weight != sched->state.weight);
949
950         sched->state.counter = 0;       /* start with first counter */
951
952         return true;
953 }
954
955 /*
956  * Assign a counter for each event.
957  */
958 int perf_assign_events(struct event_constraint **constraints, int n,
959                         int wmin, int wmax, int gpmax, int *assign)
960 {
961         struct perf_sched sched;
962
963         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
964
965         do {
966                 if (!perf_sched_find_counter(&sched))
967                         break;  /* failed */
968                 if (assign)
969                         assign[sched.state.event] = sched.state.counter;
970         } while (perf_sched_next_event(&sched));
971
972         return sched.state.unassigned;
973 }
974 EXPORT_SYMBOL_GPL(perf_assign_events);
975
976 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
977 {
978         int num_counters = hybrid(cpuc->pmu, num_counters);
979         struct event_constraint *c;
980         struct perf_event *e;
981         int n0, i, wmin, wmax, unsched = 0;
982         struct hw_perf_event *hwc;
983         u64 used_mask = 0;
984
985         /*
986          * Compute the number of events already present; see x86_pmu_add(),
987          * validate_group() and x86_pmu_commit_txn(). For the former two
988          * cpuc->n_events hasn't been updated yet, while for the latter
989          * cpuc->n_txn contains the number of events added in the current
990          * transaction.
991          */
992         n0 = cpuc->n_events;
993         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
994                 n0 -= cpuc->n_txn;
995
996         static_call_cond(x86_pmu_start_scheduling)(cpuc);
997
998         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
999                 c = cpuc->event_constraint[i];
1000
1001                 /*
1002                  * Previously scheduled events should have a cached constraint,
1003                  * while new events should not have one.
1004                  */
1005                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1006
1007                 /*
1008                  * Request constraints for new events; or for those events that
1009                  * have a dynamic constraint -- for those the constraint can
1010                  * change due to external factors (sibling state, allow_tfa).
1011                  */
1012                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1013                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1014                         cpuc->event_constraint[i] = c;
1015                 }
1016
1017                 wmin = min(wmin, c->weight);
1018                 wmax = max(wmax, c->weight);
1019         }
1020
1021         /*
1022          * fastpath, try to reuse previous register
1023          */
1024         for (i = 0; i < n; i++) {
1025                 u64 mask;
1026
1027                 hwc = &cpuc->event_list[i]->hw;
1028                 c = cpuc->event_constraint[i];
1029
1030                 /* never assigned */
1031                 if (hwc->idx == -1)
1032                         break;
1033
1034                 /* constraint still honored */
1035                 if (!test_bit(hwc->idx, c->idxmsk))
1036                         break;
1037
1038                 mask = BIT_ULL(hwc->idx);
1039                 if (is_counter_pair(hwc))
1040                         mask |= mask << 1;
1041
1042                 /* not already used */
1043                 if (used_mask & mask)
1044                         break;
1045
1046                 used_mask |= mask;
1047
1048                 if (assign)
1049                         assign[i] = hwc->idx;
1050         }
1051
1052         /* slow path */
1053         if (i != n) {
1054                 int gpmax = num_counters;
1055
1056                 /*
1057                  * Do not allow scheduling of more than half the available
1058                  * generic counters.
1059                  *
1060                  * This helps avoid counter starvation of sibling thread by
1061                  * ensuring at most half the counters cannot be in exclusive
1062                  * mode. There is no designated counters for the limits. Any
1063                  * N/2 counters can be used. This helps with events with
1064                  * specific counter constraints.
1065                  */
1066                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1067                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1068                         gpmax /= 2;
1069
1070                 /*
1071                  * Reduce the amount of available counters to allow fitting
1072                  * the extra Merge events needed by large increment events.
1073                  */
1074                 if (x86_pmu.flags & PMU_FL_PAIR) {
1075                         gpmax = num_counters - cpuc->n_pair;
1076                         WARN_ON(gpmax <= 0);
1077                 }
1078
1079                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1080                                              wmax, gpmax, assign);
1081         }
1082
1083         /*
1084          * In case of success (unsched = 0), mark events as committed,
1085          * so we do not put_constraint() in case new events are added
1086          * and fail to be scheduled
1087          *
1088          * We invoke the lower level commit callback to lock the resource
1089          *
1090          * We do not need to do all of this in case we are called to
1091          * validate an event group (assign == NULL)
1092          */
1093         if (!unsched && assign) {
1094                 for (i = 0; i < n; i++)
1095                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1096         } else {
1097                 for (i = n0; i < n; i++) {
1098                         e = cpuc->event_list[i];
1099
1100                         /*
1101                          * release events that failed scheduling
1102                          */
1103                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1104
1105                         cpuc->event_constraint[i] = NULL;
1106                 }
1107         }
1108
1109         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1110
1111         return unsched ? -EINVAL : 0;
1112 }
1113
1114 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1115                                struct perf_event *event)
1116 {
1117         if (is_metric_event(event)) {
1118                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1119                         return -EINVAL;
1120                 cpuc->n_metric++;
1121                 cpuc->n_txn_metric++;
1122         }
1123
1124         return 0;
1125 }
1126
1127 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1128                                 struct perf_event *event)
1129 {
1130         if (is_metric_event(event))
1131                 cpuc->n_metric--;
1132 }
1133
1134 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1135                          int max_count, int n)
1136 {
1137         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1138
1139         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1140                 return -EINVAL;
1141
1142         if (n >= max_count + cpuc->n_metric)
1143                 return -EINVAL;
1144
1145         cpuc->event_list[n] = event;
1146         if (is_counter_pair(&event->hw)) {
1147                 cpuc->n_pair++;
1148                 cpuc->n_txn_pair++;
1149         }
1150
1151         return 0;
1152 }
1153
1154 /*
1155  * dogrp: true if must collect siblings events (group)
1156  * returns total number of events and error code
1157  */
1158 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1159 {
1160         int num_counters = hybrid(cpuc->pmu, num_counters);
1161         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1162         struct perf_event *event;
1163         int n, max_count;
1164
1165         max_count = num_counters + num_counters_fixed;
1166
1167         /* current number of events already accepted */
1168         n = cpuc->n_events;
1169         if (!cpuc->n_events)
1170                 cpuc->pebs_output = 0;
1171
1172         if (!cpuc->is_fake && leader->attr.precise_ip) {
1173                 /*
1174                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1175                  * away, the group was broken down and this singleton event
1176                  * can't schedule any more.
1177                  */
1178                 if (is_pebs_pt(leader) && !leader->aux_event)
1179                         return -EINVAL;
1180
1181                 /*
1182                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1183                  */
1184                 if (cpuc->pebs_output &&
1185                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1186                         return -EINVAL;
1187
1188                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1189         }
1190
1191         if (is_x86_event(leader)) {
1192                 if (collect_event(cpuc, leader, max_count, n))
1193                         return -EINVAL;
1194                 n++;
1195         }
1196
1197         if (!dogrp)
1198                 return n;
1199
1200         for_each_sibling_event(event, leader) {
1201                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1202                         continue;
1203
1204                 if (collect_event(cpuc, event, max_count, n))
1205                         return -EINVAL;
1206
1207                 n++;
1208         }
1209         return n;
1210 }
1211
1212 static inline void x86_assign_hw_event(struct perf_event *event,
1213                                 struct cpu_hw_events *cpuc, int i)
1214 {
1215         struct hw_perf_event *hwc = &event->hw;
1216         int idx;
1217
1218         idx = hwc->idx = cpuc->assign[i];
1219         hwc->last_cpu = smp_processor_id();
1220         hwc->last_tag = ++cpuc->tags[i];
1221
1222         static_call_cond(x86_pmu_assign)(event, idx);
1223
1224         switch (hwc->idx) {
1225         case INTEL_PMC_IDX_FIXED_BTS:
1226         case INTEL_PMC_IDX_FIXED_VLBR:
1227                 hwc->config_base = 0;
1228                 hwc->event_base = 0;
1229                 break;
1230
1231         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1232                 /* All the metric events are mapped onto the fixed counter 3. */
1233                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1234                 fallthrough;
1235         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1236                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1237                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1238                                 (idx - INTEL_PMC_IDX_FIXED);
1239                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1240                                         INTEL_PMC_FIXED_RDPMC_BASE;
1241                 break;
1242
1243         default:
1244                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1245                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1246                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1247                 break;
1248         }
1249 }
1250
1251 /**
1252  * x86_perf_rdpmc_index - Return PMC counter used for event
1253  * @event: the perf_event to which the PMC counter was assigned
1254  *
1255  * The counter assigned to this performance event may change if interrupts
1256  * are enabled. This counter should thus never be used while interrupts are
1257  * enabled. Before this function is used to obtain the assigned counter the
1258  * event should be checked for validity using, for example,
1259  * perf_event_read_local(), within the same interrupt disabled section in
1260  * which this counter is planned to be used.
1261  *
1262  * Return: The index of the performance monitoring counter assigned to
1263  * @perf_event.
1264  */
1265 int x86_perf_rdpmc_index(struct perf_event *event)
1266 {
1267         lockdep_assert_irqs_disabled();
1268
1269         return event->hw.event_base_rdpmc;
1270 }
1271
1272 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1273                                         struct cpu_hw_events *cpuc,
1274                                         int i)
1275 {
1276         return hwc->idx == cpuc->assign[i] &&
1277                 hwc->last_cpu == smp_processor_id() &&
1278                 hwc->last_tag == cpuc->tags[i];
1279 }
1280
1281 static void x86_pmu_start(struct perf_event *event, int flags);
1282
1283 static void x86_pmu_enable(struct pmu *pmu)
1284 {
1285         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1286         struct perf_event *event;
1287         struct hw_perf_event *hwc;
1288         int i, added = cpuc->n_added;
1289
1290         if (!x86_pmu_initialized())
1291                 return;
1292
1293         if (cpuc->enabled)
1294                 return;
1295
1296         if (cpuc->n_added) {
1297                 int n_running = cpuc->n_events - cpuc->n_added;
1298                 /*
1299                  * apply assignment obtained either from
1300                  * hw_perf_group_sched_in() or x86_pmu_enable()
1301                  *
1302                  * step1: save events moving to new counters
1303                  */
1304                 for (i = 0; i < n_running; i++) {
1305                         event = cpuc->event_list[i];
1306                         hwc = &event->hw;
1307
1308                         /*
1309                          * we can avoid reprogramming counter if:
1310                          * - assigned same counter as last time
1311                          * - running on same CPU as last time
1312                          * - no other event has used the counter since
1313                          */
1314                         if (hwc->idx == -1 ||
1315                             match_prev_assignment(hwc, cpuc, i))
1316                                 continue;
1317
1318                         /*
1319                          * Ensure we don't accidentally enable a stopped
1320                          * counter simply because we rescheduled.
1321                          */
1322                         if (hwc->state & PERF_HES_STOPPED)
1323                                 hwc->state |= PERF_HES_ARCH;
1324
1325                         x86_pmu_stop(event, PERF_EF_UPDATE);
1326                 }
1327
1328                 /*
1329                  * step2: reprogram moved events into new counters
1330                  */
1331                 for (i = 0; i < cpuc->n_events; i++) {
1332                         event = cpuc->event_list[i];
1333                         hwc = &event->hw;
1334
1335                         if (!match_prev_assignment(hwc, cpuc, i))
1336                                 x86_assign_hw_event(event, cpuc, i);
1337                         else if (i < n_running)
1338                                 continue;
1339
1340                         if (hwc->state & PERF_HES_ARCH)
1341                                 continue;
1342
1343                         /*
1344                          * if cpuc->enabled = 0, then no wrmsr as
1345                          * per x86_pmu_enable_event()
1346                          */
1347                         x86_pmu_start(event, PERF_EF_RELOAD);
1348                 }
1349                 cpuc->n_added = 0;
1350                 perf_events_lapic_init();
1351         }
1352
1353         cpuc->enabled = 1;
1354         barrier();
1355
1356         static_call(x86_pmu_enable_all)(added);
1357 }
1358
1359 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1360
1361 /*
1362  * Set the next IRQ period, based on the hwc->period_left value.
1363  * To be called with the event disabled in hw:
1364  */
1365 int x86_perf_event_set_period(struct perf_event *event)
1366 {
1367         struct hw_perf_event *hwc = &event->hw;
1368         s64 left = local64_read(&hwc->period_left);
1369         s64 period = hwc->sample_period;
1370         int ret = 0, idx = hwc->idx;
1371
1372         if (unlikely(!hwc->event_base))
1373                 return 0;
1374
1375         /*
1376          * If we are way outside a reasonable range then just skip forward:
1377          */
1378         if (unlikely(left <= -period)) {
1379                 left = period;
1380                 local64_set(&hwc->period_left, left);
1381                 hwc->last_period = period;
1382                 ret = 1;
1383         }
1384
1385         if (unlikely(left <= 0)) {
1386                 left += period;
1387                 local64_set(&hwc->period_left, left);
1388                 hwc->last_period = period;
1389                 ret = 1;
1390         }
1391         /*
1392          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1393          */
1394         if (unlikely(left < 2))
1395                 left = 2;
1396
1397         if (left > x86_pmu.max_period)
1398                 left = x86_pmu.max_period;
1399
1400         static_call_cond(x86_pmu_limit_period)(event, &left);
1401
1402         this_cpu_write(pmc_prev_left[idx], left);
1403
1404         /*
1405          * The hw event starts counting from this event offset,
1406          * mark it to be able to extra future deltas:
1407          */
1408         local64_set(&hwc->prev_count, (u64)-left);
1409
1410         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1411
1412         /*
1413          * Sign extend the Merge event counter's upper 16 bits since
1414          * we currently declare a 48-bit counter width
1415          */
1416         if (is_counter_pair(hwc))
1417                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1418
1419         perf_event_update_userpage(event);
1420
1421         return ret;
1422 }
1423
1424 void x86_pmu_enable_event(struct perf_event *event)
1425 {
1426         if (__this_cpu_read(cpu_hw_events.enabled))
1427                 __x86_pmu_enable_event(&event->hw,
1428                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1429 }
1430
1431 /*
1432  * Add a single event to the PMU.
1433  *
1434  * The event is added to the group of enabled events
1435  * but only if it can be scheduled with existing events.
1436  */
1437 static int x86_pmu_add(struct perf_event *event, int flags)
1438 {
1439         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1440         struct hw_perf_event *hwc;
1441         int assign[X86_PMC_IDX_MAX];
1442         int n, n0, ret;
1443
1444         hwc = &event->hw;
1445
1446         n0 = cpuc->n_events;
1447         ret = n = collect_events(cpuc, event, false);
1448         if (ret < 0)
1449                 goto out;
1450
1451         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1452         if (!(flags & PERF_EF_START))
1453                 hwc->state |= PERF_HES_ARCH;
1454
1455         /*
1456          * If group events scheduling transaction was started,
1457          * skip the schedulability test here, it will be performed
1458          * at commit time (->commit_txn) as a whole.
1459          *
1460          * If commit fails, we'll call ->del() on all events
1461          * for which ->add() was called.
1462          */
1463         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1464                 goto done_collect;
1465
1466         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1467         if (ret)
1468                 goto out;
1469         /*
1470          * copy new assignment, now we know it is possible
1471          * will be used by hw_perf_enable()
1472          */
1473         memcpy(cpuc->assign, assign, n*sizeof(int));
1474
1475 done_collect:
1476         /*
1477          * Commit the collect_events() state. See x86_pmu_del() and
1478          * x86_pmu_*_txn().
1479          */
1480         cpuc->n_events = n;
1481         cpuc->n_added += n - n0;
1482         cpuc->n_txn += n - n0;
1483
1484         /*
1485          * This is before x86_pmu_enable() will call x86_pmu_start(),
1486          * so we enable LBRs before an event needs them etc..
1487          */
1488         static_call_cond(x86_pmu_add)(event);
1489
1490         ret = 0;
1491 out:
1492         return ret;
1493 }
1494
1495 static void x86_pmu_start(struct perf_event *event, int flags)
1496 {
1497         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498         int idx = event->hw.idx;
1499
1500         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1501                 return;
1502
1503         if (WARN_ON_ONCE(idx == -1))
1504                 return;
1505
1506         if (flags & PERF_EF_RELOAD) {
1507                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508                 static_call(x86_pmu_set_period)(event);
1509         }
1510
1511         event->hw.state = 0;
1512
1513         cpuc->events[idx] = event;
1514         __set_bit(idx, cpuc->active_mask);
1515         static_call(x86_pmu_enable)(event);
1516         perf_event_update_userpage(event);
1517 }
1518
1519 void perf_event_print_debug(void)
1520 {
1521         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1522         u64 pebs, debugctl;
1523         int cpu = smp_processor_id();
1524         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525         int num_counters = hybrid(cpuc->pmu, num_counters);
1526         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1527         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1528         unsigned long flags;
1529         int idx;
1530
1531         if (!num_counters)
1532                 return;
1533
1534         local_irq_save(flags);
1535
1536         if (x86_pmu.version >= 2) {
1537                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1538                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1539                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1540                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1541
1542                 pr_info("\n");
1543                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1544                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1545                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1546                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1547                 if (pebs_constraints) {
1548                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1549                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1550                 }
1551                 if (x86_pmu.lbr_nr) {
1552                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1553                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1554                 }
1555         }
1556         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1557
1558         for (idx = 0; idx < num_counters; idx++) {
1559                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1560                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1561
1562                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1563
1564                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1565                         cpu, idx, pmc_ctrl);
1566                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1567                         cpu, idx, pmc_count);
1568                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1569                         cpu, idx, prev_left);
1570         }
1571         for (idx = 0; idx < num_counters_fixed; idx++) {
1572                 if (fixed_counter_disabled(idx, cpuc->pmu))
1573                         continue;
1574                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1575
1576                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1577                         cpu, idx, pmc_count);
1578         }
1579         local_irq_restore(flags);
1580 }
1581
1582 void x86_pmu_stop(struct perf_event *event, int flags)
1583 {
1584         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1585         struct hw_perf_event *hwc = &event->hw;
1586
1587         if (test_bit(hwc->idx, cpuc->active_mask)) {
1588                 static_call(x86_pmu_disable)(event);
1589                 __clear_bit(hwc->idx, cpuc->active_mask);
1590                 cpuc->events[hwc->idx] = NULL;
1591                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1592                 hwc->state |= PERF_HES_STOPPED;
1593         }
1594
1595         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1596                 /*
1597                  * Drain the remaining delta count out of a event
1598                  * that we are disabling:
1599                  */
1600                 static_call(x86_pmu_update)(event);
1601                 hwc->state |= PERF_HES_UPTODATE;
1602         }
1603 }
1604
1605 static void x86_pmu_del(struct perf_event *event, int flags)
1606 {
1607         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1609         int i;
1610
1611         /*
1612          * If we're called during a txn, we only need to undo x86_pmu.add.
1613          * The events never got scheduled and ->cancel_txn will truncate
1614          * the event_list.
1615          *
1616          * XXX assumes any ->del() called during a TXN will only be on
1617          * an event added during that same TXN.
1618          */
1619         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1620                 goto do_del;
1621
1622         __set_bit(event->hw.idx, cpuc->dirty);
1623
1624         /*
1625          * Not a TXN, therefore cleanup properly.
1626          */
1627         x86_pmu_stop(event, PERF_EF_UPDATE);
1628
1629         for (i = 0; i < cpuc->n_events; i++) {
1630                 if (event == cpuc->event_list[i])
1631                         break;
1632         }
1633
1634         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1635                 return;
1636
1637         /* If we have a newly added event; make sure to decrease n_added. */
1638         if (i >= cpuc->n_events - cpuc->n_added)
1639                 --cpuc->n_added;
1640
1641         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1642
1643         /* Delete the array entry. */
1644         while (++i < cpuc->n_events) {
1645                 cpuc->event_list[i-1] = cpuc->event_list[i];
1646                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1647         }
1648         cpuc->event_constraint[i-1] = NULL;
1649         --cpuc->n_events;
1650         if (intel_cap.perf_metrics)
1651                 del_nr_metric_event(cpuc, event);
1652
1653         perf_event_update_userpage(event);
1654
1655 do_del:
1656
1657         /*
1658          * This is after x86_pmu_stop(); so we disable LBRs after any
1659          * event can need them etc..
1660          */
1661         static_call_cond(x86_pmu_del)(event);
1662 }
1663
1664 int x86_pmu_handle_irq(struct pt_regs *regs)
1665 {
1666         struct perf_sample_data data;
1667         struct cpu_hw_events *cpuc;
1668         struct perf_event *event;
1669         int idx, handled = 0;
1670         u64 val;
1671
1672         cpuc = this_cpu_ptr(&cpu_hw_events);
1673
1674         /*
1675          * Some chipsets need to unmask the LVTPC in a particular spot
1676          * inside the nmi handler.  As a result, the unmasking was pushed
1677          * into all the nmi handlers.
1678          *
1679          * This generic handler doesn't seem to have any issues where the
1680          * unmasking occurs so it was left at the top.
1681          */
1682         apic_write(APIC_LVTPC, APIC_DM_NMI);
1683
1684         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1685                 if (!test_bit(idx, cpuc->active_mask))
1686                         continue;
1687
1688                 event = cpuc->events[idx];
1689
1690                 val = static_call(x86_pmu_update)(event);
1691                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1692                         continue;
1693
1694                 /*
1695                  * event overflow
1696                  */
1697                 handled++;
1698
1699                 if (!static_call(x86_pmu_set_period)(event))
1700                         continue;
1701
1702                 perf_sample_data_init(&data, 0, event->hw.last_period);
1703
1704                 if (has_branch_stack(event))
1705                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1706
1707                 if (perf_event_overflow(event, &data, regs))
1708                         x86_pmu_stop(event, 0);
1709         }
1710
1711         if (handled)
1712                 inc_irq_stat(apic_perf_irqs);
1713
1714         return handled;
1715 }
1716
1717 void perf_events_lapic_init(void)
1718 {
1719         if (!x86_pmu.apic || !x86_pmu_initialized())
1720                 return;
1721
1722         /*
1723          * Always use NMI for PMU
1724          */
1725         apic_write(APIC_LVTPC, APIC_DM_NMI);
1726 }
1727
1728 static int
1729 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1730 {
1731         u64 start_clock;
1732         u64 finish_clock;
1733         int ret;
1734
1735         /*
1736          * All PMUs/events that share this PMI handler should make sure to
1737          * increment active_events for their events.
1738          */
1739         if (!atomic_read(&active_events))
1740                 return NMI_DONE;
1741
1742         start_clock = sched_clock();
1743         ret = static_call(x86_pmu_handle_irq)(regs);
1744         finish_clock = sched_clock();
1745
1746         perf_sample_event_took(finish_clock - start_clock);
1747
1748         return ret;
1749 }
1750 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1751
1752 struct event_constraint emptyconstraint;
1753 struct event_constraint unconstrained;
1754
1755 static int x86_pmu_prepare_cpu(unsigned int cpu)
1756 {
1757         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1758         int i;
1759
1760         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1761                 cpuc->kfree_on_online[i] = NULL;
1762         if (x86_pmu.cpu_prepare)
1763                 return x86_pmu.cpu_prepare(cpu);
1764         return 0;
1765 }
1766
1767 static int x86_pmu_dead_cpu(unsigned int cpu)
1768 {
1769         if (x86_pmu.cpu_dead)
1770                 x86_pmu.cpu_dead(cpu);
1771         return 0;
1772 }
1773
1774 static int x86_pmu_online_cpu(unsigned int cpu)
1775 {
1776         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1777         int i;
1778
1779         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1780                 kfree(cpuc->kfree_on_online[i]);
1781                 cpuc->kfree_on_online[i] = NULL;
1782         }
1783         return 0;
1784 }
1785
1786 static int x86_pmu_starting_cpu(unsigned int cpu)
1787 {
1788         if (x86_pmu.cpu_starting)
1789                 x86_pmu.cpu_starting(cpu);
1790         return 0;
1791 }
1792
1793 static int x86_pmu_dying_cpu(unsigned int cpu)
1794 {
1795         if (x86_pmu.cpu_dying)
1796                 x86_pmu.cpu_dying(cpu);
1797         return 0;
1798 }
1799
1800 static void __init pmu_check_apic(void)
1801 {
1802         if (boot_cpu_has(X86_FEATURE_APIC))
1803                 return;
1804
1805         x86_pmu.apic = 0;
1806         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1807         pr_info("no hardware sampling interrupt available.\n");
1808
1809         /*
1810          * If we have a PMU initialized but no APIC
1811          * interrupts, we cannot sample hardware
1812          * events (user-space has to fall back and
1813          * sample via a hrtimer based software event):
1814          */
1815         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1816
1817 }
1818
1819 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1820         .name = "format",
1821         .attrs = NULL,
1822 };
1823
1824 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1825 {
1826         struct perf_pmu_events_attr *pmu_attr =
1827                 container_of(attr, struct perf_pmu_events_attr, attr);
1828         u64 config = 0;
1829
1830         if (pmu_attr->id < x86_pmu.max_events)
1831                 config = x86_pmu.event_map(pmu_attr->id);
1832
1833         /* string trumps id */
1834         if (pmu_attr->event_str)
1835                 return sprintf(page, "%s\n", pmu_attr->event_str);
1836
1837         return x86_pmu.events_sysfs_show(page, config);
1838 }
1839 EXPORT_SYMBOL_GPL(events_sysfs_show);
1840
1841 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1842                           char *page)
1843 {
1844         struct perf_pmu_events_ht_attr *pmu_attr =
1845                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1846
1847         /*
1848          * Report conditional events depending on Hyper-Threading.
1849          *
1850          * This is overly conservative as usually the HT special
1851          * handling is not needed if the other CPU thread is idle.
1852          *
1853          * Note this does not (and cannot) handle the case when thread
1854          * siblings are invisible, for example with virtualization
1855          * if they are owned by some other guest.  The user tool
1856          * has to re-read when a thread sibling gets onlined later.
1857          */
1858         return sprintf(page, "%s",
1859                         topology_max_smt_threads() > 1 ?
1860                         pmu_attr->event_str_ht :
1861                         pmu_attr->event_str_noht);
1862 }
1863
1864 ssize_t events_hybrid_sysfs_show(struct device *dev,
1865                                  struct device_attribute *attr,
1866                                  char *page)
1867 {
1868         struct perf_pmu_events_hybrid_attr *pmu_attr =
1869                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1870         struct x86_hybrid_pmu *pmu;
1871         const char *str, *next_str;
1872         int i;
1873
1874         if (hweight64(pmu_attr->pmu_type) == 1)
1875                 return sprintf(page, "%s", pmu_attr->event_str);
1876
1877         /*
1878          * Hybrid PMUs may support the same event name, but with different
1879          * event encoding, e.g., the mem-loads event on an Atom PMU has
1880          * different event encoding from a Core PMU.
1881          *
1882          * The event_str includes all event encodings. Each event encoding
1883          * is divided by ";". The order of the event encodings must follow
1884          * the order of the hybrid PMU index.
1885          */
1886         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1887
1888         str = pmu_attr->event_str;
1889         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1890                 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1891                         continue;
1892                 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1893                         next_str = strchr(str, ';');
1894                         if (next_str)
1895                                 return snprintf(page, next_str - str + 1, "%s", str);
1896                         else
1897                                 return sprintf(page, "%s", str);
1898                 }
1899                 str = strchr(str, ';');
1900                 str++;
1901         }
1902
1903         return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1906
1907 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1908 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1909 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1910 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1911 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1912 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1913 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1914 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1915 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1916 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1917
1918 static struct attribute *empty_attrs;
1919
1920 static struct attribute *events_attr[] = {
1921         EVENT_PTR(CPU_CYCLES),
1922         EVENT_PTR(INSTRUCTIONS),
1923         EVENT_PTR(CACHE_REFERENCES),
1924         EVENT_PTR(CACHE_MISSES),
1925         EVENT_PTR(BRANCH_INSTRUCTIONS),
1926         EVENT_PTR(BRANCH_MISSES),
1927         EVENT_PTR(BUS_CYCLES),
1928         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1929         EVENT_PTR(STALLED_CYCLES_BACKEND),
1930         EVENT_PTR(REF_CPU_CYCLES),
1931         NULL,
1932 };
1933
1934 /*
1935  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1936  * out of events_attr attributes.
1937  */
1938 static umode_t
1939 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1940 {
1941         struct perf_pmu_events_attr *pmu_attr;
1942
1943         if (idx >= x86_pmu.max_events)
1944                 return 0;
1945
1946         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1947         /* str trumps id */
1948         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1949 }
1950
1951 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1952         .name = "events",
1953         .attrs = events_attr,
1954         .is_visible = is_visible,
1955 };
1956
1957 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1958 {
1959         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1960         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1961         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1962         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1963         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1964         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1965         ssize_t ret;
1966
1967         /*
1968         * We have whole page size to spend and just little data
1969         * to write, so we can safely use sprintf.
1970         */
1971         ret = sprintf(page, "event=0x%02llx", event);
1972
1973         if (umask)
1974                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1975
1976         if (edge)
1977                 ret += sprintf(page + ret, ",edge");
1978
1979         if (pc)
1980                 ret += sprintf(page + ret, ",pc");
1981
1982         if (any)
1983                 ret += sprintf(page + ret, ",any");
1984
1985         if (inv)
1986                 ret += sprintf(page + ret, ",inv");
1987
1988         if (cmask)
1989                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1990
1991         ret += sprintf(page + ret, "\n");
1992
1993         return ret;
1994 }
1995
1996 static struct attribute_group x86_pmu_attr_group;
1997 static struct attribute_group x86_pmu_caps_group;
1998
1999 static void x86_pmu_static_call_update(void)
2000 {
2001         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2002         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2003         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2004         static_call_update(x86_pmu_enable, x86_pmu.enable);
2005         static_call_update(x86_pmu_disable, x86_pmu.disable);
2006
2007         static_call_update(x86_pmu_assign, x86_pmu.assign);
2008
2009         static_call_update(x86_pmu_add, x86_pmu.add);
2010         static_call_update(x86_pmu_del, x86_pmu.del);
2011         static_call_update(x86_pmu_read, x86_pmu.read);
2012
2013         static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2014         static_call_update(x86_pmu_update, x86_pmu.update);
2015         static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2016
2017         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2018         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2019         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2020
2021         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2022         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2023         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2024
2025         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2026         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2027
2028         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2029         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2030
2031         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2032         static_call_update(x86_pmu_filter, x86_pmu.filter);
2033 }
2034
2035 static void _x86_pmu_read(struct perf_event *event)
2036 {
2037         static_call(x86_pmu_update)(event);
2038 }
2039
2040 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2041                           u64 intel_ctrl)
2042 {
2043         pr_info("... version:                %d\n",     x86_pmu.version);
2044         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2045         pr_info("... generic registers:      %d\n",     num_counters);
2046         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2047         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2048         pr_info("... fixed-purpose events:   %lu\n",
2049                         hweight64((((1ULL << num_counters_fixed) - 1)
2050                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2051         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2052 }
2053
2054 static int __init init_hw_perf_events(void)
2055 {
2056         struct x86_pmu_quirk *quirk;
2057         int err;
2058
2059         pr_info("Performance Events: ");
2060
2061         switch (boot_cpu_data.x86_vendor) {
2062         case X86_VENDOR_INTEL:
2063                 err = intel_pmu_init();
2064                 break;
2065         case X86_VENDOR_AMD:
2066                 err = amd_pmu_init();
2067                 break;
2068         case X86_VENDOR_HYGON:
2069                 err = amd_pmu_init();
2070                 x86_pmu.name = "HYGON";
2071                 break;
2072         case X86_VENDOR_ZHAOXIN:
2073         case X86_VENDOR_CENTAUR:
2074                 err = zhaoxin_pmu_init();
2075                 break;
2076         default:
2077                 err = -ENOTSUPP;
2078         }
2079         if (err != 0) {
2080                 pr_cont("no PMU driver, software events only.\n");
2081                 err = 0;
2082                 goto out_bad_pmu;
2083         }
2084
2085         pmu_check_apic();
2086
2087         /* sanity check that the hardware exists or is emulated */
2088         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2089                 goto out_bad_pmu;
2090
2091         pr_cont("%s PMU driver.\n", x86_pmu.name);
2092
2093         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2094
2095         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2096                 quirk->func();
2097
2098         if (!x86_pmu.intel_ctrl)
2099                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2100
2101         perf_events_lapic_init();
2102         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2103
2104         unconstrained = (struct event_constraint)
2105                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2106                                    0, x86_pmu.num_counters, 0, 0);
2107
2108         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2109
2110         if (!x86_pmu.events_sysfs_show)
2111                 x86_pmu_events_group.attrs = &empty_attrs;
2112
2113         pmu.attr_update = x86_pmu.attr_update;
2114
2115         if (!is_hybrid()) {
2116                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2117                                      x86_pmu.num_counters_fixed,
2118                                      x86_pmu.intel_ctrl);
2119         }
2120
2121         if (!x86_pmu.read)
2122                 x86_pmu.read = _x86_pmu_read;
2123
2124         if (!x86_pmu.guest_get_msrs)
2125                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2126
2127         if (!x86_pmu.set_period)
2128                 x86_pmu.set_period = x86_perf_event_set_period;
2129
2130         if (!x86_pmu.update)
2131                 x86_pmu.update = x86_perf_event_update;
2132
2133         x86_pmu_static_call_update();
2134
2135         /*
2136          * Install callbacks. Core will call them for each online
2137          * cpu.
2138          */
2139         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2140                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2141         if (err)
2142                 return err;
2143
2144         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2145                                 "perf/x86:starting", x86_pmu_starting_cpu,
2146                                 x86_pmu_dying_cpu);
2147         if (err)
2148                 goto out;
2149
2150         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2151                                 x86_pmu_online_cpu, NULL);
2152         if (err)
2153                 goto out1;
2154
2155         if (!is_hybrid()) {
2156                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2157                 if (err)
2158                         goto out2;
2159         } else {
2160                 struct x86_hybrid_pmu *hybrid_pmu;
2161                 int i, j;
2162
2163                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2164                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2165
2166                         hybrid_pmu->pmu = pmu;
2167                         hybrid_pmu->pmu.type = -1;
2168                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2169                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2170
2171                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2172                                                 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2173                         if (err)
2174                                 break;
2175                 }
2176
2177                 if (i < x86_pmu.num_hybrid_pmus) {
2178                         for (j = 0; j < i; j++)
2179                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2180                         pr_warn("Failed to register hybrid PMUs\n");
2181                         kfree(x86_pmu.hybrid_pmu);
2182                         x86_pmu.hybrid_pmu = NULL;
2183                         x86_pmu.num_hybrid_pmus = 0;
2184                         goto out2;
2185                 }
2186         }
2187
2188         return 0;
2189
2190 out2:
2191         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2192 out1:
2193         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2194 out:
2195         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2196 out_bad_pmu:
2197         memset(&x86_pmu, 0, sizeof(x86_pmu));
2198         return err;
2199 }
2200 early_initcall(init_hw_perf_events);
2201
2202 static void x86_pmu_read(struct perf_event *event)
2203 {
2204         static_call(x86_pmu_read)(event);
2205 }
2206
2207 /*
2208  * Start group events scheduling transaction
2209  * Set the flag to make pmu::enable() not perform the
2210  * schedulability test, it will be performed at commit time
2211  *
2212  * We only support PERF_PMU_TXN_ADD transactions. Save the
2213  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2214  * transactions.
2215  */
2216 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2217 {
2218         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2219
2220         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2221
2222         cpuc->txn_flags = txn_flags;
2223         if (txn_flags & ~PERF_PMU_TXN_ADD)
2224                 return;
2225
2226         perf_pmu_disable(pmu);
2227         __this_cpu_write(cpu_hw_events.n_txn, 0);
2228         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2229         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2230 }
2231
2232 /*
2233  * Stop group events scheduling transaction
2234  * Clear the flag and pmu::enable() will perform the
2235  * schedulability test.
2236  */
2237 static void x86_pmu_cancel_txn(struct pmu *pmu)
2238 {
2239         unsigned int txn_flags;
2240         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2241
2242         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2243
2244         txn_flags = cpuc->txn_flags;
2245         cpuc->txn_flags = 0;
2246         if (txn_flags & ~PERF_PMU_TXN_ADD)
2247                 return;
2248
2249         /*
2250          * Truncate collected array by the number of events added in this
2251          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2252          */
2253         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2254         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2255         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2256         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2257         perf_pmu_enable(pmu);
2258 }
2259
2260 /*
2261  * Commit group events scheduling transaction
2262  * Perform the group schedulability test as a whole
2263  * Return 0 if success
2264  *
2265  * Does not cancel the transaction on failure; expects the caller to do this.
2266  */
2267 static int x86_pmu_commit_txn(struct pmu *pmu)
2268 {
2269         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270         int assign[X86_PMC_IDX_MAX];
2271         int n, ret;
2272
2273         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2274
2275         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2276                 cpuc->txn_flags = 0;
2277                 return 0;
2278         }
2279
2280         n = cpuc->n_events;
2281
2282         if (!x86_pmu_initialized())
2283                 return -EAGAIN;
2284
2285         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2286         if (ret)
2287                 return ret;
2288
2289         /*
2290          * copy new assignment, now we know it is possible
2291          * will be used by hw_perf_enable()
2292          */
2293         memcpy(cpuc->assign, assign, n*sizeof(int));
2294
2295         cpuc->txn_flags = 0;
2296         perf_pmu_enable(pmu);
2297         return 0;
2298 }
2299 /*
2300  * a fake_cpuc is used to validate event groups. Due to
2301  * the extra reg logic, we need to also allocate a fake
2302  * per_core and per_cpu structure. Otherwise, group events
2303  * using extra reg may conflict without the kernel being
2304  * able to catch this when the last event gets added to
2305  * the group.
2306  */
2307 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2308 {
2309         intel_cpuc_finish(cpuc);
2310         kfree(cpuc);
2311 }
2312
2313 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2314 {
2315         struct cpu_hw_events *cpuc;
2316         int cpu;
2317
2318         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2319         if (!cpuc)
2320                 return ERR_PTR(-ENOMEM);
2321         cpuc->is_fake = 1;
2322
2323         if (is_hybrid()) {
2324                 struct x86_hybrid_pmu *h_pmu;
2325
2326                 h_pmu = hybrid_pmu(event_pmu);
2327                 if (cpumask_empty(&h_pmu->supported_cpus))
2328                         goto error;
2329                 cpu = cpumask_first(&h_pmu->supported_cpus);
2330         } else
2331                 cpu = raw_smp_processor_id();
2332         cpuc->pmu = event_pmu;
2333
2334         if (intel_cpuc_prepare(cpuc, cpu))
2335                 goto error;
2336
2337         return cpuc;
2338 error:
2339         free_fake_cpuc(cpuc);
2340         return ERR_PTR(-ENOMEM);
2341 }
2342
2343 /*
2344  * validate that we can schedule this event
2345  */
2346 static int validate_event(struct perf_event *event)
2347 {
2348         struct cpu_hw_events *fake_cpuc;
2349         struct event_constraint *c;
2350         int ret = 0;
2351
2352         fake_cpuc = allocate_fake_cpuc(event->pmu);
2353         if (IS_ERR(fake_cpuc))
2354                 return PTR_ERR(fake_cpuc);
2355
2356         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2357
2358         if (!c || !c->weight)
2359                 ret = -EINVAL;
2360
2361         if (x86_pmu.put_event_constraints)
2362                 x86_pmu.put_event_constraints(fake_cpuc, event);
2363
2364         free_fake_cpuc(fake_cpuc);
2365
2366         return ret;
2367 }
2368
2369 /*
2370  * validate a single event group
2371  *
2372  * validation include:
2373  *      - check events are compatible which each other
2374  *      - events do not compete for the same counter
2375  *      - number of events <= number of counters
2376  *
2377  * validation ensures the group can be loaded onto the
2378  * PMU if it was the only group available.
2379  */
2380 static int validate_group(struct perf_event *event)
2381 {
2382         struct perf_event *leader = event->group_leader;
2383         struct cpu_hw_events *fake_cpuc;
2384         int ret = -EINVAL, n;
2385
2386         /*
2387          * Reject events from different hybrid PMUs.
2388          */
2389         if (is_hybrid()) {
2390                 struct perf_event *sibling;
2391                 struct pmu *pmu = NULL;
2392
2393                 if (is_x86_event(leader))
2394                         pmu = leader->pmu;
2395
2396                 for_each_sibling_event(sibling, leader) {
2397                         if (!is_x86_event(sibling))
2398                                 continue;
2399                         if (!pmu)
2400                                 pmu = sibling->pmu;
2401                         else if (pmu != sibling->pmu)
2402                                 return ret;
2403                 }
2404         }
2405
2406         fake_cpuc = allocate_fake_cpuc(event->pmu);
2407         if (IS_ERR(fake_cpuc))
2408                 return PTR_ERR(fake_cpuc);
2409         /*
2410          * the event is not yet connected with its
2411          * siblings therefore we must first collect
2412          * existing siblings, then add the new event
2413          * before we can simulate the scheduling
2414          */
2415         n = collect_events(fake_cpuc, leader, true);
2416         if (n < 0)
2417                 goto out;
2418
2419         fake_cpuc->n_events = n;
2420         n = collect_events(fake_cpuc, event, false);
2421         if (n < 0)
2422                 goto out;
2423
2424         fake_cpuc->n_events = 0;
2425         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2426
2427 out:
2428         free_fake_cpuc(fake_cpuc);
2429         return ret;
2430 }
2431
2432 static int x86_pmu_event_init(struct perf_event *event)
2433 {
2434         struct x86_hybrid_pmu *pmu = NULL;
2435         int err;
2436
2437         if ((event->attr.type != event->pmu->type) &&
2438             (event->attr.type != PERF_TYPE_HARDWARE) &&
2439             (event->attr.type != PERF_TYPE_HW_CACHE))
2440                 return -ENOENT;
2441
2442         if (is_hybrid() && (event->cpu != -1)) {
2443                 pmu = hybrid_pmu(event->pmu);
2444                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2445                         return -ENOENT;
2446         }
2447
2448         err = __x86_pmu_event_init(event);
2449         if (!err) {
2450                 if (event->group_leader != event)
2451                         err = validate_group(event);
2452                 else
2453                         err = validate_event(event);
2454         }
2455         if (err) {
2456                 if (event->destroy)
2457                         event->destroy(event);
2458                 event->destroy = NULL;
2459         }
2460
2461         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2462             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2463                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2464
2465         return err;
2466 }
2467
2468 void perf_clear_dirty_counters(void)
2469 {
2470         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2471         int i;
2472
2473          /* Don't need to clear the assigned counter. */
2474         for (i = 0; i < cpuc->n_events; i++)
2475                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2476
2477         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2478                 return;
2479
2480         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2481                 if (i >= INTEL_PMC_IDX_FIXED) {
2482                         /* Metrics and fake events don't have corresponding HW counters. */
2483                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2484                                 continue;
2485
2486                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2487                 } else {
2488                         wrmsrl(x86_pmu_event_addr(i), 0);
2489                 }
2490         }
2491
2492         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2493 }
2494
2495 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2496 {
2497         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2498                 return;
2499
2500         /*
2501          * This function relies on not being called concurrently in two
2502          * tasks in the same mm.  Otherwise one task could observe
2503          * perf_rdpmc_allowed > 1 and return all the way back to
2504          * userspace with CR4.PCE clear while another task is still
2505          * doing on_each_cpu_mask() to propagate CR4.PCE.
2506          *
2507          * For now, this can't happen because all callers hold mmap_lock
2508          * for write.  If this changes, we'll need a different solution.
2509          */
2510         mmap_assert_write_locked(mm);
2511
2512         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2513                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2514 }
2515
2516 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2517 {
2518         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2519                 return;
2520
2521         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2522                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2523 }
2524
2525 static int x86_pmu_event_idx(struct perf_event *event)
2526 {
2527         struct hw_perf_event *hwc = &event->hw;
2528
2529         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2530                 return 0;
2531
2532         if (is_metric_idx(hwc->idx))
2533                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2534         else
2535                 return hwc->event_base_rdpmc + 1;
2536 }
2537
2538 static ssize_t get_attr_rdpmc(struct device *cdev,
2539                               struct device_attribute *attr,
2540                               char *buf)
2541 {
2542         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2543 }
2544
2545 static ssize_t set_attr_rdpmc(struct device *cdev,
2546                               struct device_attribute *attr,
2547                               const char *buf, size_t count)
2548 {
2549         unsigned long val;
2550         ssize_t ret;
2551
2552         ret = kstrtoul(buf, 0, &val);
2553         if (ret)
2554                 return ret;
2555
2556         if (val > 2)
2557                 return -EINVAL;
2558
2559         if (x86_pmu.attr_rdpmc_broken)
2560                 return -ENOTSUPP;
2561
2562         if (val != x86_pmu.attr_rdpmc) {
2563                 /*
2564                  * Changing into or out of never available or always available,
2565                  * aka perf-event-bypassing mode. This path is extremely slow,
2566                  * but only root can trigger it, so it's okay.
2567                  */
2568                 if (val == 0)
2569                         static_branch_inc(&rdpmc_never_available_key);
2570                 else if (x86_pmu.attr_rdpmc == 0)
2571                         static_branch_dec(&rdpmc_never_available_key);
2572
2573                 if (val == 2)
2574                         static_branch_inc(&rdpmc_always_available_key);
2575                 else if (x86_pmu.attr_rdpmc == 2)
2576                         static_branch_dec(&rdpmc_always_available_key);
2577
2578                 on_each_cpu(cr4_update_pce, NULL, 1);
2579                 x86_pmu.attr_rdpmc = val;
2580         }
2581
2582         return count;
2583 }
2584
2585 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2586
2587 static struct attribute *x86_pmu_attrs[] = {
2588         &dev_attr_rdpmc.attr,
2589         NULL,
2590 };
2591
2592 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2593         .attrs = x86_pmu_attrs,
2594 };
2595
2596 static ssize_t max_precise_show(struct device *cdev,
2597                                   struct device_attribute *attr,
2598                                   char *buf)
2599 {
2600         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2601 }
2602
2603 static DEVICE_ATTR_RO(max_precise);
2604
2605 static struct attribute *x86_pmu_caps_attrs[] = {
2606         &dev_attr_max_precise.attr,
2607         NULL
2608 };
2609
2610 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2611         .name = "caps",
2612         .attrs = x86_pmu_caps_attrs,
2613 };
2614
2615 static const struct attribute_group *x86_pmu_attr_groups[] = {
2616         &x86_pmu_attr_group,
2617         &x86_pmu_format_group,
2618         &x86_pmu_events_group,
2619         &x86_pmu_caps_group,
2620         NULL,
2621 };
2622
2623 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2624 {
2625         static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2626 }
2627
2628 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2629                                   struct perf_event_pmu_context *next_epc)
2630 {
2631         static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2632 }
2633
2634 void perf_check_microcode(void)
2635 {
2636         if (x86_pmu.check_microcode)
2637                 x86_pmu.check_microcode();
2638 }
2639
2640 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2641 {
2642         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2643                 return -EINVAL;
2644
2645         if (value && x86_pmu.limit_period) {
2646                 s64 left = value;
2647                 x86_pmu.limit_period(event, &left);
2648                 if (left > value)
2649                         return -EINVAL;
2650         }
2651
2652         return 0;
2653 }
2654
2655 static int x86_pmu_aux_output_match(struct perf_event *event)
2656 {
2657         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2658                 return 0;
2659
2660         if (x86_pmu.aux_output_match)
2661                 return x86_pmu.aux_output_match(event);
2662
2663         return 0;
2664 }
2665
2666 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2667 {
2668         bool ret = false;
2669
2670         static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2671
2672         return ret;
2673 }
2674
2675 static struct pmu pmu = {
2676         .pmu_enable             = x86_pmu_enable,
2677         .pmu_disable            = x86_pmu_disable,
2678
2679         .attr_groups            = x86_pmu_attr_groups,
2680
2681         .event_init             = x86_pmu_event_init,
2682
2683         .event_mapped           = x86_pmu_event_mapped,
2684         .event_unmapped         = x86_pmu_event_unmapped,
2685
2686         .add                    = x86_pmu_add,
2687         .del                    = x86_pmu_del,
2688         .start                  = x86_pmu_start,
2689         .stop                   = x86_pmu_stop,
2690         .read                   = x86_pmu_read,
2691
2692         .start_txn              = x86_pmu_start_txn,
2693         .cancel_txn             = x86_pmu_cancel_txn,
2694         .commit_txn             = x86_pmu_commit_txn,
2695
2696         .event_idx              = x86_pmu_event_idx,
2697         .sched_task             = x86_pmu_sched_task,
2698         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2699         .check_period           = x86_pmu_check_period,
2700
2701         .aux_output_match       = x86_pmu_aux_output_match,
2702
2703         .filter                 = x86_pmu_filter,
2704 };
2705
2706 void arch_perf_update_userpage(struct perf_event *event,
2707                                struct perf_event_mmap_page *userpg, u64 now)
2708 {
2709         struct cyc2ns_data data;
2710         u64 offset;
2711
2712         userpg->cap_user_time = 0;
2713         userpg->cap_user_time_zero = 0;
2714         userpg->cap_user_rdpmc =
2715                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2716         userpg->pmc_width = x86_pmu.cntval_bits;
2717
2718         if (!using_native_sched_clock() || !sched_clock_stable())
2719                 return;
2720
2721         cyc2ns_read_begin(&data);
2722
2723         offset = data.cyc2ns_offset + __sched_clock_offset;
2724
2725         /*
2726          * Internal timekeeping for enabled/running/stopped times
2727          * is always in the local_clock domain.
2728          */
2729         userpg->cap_user_time = 1;
2730         userpg->time_mult = data.cyc2ns_mul;
2731         userpg->time_shift = data.cyc2ns_shift;
2732         userpg->time_offset = offset - now;
2733
2734         /*
2735          * cap_user_time_zero doesn't make sense when we're using a different
2736          * time base for the records.
2737          */
2738         if (!event->attr.use_clockid) {
2739                 userpg->cap_user_time_zero = 1;
2740                 userpg->time_zero = offset;
2741         }
2742
2743         cyc2ns_read_end();
2744 }
2745
2746 /*
2747  * Determine whether the regs were taken from an irq/exception handler rather
2748  * than from perf_arch_fetch_caller_regs().
2749  */
2750 static bool perf_hw_regs(struct pt_regs *regs)
2751 {
2752         return regs->flags & X86_EFLAGS_FIXED;
2753 }
2754
2755 void
2756 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2757 {
2758         struct unwind_state state;
2759         unsigned long addr;
2760
2761         if (perf_guest_state()) {
2762                 /* TODO: We don't support guest os callchain now */
2763                 return;
2764         }
2765
2766         if (perf_callchain_store(entry, regs->ip))
2767                 return;
2768
2769         if (perf_hw_regs(regs))
2770                 unwind_start(&state, current, regs, NULL);
2771         else
2772                 unwind_start(&state, current, NULL, (void *)regs->sp);
2773
2774         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2775                 addr = unwind_get_return_address(&state);
2776                 if (!addr || perf_callchain_store(entry, addr))
2777                         return;
2778         }
2779 }
2780
2781 static inline int
2782 valid_user_frame(const void __user *fp, unsigned long size)
2783 {
2784         return __access_ok(fp, size);
2785 }
2786
2787 static unsigned long get_segment_base(unsigned int segment)
2788 {
2789         struct desc_struct *desc;
2790         unsigned int idx = segment >> 3;
2791
2792         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2793 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2794                 struct ldt_struct *ldt;
2795
2796                 /* IRQs are off, so this synchronizes with smp_store_release */
2797                 ldt = READ_ONCE(current->active_mm->context.ldt);
2798                 if (!ldt || idx >= ldt->nr_entries)
2799                         return 0;
2800
2801                 desc = &ldt->entries[idx];
2802 #else
2803                 return 0;
2804 #endif
2805         } else {
2806                 if (idx >= GDT_ENTRIES)
2807                         return 0;
2808
2809                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2810         }
2811
2812         return get_desc_base(desc);
2813 }
2814
2815 #ifdef CONFIG_IA32_EMULATION
2816
2817 #include <linux/compat.h>
2818
2819 static inline int
2820 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2821 {
2822         /* 32-bit process in 64-bit kernel. */
2823         unsigned long ss_base, cs_base;
2824         struct stack_frame_ia32 frame;
2825         const struct stack_frame_ia32 __user *fp;
2826
2827         if (user_64bit_mode(regs))
2828                 return 0;
2829
2830         cs_base = get_segment_base(regs->cs);
2831         ss_base = get_segment_base(regs->ss);
2832
2833         fp = compat_ptr(ss_base + regs->bp);
2834         pagefault_disable();
2835         while (entry->nr < entry->max_stack) {
2836                 if (!valid_user_frame(fp, sizeof(frame)))
2837                         break;
2838
2839                 if (__get_user(frame.next_frame, &fp->next_frame))
2840                         break;
2841                 if (__get_user(frame.return_address, &fp->return_address))
2842                         break;
2843
2844                 perf_callchain_store(entry, cs_base + frame.return_address);
2845                 fp = compat_ptr(ss_base + frame.next_frame);
2846         }
2847         pagefault_enable();
2848         return 1;
2849 }
2850 #else
2851 static inline int
2852 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2853 {
2854     return 0;
2855 }
2856 #endif
2857
2858 void
2859 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2860 {
2861         struct stack_frame frame;
2862         const struct stack_frame __user *fp;
2863
2864         if (perf_guest_state()) {
2865                 /* TODO: We don't support guest os callchain now */
2866                 return;
2867         }
2868
2869         /*
2870          * We don't know what to do with VM86 stacks.. ignore them for now.
2871          */
2872         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2873                 return;
2874
2875         fp = (void __user *)regs->bp;
2876
2877         perf_callchain_store(entry, regs->ip);
2878
2879         if (!nmi_uaccess_okay())
2880                 return;
2881
2882         if (perf_callchain_user32(regs, entry))
2883                 return;
2884
2885         pagefault_disable();
2886         while (entry->nr < entry->max_stack) {
2887                 if (!valid_user_frame(fp, sizeof(frame)))
2888                         break;
2889
2890                 if (__get_user(frame.next_frame, &fp->next_frame))
2891                         break;
2892                 if (__get_user(frame.return_address, &fp->return_address))
2893                         break;
2894
2895                 perf_callchain_store(entry, frame.return_address);
2896                 fp = (void __user *)frame.next_frame;
2897         }
2898         pagefault_enable();
2899 }
2900
2901 /*
2902  * Deal with code segment offsets for the various execution modes:
2903  *
2904  *   VM86 - the good olde 16 bit days, where the linear address is
2905  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2906  *
2907  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2908  *          to figure out what the 32bit base address is.
2909  *
2910  *    X32 - has TIF_X32 set, but is running in x86_64
2911  *
2912  * X86_64 - CS,DS,SS,ES are all zero based.
2913  */
2914 static unsigned long code_segment_base(struct pt_regs *regs)
2915 {
2916         /*
2917          * For IA32 we look at the GDT/LDT segment base to convert the
2918          * effective IP to a linear address.
2919          */
2920
2921 #ifdef CONFIG_X86_32
2922         /*
2923          * If we are in VM86 mode, add the segment offset to convert to a
2924          * linear address.
2925          */
2926         if (regs->flags & X86_VM_MASK)
2927                 return 0x10 * regs->cs;
2928
2929         if (user_mode(regs) && regs->cs != __USER_CS)
2930                 return get_segment_base(regs->cs);
2931 #else
2932         if (user_mode(regs) && !user_64bit_mode(regs) &&
2933             regs->cs != __USER32_CS)
2934                 return get_segment_base(regs->cs);
2935 #endif
2936         return 0;
2937 }
2938
2939 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2940 {
2941         if (perf_guest_state())
2942                 return perf_guest_get_ip();
2943
2944         return regs->ip + code_segment_base(regs);
2945 }
2946
2947 unsigned long perf_misc_flags(struct pt_regs *regs)
2948 {
2949         unsigned int guest_state = perf_guest_state();
2950         int misc = 0;
2951
2952         if (guest_state) {
2953                 if (guest_state & PERF_GUEST_USER)
2954                         misc |= PERF_RECORD_MISC_GUEST_USER;
2955                 else
2956                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2957         } else {
2958                 if (user_mode(regs))
2959                         misc |= PERF_RECORD_MISC_USER;
2960                 else
2961                         misc |= PERF_RECORD_MISC_KERNEL;
2962         }
2963
2964         if (regs->flags & PERF_EFLAGS_EXACT)
2965                 misc |= PERF_RECORD_MISC_EXACT_IP;
2966
2967         return misc;
2968 }
2969
2970 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2971 {
2972         /* This API doesn't currently support enumerating hybrid PMUs. */
2973         if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2974             !x86_pmu_initialized()) {
2975                 memset(cap, 0, sizeof(*cap));
2976                 return;
2977         }
2978
2979         /*
2980          * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2981          * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2982          * base PMU holds the correct number of counters for P-cores.
2983          */
2984         cap->version            = x86_pmu.version;
2985         cap->num_counters_gp    = x86_pmu.num_counters;
2986         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2987         cap->bit_width_gp       = x86_pmu.cntval_bits;
2988         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2989         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2990         cap->events_mask_len    = x86_pmu.events_mask_len;
2991         cap->pebs_ept           = x86_pmu.pebs_ept;
2992 }
2993 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2994
2995 u64 perf_get_hw_event_config(int hw_event)
2996 {
2997         int max = x86_pmu.max_events;
2998
2999         if (hw_event < max)
3000                 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3001
3002         return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
This page took 0.211997 seconds and 4 git commands to generate.