2 * Performance events x86 architecture code
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
34 #include <asm/stacktrace.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
47 #include "perf_event.h"
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
62 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63 * from just a typename, as opposed to an actual function.
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
98 * This one is magic, it will get called even when PMU init fails (because
99 * there is no PMU), in which case it should simply return NULL.
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
103 u64 __read_mostly hw_cache_event_ids
104 [PERF_COUNT_HW_CACHE_MAX]
105 [PERF_COUNT_HW_CACHE_OP_MAX]
106 [PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108 [PERF_COUNT_HW_CACHE_MAX]
109 [PERF_COUNT_HW_CACHE_OP_MAX]
110 [PERF_COUNT_HW_CACHE_RESULT_MAX];
113 * Propagate event elapsed time into the generic event.
114 * Can only be executed on the CPU where the event is active.
115 * Returns the delta events processed.
117 u64 x86_perf_event_update(struct perf_event *event)
119 struct hw_perf_event *hwc = &event->hw;
120 int shift = 64 - x86_pmu.cntval_bits;
121 u64 prev_raw_count, new_raw_count;
124 if (unlikely(!hwc->event_base))
128 * Careful: an NMI might modify the previous event value.
130 * Our tactic to handle this is to first atomically read and
131 * exchange a new raw count - then add that new-prev delta
132 * count to the generic event atomically:
134 prev_raw_count = local64_read(&hwc->prev_count);
136 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137 } while (!local64_try_cmpxchg(&hwc->prev_count,
138 &prev_raw_count, new_raw_count));
141 * Now we have the new raw value and have updated the prev
142 * timestamp already. We can now calculate the elapsed delta
143 * (event-)time and add that to the generic event.
145 * Careful, not all hw sign-extends above the physical width
148 delta = (new_raw_count << shift) - (prev_raw_count << shift);
151 local64_add(delta, &event->count);
152 local64_sub(delta, &hwc->period_left);
154 return new_raw_count;
158 * Find and validate any extra registers to set up.
160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
162 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163 struct hw_perf_event_extra *reg;
164 struct extra_reg *er;
166 reg = &event->hw.extra_reg;
171 for (er = extra_regs; er->msr; er++) {
172 if (er->event != (config & er->config_mask))
174 if (event->attr.config1 & ~er->valid_mask)
176 /* Check if the extra msrs can be safely accessed*/
177 if (!er->extra_msr_access)
181 reg->config = event->attr.config1;
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
192 #ifdef CONFIG_X86_LOCAL_APIC
194 static inline u64 get_possible_counter_mask(void)
196 u64 cntr_mask = x86_pmu.cntr_mask64;
202 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
203 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
208 static bool reserve_pmc_hardware(void)
210 u64 cntr_mask = get_possible_counter_mask();
213 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
214 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
218 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
219 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
227 for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
228 release_evntsel_nmi(x86_pmu_config_addr(i));
233 for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
234 release_perfctr_nmi(x86_pmu_event_addr(i));
239 static void release_pmc_hardware(void)
241 u64 cntr_mask = get_possible_counter_mask();
244 for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
245 release_perfctr_nmi(x86_pmu_event_addr(i));
246 release_evntsel_nmi(x86_pmu_config_addr(i));
252 static bool reserve_pmc_hardware(void) { return true; }
253 static void release_pmc_hardware(void) {}
257 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
258 unsigned long *fixed_cntr_mask)
260 u64 val, val_fail = -1, val_new= ~0;
261 int i, reg, reg_fail = -1, ret = 0;
266 * Check to see if the BIOS enabled any of the counters, if so
269 for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
270 reg = x86_pmu_config_addr(i);
271 ret = rdmsrl_safe(reg, &val);
274 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
283 if (*(u64 *)fixed_cntr_mask) {
284 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
285 ret = rdmsrl_safe(reg, &val);
288 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
289 if (fixed_counter_disabled(i, pmu))
291 if (val & (0x03ULL << i*4)) {
300 * If all the counters are enabled, the below test will always
301 * fail. The tools will also become useless in this scenario.
302 * Just fail and disable the hardware counters.
305 if (reg_safe == -1) {
311 * Read the current value, change it and read it back to see if it
312 * matches, this is needed to detect certain hardware emulators
313 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
315 reg = x86_pmu_event_addr(reg_safe);
316 if (rdmsrl_safe(reg, &val))
319 ret = wrmsrl_safe(reg, val);
320 ret |= rdmsrl_safe(reg, &val_new);
321 if (ret || val != val_new)
325 * We still allow the PMU driver to operate:
328 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
329 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
336 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
337 pr_cont("PMU not available due to virtualization, using software events only.\n");
339 pr_cont("Broken PMU hardware detected, using software events only.\n");
340 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
347 static void hw_perf_event_destroy(struct perf_event *event)
349 x86_release_hardware();
350 atomic_dec(&active_events);
353 void hw_perf_lbr_event_destroy(struct perf_event *event)
355 hw_perf_event_destroy(event);
357 /* undo the lbr/bts event accounting */
358 x86_del_exclusive(x86_lbr_exclusive_lbr);
361 static inline int x86_pmu_initialized(void)
363 return x86_pmu.handle_irq != NULL;
367 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
369 struct perf_event_attr *attr = &event->attr;
370 unsigned int cache_type, cache_op, cache_result;
373 config = attr->config;
375 cache_type = (config >> 0) & 0xff;
376 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
378 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
380 cache_op = (config >> 8) & 0xff;
381 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
383 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
385 cache_result = (config >> 16) & 0xff;
386 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
388 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
390 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
398 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
399 return x86_pmu_extra_regs(val, event);
402 int x86_reserve_hardware(void)
406 if (!atomic_inc_not_zero(&pmc_refcount)) {
407 mutex_lock(&pmc_reserve_mutex);
408 if (atomic_read(&pmc_refcount) == 0) {
409 if (!reserve_pmc_hardware()) {
412 reserve_ds_buffers();
413 reserve_lbr_buffers();
417 atomic_inc(&pmc_refcount);
418 mutex_unlock(&pmc_reserve_mutex);
424 void x86_release_hardware(void)
426 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
427 release_pmc_hardware();
428 release_ds_buffers();
429 release_lbr_buffers();
430 mutex_unlock(&pmc_reserve_mutex);
435 * Check if we can create event of a certain type (that no conflicting events
438 int x86_add_exclusive(unsigned int what)
443 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
444 * LBR and BTS are still mutually exclusive.
446 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
449 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
450 mutex_lock(&pmc_reserve_mutex);
451 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
452 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
455 atomic_inc(&x86_pmu.lbr_exclusive[what]);
456 mutex_unlock(&pmc_reserve_mutex);
460 atomic_inc(&active_events);
464 mutex_unlock(&pmc_reserve_mutex);
468 void x86_del_exclusive(unsigned int what)
470 atomic_dec(&active_events);
473 * See the comment in x86_add_exclusive().
475 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
478 atomic_dec(&x86_pmu.lbr_exclusive[what]);
481 int x86_setup_perfctr(struct perf_event *event)
483 struct perf_event_attr *attr = &event->attr;
484 struct hw_perf_event *hwc = &event->hw;
487 if (!is_sampling_event(event)) {
488 hwc->sample_period = x86_pmu.max_period;
489 hwc->last_period = hwc->sample_period;
490 local64_set(&hwc->period_left, hwc->sample_period);
493 if (attr->type == event->pmu->type)
494 return x86_pmu_extra_regs(event->attr.config, event);
496 if (attr->type == PERF_TYPE_HW_CACHE)
497 return set_ext_hw_attr(hwc, event);
499 if (attr->config >= x86_pmu.max_events)
502 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
507 config = x86_pmu.event_map(attr->config);
515 hwc->config |= config;
521 * check that branch_sample_type is compatible with
522 * settings needed for precise_ip > 1 which implies
523 * using the LBR to capture ALL taken branches at the
524 * priv levels of the measurement
526 static inline int precise_br_compat(struct perf_event *event)
528 u64 m = event->attr.branch_sample_type;
531 /* must capture all branches */
532 if (!(m & PERF_SAMPLE_BRANCH_ANY))
535 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
537 if (!event->attr.exclude_user)
538 b |= PERF_SAMPLE_BRANCH_USER;
540 if (!event->attr.exclude_kernel)
541 b |= PERF_SAMPLE_BRANCH_KERNEL;
544 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
550 int x86_pmu_max_precise(void)
554 /* Support for constant skid */
555 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
558 /* Support for IP fixup */
559 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
562 if (x86_pmu.pebs_prec_dist)
568 int x86_pmu_hw_config(struct perf_event *event)
570 if (event->attr.precise_ip) {
571 int precise = x86_pmu_max_precise();
573 if (event->attr.precise_ip > precise)
576 /* There's no sense in having PEBS for non sampling events: */
577 if (!is_sampling_event(event))
581 * check that PEBS LBR correction does not conflict with
582 * whatever the user is asking with attr->branch_sample_type
584 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
585 u64 *br_type = &event->attr.branch_sample_type;
587 if (has_branch_stack(event)) {
588 if (!precise_br_compat(event))
591 /* branch_sample_type is compatible */
595 * user did not specify branch_sample_type
597 * For PEBS fixups, we capture all
598 * the branches at the priv level of the
601 *br_type = PERF_SAMPLE_BRANCH_ANY;
603 if (!event->attr.exclude_user)
604 *br_type |= PERF_SAMPLE_BRANCH_USER;
606 if (!event->attr.exclude_kernel)
607 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
611 if (branch_sample_call_stack(event))
612 event->attach_state |= PERF_ATTACH_TASK_DATA;
616 * (keep 'enabled' bit clear for now)
618 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
621 * Count user and OS events unless requested not to
623 if (!event->attr.exclude_user)
624 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
625 if (!event->attr.exclude_kernel)
626 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
628 if (event->attr.type == event->pmu->type)
629 event->hw.config |= x86_pmu_get_event_config(event);
631 if (event->attr.sample_period && x86_pmu.limit_period) {
632 s64 left = event->attr.sample_period;
633 x86_pmu.limit_period(event, &left);
634 if (left > event->attr.sample_period)
638 /* sample_regs_user never support XMM registers */
639 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
642 * Besides the general purpose registers, XMM registers may
643 * be collected in PEBS on some platforms, e.g. Icelake
645 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
646 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
649 if (!event->attr.precise_ip)
653 return x86_setup_perfctr(event);
657 * Setup the hardware configuration for a given attr_type
659 static int __x86_pmu_event_init(struct perf_event *event)
663 if (!x86_pmu_initialized())
666 err = x86_reserve_hardware();
670 atomic_inc(&active_events);
671 event->destroy = hw_perf_event_destroy;
674 event->hw.last_cpu = -1;
675 event->hw.last_tag = ~0ULL;
678 event->hw.extra_reg.idx = EXTRA_REG_NONE;
679 event->hw.branch_reg.idx = EXTRA_REG_NONE;
681 return x86_pmu.hw_config(event);
684 void x86_pmu_disable_all(void)
686 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
689 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
690 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
693 if (!test_bit(idx, cpuc->active_mask))
695 rdmsrl(x86_pmu_config_addr(idx), val);
696 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
698 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
699 wrmsrl(x86_pmu_config_addr(idx), val);
700 if (is_counter_pair(hwc))
701 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
705 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
707 return static_call(x86_pmu_guest_get_msrs)(nr, data);
709 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
712 * There may be PMI landing after enabled=0. The PMI hitting could be before or
715 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
716 * It will not be re-enabled in the NMI handler again, because enabled=0. After
717 * handling the NMI, disable_all will be called, which will not change the
718 * state either. If PMI hits after disable_all, the PMU is already disabled
719 * before entering NMI handler. The NMI handler will not change the state
722 * So either situation is harmless.
724 static void x86_pmu_disable(struct pmu *pmu)
726 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
728 if (!x86_pmu_initialized())
738 static_call(x86_pmu_disable_all)();
741 void x86_pmu_enable_all(int added)
743 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
746 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
747 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
749 if (!test_bit(idx, cpuc->active_mask))
752 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
756 static inline int is_x86_event(struct perf_event *event)
761 return event->pmu == &pmu;
763 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
764 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
771 struct pmu *x86_get_pmu(unsigned int cpu)
773 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
776 * All CPUs of the hybrid type have been offline.
777 * The x86_get_pmu() should not be invoked.
779 if (WARN_ON_ONCE(!cpuc->pmu))
785 * Event scheduler state:
787 * Assign events iterating over all events and counters, beginning
788 * with events with least weights first. Keep the current iterator
789 * state in struct sched_state.
793 int event; /* event index */
794 int counter; /* counter index */
795 int unassigned; /* number of events to be assigned left */
796 int nr_gp; /* number of GP counters used */
800 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
801 #define SCHED_STATES_MAX 2
808 struct event_constraint **constraints;
809 struct sched_state state;
810 struct sched_state saved[SCHED_STATES_MAX];
814 * Initialize iterator that runs through all events and counters.
816 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
817 int num, int wmin, int wmax, int gpmax)
821 memset(sched, 0, sizeof(*sched));
822 sched->max_events = num;
823 sched->max_weight = wmax;
824 sched->max_gp = gpmax;
825 sched->constraints = constraints;
827 for (idx = 0; idx < num; idx++) {
828 if (constraints[idx]->weight == wmin)
832 sched->state.event = idx; /* start with min weight */
833 sched->state.weight = wmin;
834 sched->state.unassigned = num;
837 static void perf_sched_save_state(struct perf_sched *sched)
839 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
842 sched->saved[sched->saved_states] = sched->state;
843 sched->saved_states++;
846 static bool perf_sched_restore_state(struct perf_sched *sched)
848 if (!sched->saved_states)
851 sched->saved_states--;
852 sched->state = sched->saved[sched->saved_states];
854 /* this assignment didn't work out */
855 /* XXX broken vs EVENT_PAIR */
856 sched->state.used &= ~BIT_ULL(sched->state.counter);
858 /* try the next one */
859 sched->state.counter++;
865 * Select a counter for the current event to schedule. Return true on
868 static bool __perf_sched_find_counter(struct perf_sched *sched)
870 struct event_constraint *c;
873 if (!sched->state.unassigned)
876 if (sched->state.event >= sched->max_events)
879 c = sched->constraints[sched->state.event];
880 /* Prefer fixed purpose counters */
881 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
882 idx = INTEL_PMC_IDX_FIXED;
883 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
884 u64 mask = BIT_ULL(idx);
886 if (sched->state.used & mask)
889 sched->state.used |= mask;
894 /* Grab the first unused counter starting with idx */
895 idx = sched->state.counter;
896 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
897 u64 mask = BIT_ULL(idx);
899 if (c->flags & PERF_X86_EVENT_PAIR)
902 if (sched->state.used & mask)
905 if (sched->state.nr_gp++ >= sched->max_gp)
908 sched->state.used |= mask;
915 sched->state.counter = idx;
918 perf_sched_save_state(sched);
923 static bool perf_sched_find_counter(struct perf_sched *sched)
925 while (!__perf_sched_find_counter(sched)) {
926 if (!perf_sched_restore_state(sched))
934 * Go through all unassigned events and find the next one to schedule.
935 * Take events with the least weight first. Return true on success.
937 static bool perf_sched_next_event(struct perf_sched *sched)
939 struct event_constraint *c;
941 if (!sched->state.unassigned || !--sched->state.unassigned)
946 sched->state.event++;
947 if (sched->state.event >= sched->max_events) {
949 sched->state.event = 0;
950 sched->state.weight++;
951 if (sched->state.weight > sched->max_weight)
954 c = sched->constraints[sched->state.event];
955 } while (c->weight != sched->state.weight);
957 sched->state.counter = 0; /* start with first counter */
963 * Assign a counter for each event.
965 int perf_assign_events(struct event_constraint **constraints, int n,
966 int wmin, int wmax, int gpmax, int *assign)
968 struct perf_sched sched;
970 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
973 if (!perf_sched_find_counter(&sched))
976 assign[sched.state.event] = sched.state.counter;
977 } while (perf_sched_next_event(&sched));
979 return sched.state.unassigned;
981 EXPORT_SYMBOL_GPL(perf_assign_events);
983 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
985 struct event_constraint *c;
986 struct perf_event *e;
987 int n0, i, wmin, wmax, unsched = 0;
988 struct hw_perf_event *hwc;
992 * Compute the number of events already present; see x86_pmu_add(),
993 * validate_group() and x86_pmu_commit_txn(). For the former two
994 * cpuc->n_events hasn't been updated yet, while for the latter
995 * cpuc->n_txn contains the number of events added in the current
999 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1002 static_call_cond(x86_pmu_start_scheduling)(cpuc);
1004 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1005 c = cpuc->event_constraint[i];
1008 * Previously scheduled events should have a cached constraint,
1009 * while new events should not have one.
1011 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1014 * Request constraints for new events; or for those events that
1015 * have a dynamic constraint -- for those the constraint can
1016 * change due to external factors (sibling state, allow_tfa).
1018 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1019 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1020 cpuc->event_constraint[i] = c;
1023 wmin = min(wmin, c->weight);
1024 wmax = max(wmax, c->weight);
1028 * fastpath, try to reuse previous register
1030 for (i = 0; i < n; i++) {
1033 hwc = &cpuc->event_list[i]->hw;
1034 c = cpuc->event_constraint[i];
1036 /* never assigned */
1040 /* constraint still honored */
1041 if (!test_bit(hwc->idx, c->idxmsk))
1044 mask = BIT_ULL(hwc->idx);
1045 if (is_counter_pair(hwc))
1048 /* not already used */
1049 if (used_mask & mask)
1055 assign[i] = hwc->idx;
1060 int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1063 * Do not allow scheduling of more than half the available
1066 * This helps avoid counter starvation of sibling thread by
1067 * ensuring at most half the counters cannot be in exclusive
1068 * mode. There is no designated counters for the limits. Any
1069 * N/2 counters can be used. This helps with events with
1070 * specific counter constraints.
1072 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1073 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1077 * Reduce the amount of available counters to allow fitting
1078 * the extra Merge events needed by large increment events.
1080 if (x86_pmu.flags & PMU_FL_PAIR) {
1081 gpmax -= cpuc->n_pair;
1082 WARN_ON(gpmax <= 0);
1085 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1086 wmax, gpmax, assign);
1090 * In case of success (unsched = 0), mark events as committed,
1091 * so we do not put_constraint() in case new events are added
1092 * and fail to be scheduled
1094 * We invoke the lower level commit callback to lock the resource
1096 * We do not need to do all of this in case we are called to
1097 * validate an event group (assign == NULL)
1099 if (!unsched && assign) {
1100 for (i = 0; i < n; i++)
1101 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1103 for (i = n0; i < n; i++) {
1104 e = cpuc->event_list[i];
1107 * release events that failed scheduling
1109 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1111 cpuc->event_constraint[i] = NULL;
1115 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1117 return unsched ? -EINVAL : 0;
1120 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1121 struct perf_event *event)
1123 if (is_metric_event(event)) {
1124 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1127 cpuc->n_txn_metric++;
1133 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1134 struct perf_event *event)
1136 if (is_metric_event(event))
1140 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1141 int max_count, int n)
1143 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1145 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1148 if (n >= max_count + cpuc->n_metric)
1151 cpuc->event_list[n] = event;
1152 if (is_counter_pair(&event->hw)) {
1161 * dogrp: true if must collect siblings events (group)
1162 * returns total number of events and error code
1164 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1166 struct perf_event *event;
1169 max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1171 /* current number of events already accepted */
1173 if (!cpuc->n_events)
1174 cpuc->pebs_output = 0;
1176 if (!cpuc->is_fake && leader->attr.precise_ip) {
1178 * For PEBS->PT, if !aux_event, the group leader (PT) went
1179 * away, the group was broken down and this singleton event
1180 * can't schedule any more.
1182 if (is_pebs_pt(leader) && !leader->aux_event)
1186 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1188 if (cpuc->pebs_output &&
1189 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1192 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1195 if (is_x86_event(leader)) {
1196 if (collect_event(cpuc, leader, max_count, n))
1204 for_each_sibling_event(event, leader) {
1205 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1208 if (collect_event(cpuc, event, max_count, n))
1216 static inline void x86_assign_hw_event(struct perf_event *event,
1217 struct cpu_hw_events *cpuc, int i)
1219 struct hw_perf_event *hwc = &event->hw;
1222 idx = hwc->idx = cpuc->assign[i];
1223 hwc->last_cpu = smp_processor_id();
1224 hwc->last_tag = ++cpuc->tags[i];
1226 static_call_cond(x86_pmu_assign)(event, idx);
1229 case INTEL_PMC_IDX_FIXED_BTS:
1230 case INTEL_PMC_IDX_FIXED_VLBR:
1231 hwc->config_base = 0;
1232 hwc->event_base = 0;
1235 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1236 /* All the metric events are mapped onto the fixed counter 3. */
1237 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1239 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1240 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1241 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1242 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1243 INTEL_PMC_FIXED_RDPMC_BASE;
1247 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1248 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1249 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1255 * x86_perf_rdpmc_index - Return PMC counter used for event
1256 * @event: the perf_event to which the PMC counter was assigned
1258 * The counter assigned to this performance event may change if interrupts
1259 * are enabled. This counter should thus never be used while interrupts are
1260 * enabled. Before this function is used to obtain the assigned counter the
1261 * event should be checked for validity using, for example,
1262 * perf_event_read_local(), within the same interrupt disabled section in
1263 * which this counter is planned to be used.
1265 * Return: The index of the performance monitoring counter assigned to
1268 int x86_perf_rdpmc_index(struct perf_event *event)
1270 lockdep_assert_irqs_disabled();
1272 return event->hw.event_base_rdpmc;
1275 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1276 struct cpu_hw_events *cpuc,
1279 return hwc->idx == cpuc->assign[i] &&
1280 hwc->last_cpu == smp_processor_id() &&
1281 hwc->last_tag == cpuc->tags[i];
1284 static void x86_pmu_start(struct perf_event *event, int flags);
1286 static void x86_pmu_enable(struct pmu *pmu)
1288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289 struct perf_event *event;
1290 struct hw_perf_event *hwc;
1291 int i, added = cpuc->n_added;
1293 if (!x86_pmu_initialized())
1299 if (cpuc->n_added) {
1300 int n_running = cpuc->n_events - cpuc->n_added;
1302 * apply assignment obtained either from
1303 * hw_perf_group_sched_in() or x86_pmu_enable()
1305 * step1: save events moving to new counters
1307 for (i = 0; i < n_running; i++) {
1308 event = cpuc->event_list[i];
1312 * we can avoid reprogramming counter if:
1313 * - assigned same counter as last time
1314 * - running on same CPU as last time
1315 * - no other event has used the counter since
1317 if (hwc->idx == -1 ||
1318 match_prev_assignment(hwc, cpuc, i))
1322 * Ensure we don't accidentally enable a stopped
1323 * counter simply because we rescheduled.
1325 if (hwc->state & PERF_HES_STOPPED)
1326 hwc->state |= PERF_HES_ARCH;
1328 x86_pmu_stop(event, PERF_EF_UPDATE);
1332 * step2: reprogram moved events into new counters
1334 for (i = 0; i < cpuc->n_events; i++) {
1335 event = cpuc->event_list[i];
1338 if (!match_prev_assignment(hwc, cpuc, i))
1339 x86_assign_hw_event(event, cpuc, i);
1340 else if (i < n_running)
1343 if (hwc->state & PERF_HES_ARCH)
1347 * if cpuc->enabled = 0, then no wrmsr as
1348 * per x86_pmu_enable_event()
1350 x86_pmu_start(event, PERF_EF_RELOAD);
1353 perf_events_lapic_init();
1359 static_call(x86_pmu_enable_all)(added);
1362 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1365 * Set the next IRQ period, based on the hwc->period_left value.
1366 * To be called with the event disabled in hw:
1368 int x86_perf_event_set_period(struct perf_event *event)
1370 struct hw_perf_event *hwc = &event->hw;
1371 s64 left = local64_read(&hwc->period_left);
1372 s64 period = hwc->sample_period;
1373 int ret = 0, idx = hwc->idx;
1375 if (unlikely(!hwc->event_base))
1379 * If we are way outside a reasonable range then just skip forward:
1381 if (unlikely(left <= -period)) {
1383 local64_set(&hwc->period_left, left);
1384 hwc->last_period = period;
1388 if (unlikely(left <= 0)) {
1390 local64_set(&hwc->period_left, left);
1391 hwc->last_period = period;
1395 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1397 if (unlikely(left < 2))
1400 if (left > x86_pmu.max_period)
1401 left = x86_pmu.max_period;
1403 static_call_cond(x86_pmu_limit_period)(event, &left);
1405 this_cpu_write(pmc_prev_left[idx], left);
1408 * The hw event starts counting from this event offset,
1409 * mark it to be able to extra future deltas:
1411 local64_set(&hwc->prev_count, (u64)-left);
1413 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1416 * Sign extend the Merge event counter's upper 16 bits since
1417 * we currently declare a 48-bit counter width
1419 if (is_counter_pair(hwc))
1420 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1422 perf_event_update_userpage(event);
1427 void x86_pmu_enable_event(struct perf_event *event)
1429 if (__this_cpu_read(cpu_hw_events.enabled))
1430 __x86_pmu_enable_event(&event->hw,
1431 ARCH_PERFMON_EVENTSEL_ENABLE);
1435 * Add a single event to the PMU.
1437 * The event is added to the group of enabled events
1438 * but only if it can be scheduled with existing events.
1440 static int x86_pmu_add(struct perf_event *event, int flags)
1442 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1443 struct hw_perf_event *hwc;
1444 int assign[X86_PMC_IDX_MAX];
1449 n0 = cpuc->n_events;
1450 ret = n = collect_events(cpuc, event, false);
1454 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1455 if (!(flags & PERF_EF_START))
1456 hwc->state |= PERF_HES_ARCH;
1459 * If group events scheduling transaction was started,
1460 * skip the schedulability test here, it will be performed
1461 * at commit time (->commit_txn) as a whole.
1463 * If commit fails, we'll call ->del() on all events
1464 * for which ->add() was called.
1466 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1469 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1473 * copy new assignment, now we know it is possible
1474 * will be used by hw_perf_enable()
1476 memcpy(cpuc->assign, assign, n*sizeof(int));
1480 * Commit the collect_events() state. See x86_pmu_del() and
1484 cpuc->n_added += n - n0;
1485 cpuc->n_txn += n - n0;
1488 * This is before x86_pmu_enable() will call x86_pmu_start(),
1489 * so we enable LBRs before an event needs them etc..
1491 static_call_cond(x86_pmu_add)(event);
1498 static void x86_pmu_start(struct perf_event *event, int flags)
1500 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1501 int idx = event->hw.idx;
1503 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1506 if (WARN_ON_ONCE(idx == -1))
1509 if (flags & PERF_EF_RELOAD) {
1510 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1511 static_call(x86_pmu_set_period)(event);
1514 event->hw.state = 0;
1516 cpuc->events[idx] = event;
1517 __set_bit(idx, cpuc->active_mask);
1518 static_call(x86_pmu_enable)(event);
1519 perf_event_update_userpage(event);
1522 void perf_event_print_debug(void)
1524 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1525 unsigned long *cntr_mask, *fixed_cntr_mask;
1526 struct event_constraint *pebs_constraints;
1527 struct cpu_hw_events *cpuc;
1533 cpu = smp_processor_id();
1534 cpuc = &per_cpu(cpu_hw_events, cpu);
1535 cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1536 fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1537 pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1539 if (!*(u64 *)cntr_mask)
1542 if (x86_pmu.version >= 2) {
1543 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1544 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1545 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1546 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1549 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1550 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1551 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1552 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1553 if (pebs_constraints) {
1554 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1555 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1557 if (x86_pmu.lbr_nr) {
1558 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1562 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1564 for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1565 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1566 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1568 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1570 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1571 cpu, idx, pmc_ctrl);
1572 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1573 cpu, idx, pmc_count);
1574 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1575 cpu, idx, prev_left);
1577 for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1578 if (fixed_counter_disabled(idx, cpuc->pmu))
1580 rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1582 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1583 cpu, idx, pmc_count);
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 struct hw_perf_event *hwc = &event->hw;
1592 if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 static_call(x86_pmu_disable)(event);
1594 __clear_bit(hwc->idx, cpuc->active_mask);
1595 cpuc->events[hwc->idx] = NULL;
1596 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 hwc->state |= PERF_HES_STOPPED;
1600 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1602 * Drain the remaining delta count out of a event
1603 * that we are disabling:
1605 static_call(x86_pmu_update)(event);
1606 hwc->state |= PERF_HES_UPTODATE;
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1612 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1617 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 * The events never got scheduled and ->cancel_txn will truncate
1621 * XXX assumes any ->del() called during a TXN will only be on
1622 * an event added during that same TXN.
1624 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1627 __set_bit(event->hw.idx, cpuc->dirty);
1630 * Not a TXN, therefore cleanup properly.
1632 x86_pmu_stop(event, PERF_EF_UPDATE);
1634 for (i = 0; i < cpuc->n_events; i++) {
1635 if (event == cpuc->event_list[i])
1639 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1642 /* If we have a newly added event; make sure to decrease n_added. */
1643 if (i >= cpuc->n_events - cpuc->n_added)
1646 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1648 /* Delete the array entry. */
1649 while (++i < cpuc->n_events) {
1650 cpuc->event_list[i-1] = cpuc->event_list[i];
1651 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 cpuc->assign[i-1] = cpuc->assign[i];
1654 cpuc->event_constraint[i-1] = NULL;
1656 if (intel_cap.perf_metrics)
1657 del_nr_metric_event(cpuc, event);
1659 perf_event_update_userpage(event);
1664 * This is after x86_pmu_stop(); so we disable LBRs after any
1665 * event can need them etc..
1667 static_call_cond(x86_pmu_del)(event);
1670 int x86_pmu_handle_irq(struct pt_regs *regs)
1672 struct perf_sample_data data;
1673 struct cpu_hw_events *cpuc;
1674 struct perf_event *event;
1675 int idx, handled = 0;
1678 cpuc = this_cpu_ptr(&cpu_hw_events);
1681 * Some chipsets need to unmask the LVTPC in a particular spot
1682 * inside the nmi handler. As a result, the unmasking was pushed
1683 * into all the nmi handlers.
1685 * This generic handler doesn't seem to have any issues where the
1686 * unmasking occurs so it was left at the top.
1688 apic_write(APIC_LVTPC, APIC_DM_NMI);
1690 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1691 if (!test_bit(idx, cpuc->active_mask))
1694 event = cpuc->events[idx];
1696 val = static_call(x86_pmu_update)(event);
1697 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1705 if (!static_call(x86_pmu_set_period)(event))
1708 perf_sample_data_init(&data, 0, event->hw.last_period);
1710 if (has_branch_stack(event))
1711 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1713 if (perf_event_overflow(event, &data, regs))
1714 x86_pmu_stop(event, 0);
1718 inc_irq_stat(apic_perf_irqs);
1723 void perf_events_lapic_init(void)
1725 if (!x86_pmu.apic || !x86_pmu_initialized())
1729 * Always use NMI for PMU
1731 apic_write(APIC_LVTPC, APIC_DM_NMI);
1735 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1742 * All PMUs/events that share this PMI handler should make sure to
1743 * increment active_events for their events.
1745 if (!atomic_read(&active_events))
1748 start_clock = sched_clock();
1749 ret = static_call(x86_pmu_handle_irq)(regs);
1750 finish_clock = sched_clock();
1752 perf_sample_event_took(finish_clock - start_clock);
1756 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1758 struct event_constraint emptyconstraint;
1759 struct event_constraint unconstrained;
1761 static int x86_pmu_prepare_cpu(unsigned int cpu)
1763 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1766 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1767 cpuc->kfree_on_online[i] = NULL;
1768 if (x86_pmu.cpu_prepare)
1769 return x86_pmu.cpu_prepare(cpu);
1773 static int x86_pmu_dead_cpu(unsigned int cpu)
1775 if (x86_pmu.cpu_dead)
1776 x86_pmu.cpu_dead(cpu);
1780 static int x86_pmu_online_cpu(unsigned int cpu)
1782 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1785 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1786 kfree(cpuc->kfree_on_online[i]);
1787 cpuc->kfree_on_online[i] = NULL;
1792 static int x86_pmu_starting_cpu(unsigned int cpu)
1794 if (x86_pmu.cpu_starting)
1795 x86_pmu.cpu_starting(cpu);
1799 static int x86_pmu_dying_cpu(unsigned int cpu)
1801 if (x86_pmu.cpu_dying)
1802 x86_pmu.cpu_dying(cpu);
1806 static void __init pmu_check_apic(void)
1808 if (boot_cpu_has(X86_FEATURE_APIC))
1812 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1813 pr_info("no hardware sampling interrupt available.\n");
1816 * If we have a PMU initialized but no APIC
1817 * interrupts, we cannot sample hardware
1818 * events (user-space has to fall back and
1819 * sample via a hrtimer based software event):
1821 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1825 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1830 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1832 struct perf_pmu_events_attr *pmu_attr =
1833 container_of(attr, struct perf_pmu_events_attr, attr);
1836 if (pmu_attr->id < x86_pmu.max_events)
1837 config = x86_pmu.event_map(pmu_attr->id);
1839 /* string trumps id */
1840 if (pmu_attr->event_str)
1841 return sprintf(page, "%s\n", pmu_attr->event_str);
1843 return x86_pmu.events_sysfs_show(page, config);
1845 EXPORT_SYMBOL_GPL(events_sysfs_show);
1847 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1850 struct perf_pmu_events_ht_attr *pmu_attr =
1851 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1854 * Report conditional events depending on Hyper-Threading.
1856 * This is overly conservative as usually the HT special
1857 * handling is not needed if the other CPU thread is idle.
1859 * Note this does not (and cannot) handle the case when thread
1860 * siblings are invisible, for example with virtualization
1861 * if they are owned by some other guest. The user tool
1862 * has to re-read when a thread sibling gets onlined later.
1864 return sprintf(page, "%s",
1865 topology_max_smt_threads() > 1 ?
1866 pmu_attr->event_str_ht :
1867 pmu_attr->event_str_noht);
1870 ssize_t events_hybrid_sysfs_show(struct device *dev,
1871 struct device_attribute *attr,
1874 struct perf_pmu_events_hybrid_attr *pmu_attr =
1875 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1876 struct x86_hybrid_pmu *pmu;
1877 const char *str, *next_str;
1880 if (hweight64(pmu_attr->pmu_type) == 1)
1881 return sprintf(page, "%s", pmu_attr->event_str);
1884 * Hybrid PMUs may support the same event name, but with different
1885 * event encoding, e.g., the mem-loads event on an Atom PMU has
1886 * different event encoding from a Core PMU.
1888 * The event_str includes all event encodings. Each event encoding
1889 * is divided by ";". The order of the event encodings must follow
1890 * the order of the hybrid PMU index.
1892 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1894 str = pmu_attr->event_str;
1895 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1896 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1898 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1899 next_str = strchr(str, ';');
1901 return snprintf(page, next_str - str + 1, "%s", str);
1903 return sprintf(page, "%s", str);
1905 str = strchr(str, ';');
1911 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1913 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1914 EVENT_ATTR(instructions, INSTRUCTIONS );
1915 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1916 EVENT_ATTR(cache-misses, CACHE_MISSES );
1917 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1918 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1919 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1920 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1921 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1922 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1924 static struct attribute *empty_attrs;
1926 static struct attribute *events_attr[] = {
1927 EVENT_PTR(CPU_CYCLES),
1928 EVENT_PTR(INSTRUCTIONS),
1929 EVENT_PTR(CACHE_REFERENCES),
1930 EVENT_PTR(CACHE_MISSES),
1931 EVENT_PTR(BRANCH_INSTRUCTIONS),
1932 EVENT_PTR(BRANCH_MISSES),
1933 EVENT_PTR(BUS_CYCLES),
1934 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1935 EVENT_PTR(STALLED_CYCLES_BACKEND),
1936 EVENT_PTR(REF_CPU_CYCLES),
1941 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1942 * out of events_attr attributes.
1945 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1947 struct perf_pmu_events_attr *pmu_attr;
1949 if (idx >= x86_pmu.max_events)
1952 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1954 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1957 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1959 .attrs = events_attr,
1960 .is_visible = is_visible,
1963 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1965 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1966 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1967 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1968 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1969 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1970 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1974 * We have whole page size to spend and just little data
1975 * to write, so we can safely use sprintf.
1977 ret = sprintf(page, "event=0x%02llx", event);
1980 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1983 ret += sprintf(page + ret, ",edge");
1986 ret += sprintf(page + ret, ",pc");
1989 ret += sprintf(page + ret, ",any");
1992 ret += sprintf(page + ret, ",inv");
1995 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1997 ret += sprintf(page + ret, "\n");
2002 static struct attribute_group x86_pmu_attr_group;
2003 static struct attribute_group x86_pmu_caps_group;
2005 static void x86_pmu_static_call_update(void)
2007 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2008 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2009 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2010 static_call_update(x86_pmu_enable, x86_pmu.enable);
2011 static_call_update(x86_pmu_disable, x86_pmu.disable);
2013 static_call_update(x86_pmu_assign, x86_pmu.assign);
2015 static_call_update(x86_pmu_add, x86_pmu.add);
2016 static_call_update(x86_pmu_del, x86_pmu.del);
2017 static_call_update(x86_pmu_read, x86_pmu.read);
2019 static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2020 static_call_update(x86_pmu_update, x86_pmu.update);
2021 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2023 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2024 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2025 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2027 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2028 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2029 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2031 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2032 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2034 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2035 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2037 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2038 static_call_update(x86_pmu_filter, x86_pmu.filter);
2041 static void _x86_pmu_read(struct perf_event *event)
2043 static_call(x86_pmu_update)(event);
2046 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2048 pr_info("... version: %d\n", x86_pmu.version);
2049 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2050 pr_info("... generic registers: %d\n", x86_pmu_num_counters(pmu));
2051 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2052 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2053 pr_info("... fixed-purpose events: %d\n", x86_pmu_num_counters_fixed(pmu));
2054 pr_info("... event mask: %016Lx\n", hybrid(pmu, intel_ctrl));
2057 static int __init init_hw_perf_events(void)
2059 struct x86_pmu_quirk *quirk;
2062 pr_info("Performance Events: ");
2064 switch (boot_cpu_data.x86_vendor) {
2065 case X86_VENDOR_INTEL:
2066 err = intel_pmu_init();
2068 case X86_VENDOR_AMD:
2069 err = amd_pmu_init();
2071 case X86_VENDOR_HYGON:
2072 err = amd_pmu_init();
2073 x86_pmu.name = "HYGON";
2075 case X86_VENDOR_ZHAOXIN:
2076 case X86_VENDOR_CENTAUR:
2077 err = zhaoxin_pmu_init();
2083 pr_cont("no PMU driver, software events only.\n");
2090 /* sanity check that the hardware exists or is emulated */
2091 if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2094 pr_cont("%s PMU driver.\n", x86_pmu.name);
2096 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2098 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2101 if (!x86_pmu.intel_ctrl)
2102 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2104 if (!x86_pmu.config_mask)
2105 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2107 perf_events_lapic_init();
2108 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2110 unconstrained = (struct event_constraint)
2111 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2112 0, x86_pmu_num_counters(NULL), 0, 0);
2114 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2116 if (!x86_pmu.events_sysfs_show)
2117 x86_pmu_events_group.attrs = &empty_attrs;
2119 pmu.attr_update = x86_pmu.attr_update;
2122 x86_pmu_show_pmu_cap(NULL);
2125 x86_pmu.read = _x86_pmu_read;
2127 if (!x86_pmu.guest_get_msrs)
2128 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2130 if (!x86_pmu.set_period)
2131 x86_pmu.set_period = x86_perf_event_set_period;
2133 if (!x86_pmu.update)
2134 x86_pmu.update = x86_perf_event_update;
2136 x86_pmu_static_call_update();
2139 * Install callbacks. Core will call them for each online
2142 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2143 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2147 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2148 "perf/x86:starting", x86_pmu_starting_cpu,
2153 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2154 x86_pmu_online_cpu, NULL);
2159 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2163 struct x86_hybrid_pmu *hybrid_pmu;
2166 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2167 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2169 hybrid_pmu->pmu = pmu;
2170 hybrid_pmu->pmu.type = -1;
2171 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2172 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2174 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2175 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2180 if (i < x86_pmu.num_hybrid_pmus) {
2181 for (j = 0; j < i; j++)
2182 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2183 pr_warn("Failed to register hybrid PMUs\n");
2184 kfree(x86_pmu.hybrid_pmu);
2185 x86_pmu.hybrid_pmu = NULL;
2186 x86_pmu.num_hybrid_pmus = 0;
2194 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2196 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2198 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2200 memset(&x86_pmu, 0, sizeof(x86_pmu));
2203 early_initcall(init_hw_perf_events);
2205 static void x86_pmu_read(struct perf_event *event)
2207 static_call(x86_pmu_read)(event);
2211 * Start group events scheduling transaction
2212 * Set the flag to make pmu::enable() not perform the
2213 * schedulability test, it will be performed at commit time
2215 * We only support PERF_PMU_TXN_ADD transactions. Save the
2216 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2219 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2221 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2225 cpuc->txn_flags = txn_flags;
2226 if (txn_flags & ~PERF_PMU_TXN_ADD)
2229 perf_pmu_disable(pmu);
2230 __this_cpu_write(cpu_hw_events.n_txn, 0);
2231 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2232 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2236 * Stop group events scheduling transaction
2237 * Clear the flag and pmu::enable() will perform the
2238 * schedulability test.
2240 static void x86_pmu_cancel_txn(struct pmu *pmu)
2242 unsigned int txn_flags;
2243 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2245 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2247 txn_flags = cpuc->txn_flags;
2248 cpuc->txn_flags = 0;
2249 if (txn_flags & ~PERF_PMU_TXN_ADD)
2253 * Truncate collected array by the number of events added in this
2254 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2256 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2257 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2258 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2259 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2260 perf_pmu_enable(pmu);
2264 * Commit group events scheduling transaction
2265 * Perform the group schedulability test as a whole
2266 * Return 0 if success
2268 * Does not cancel the transaction on failure; expects the caller to do this.
2270 static int x86_pmu_commit_txn(struct pmu *pmu)
2272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 int assign[X86_PMC_IDX_MAX];
2276 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2278 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2279 cpuc->txn_flags = 0;
2285 if (!x86_pmu_initialized())
2288 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2293 * copy new assignment, now we know it is possible
2294 * will be used by hw_perf_enable()
2296 memcpy(cpuc->assign, assign, n*sizeof(int));
2298 cpuc->txn_flags = 0;
2299 perf_pmu_enable(pmu);
2303 * a fake_cpuc is used to validate event groups. Due to
2304 * the extra reg logic, we need to also allocate a fake
2305 * per_core and per_cpu structure. Otherwise, group events
2306 * using extra reg may conflict without the kernel being
2307 * able to catch this when the last event gets added to
2310 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2312 intel_cpuc_finish(cpuc);
2316 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2318 struct cpu_hw_events *cpuc;
2321 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2323 return ERR_PTR(-ENOMEM);
2327 struct x86_hybrid_pmu *h_pmu;
2329 h_pmu = hybrid_pmu(event_pmu);
2330 if (cpumask_empty(&h_pmu->supported_cpus))
2332 cpu = cpumask_first(&h_pmu->supported_cpus);
2334 cpu = raw_smp_processor_id();
2335 cpuc->pmu = event_pmu;
2337 if (intel_cpuc_prepare(cpuc, cpu))
2342 free_fake_cpuc(cpuc);
2343 return ERR_PTR(-ENOMEM);
2347 * validate that we can schedule this event
2349 static int validate_event(struct perf_event *event)
2351 struct cpu_hw_events *fake_cpuc;
2352 struct event_constraint *c;
2355 fake_cpuc = allocate_fake_cpuc(event->pmu);
2356 if (IS_ERR(fake_cpuc))
2357 return PTR_ERR(fake_cpuc);
2359 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2361 if (!c || !c->weight)
2364 if (x86_pmu.put_event_constraints)
2365 x86_pmu.put_event_constraints(fake_cpuc, event);
2367 free_fake_cpuc(fake_cpuc);
2373 * validate a single event group
2375 * validation include:
2376 * - check events are compatible which each other
2377 * - events do not compete for the same counter
2378 * - number of events <= number of counters
2380 * validation ensures the group can be loaded onto the
2381 * PMU if it was the only group available.
2383 static int validate_group(struct perf_event *event)
2385 struct perf_event *leader = event->group_leader;
2386 struct cpu_hw_events *fake_cpuc;
2387 int ret = -EINVAL, n;
2390 * Reject events from different hybrid PMUs.
2393 struct perf_event *sibling;
2394 struct pmu *pmu = NULL;
2396 if (is_x86_event(leader))
2399 for_each_sibling_event(sibling, leader) {
2400 if (!is_x86_event(sibling))
2404 else if (pmu != sibling->pmu)
2409 fake_cpuc = allocate_fake_cpuc(event->pmu);
2410 if (IS_ERR(fake_cpuc))
2411 return PTR_ERR(fake_cpuc);
2413 * the event is not yet connected with its
2414 * siblings therefore we must first collect
2415 * existing siblings, then add the new event
2416 * before we can simulate the scheduling
2418 n = collect_events(fake_cpuc, leader, true);
2422 fake_cpuc->n_events = n;
2423 n = collect_events(fake_cpuc, event, false);
2427 fake_cpuc->n_events = 0;
2428 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2431 free_fake_cpuc(fake_cpuc);
2435 static int x86_pmu_event_init(struct perf_event *event)
2437 struct x86_hybrid_pmu *pmu = NULL;
2440 if ((event->attr.type != event->pmu->type) &&
2441 (event->attr.type != PERF_TYPE_HARDWARE) &&
2442 (event->attr.type != PERF_TYPE_HW_CACHE))
2445 if (is_hybrid() && (event->cpu != -1)) {
2446 pmu = hybrid_pmu(event->pmu);
2447 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2451 err = __x86_pmu_event_init(event);
2453 if (event->group_leader != event)
2454 err = validate_group(event);
2456 err = validate_event(event);
2460 event->destroy(event);
2461 event->destroy = NULL;
2464 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2465 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2466 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2471 void perf_clear_dirty_counters(void)
2473 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2476 /* Don't need to clear the assigned counter. */
2477 for (i = 0; i < cpuc->n_events; i++)
2478 __clear_bit(cpuc->assign[i], cpuc->dirty);
2480 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2483 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2484 if (i >= INTEL_PMC_IDX_FIXED) {
2485 /* Metrics and fake events don't have corresponding HW counters. */
2486 if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2489 wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2491 wrmsrl(x86_pmu_event_addr(i), 0);
2495 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2498 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2500 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2504 * This function relies on not being called concurrently in two
2505 * tasks in the same mm. Otherwise one task could observe
2506 * perf_rdpmc_allowed > 1 and return all the way back to
2507 * userspace with CR4.PCE clear while another task is still
2508 * doing on_each_cpu_mask() to propagate CR4.PCE.
2510 * For now, this can't happen because all callers hold mmap_lock
2511 * for write. If this changes, we'll need a different solution.
2513 mmap_assert_write_locked(mm);
2515 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2516 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2519 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2521 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2524 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2525 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2528 static int x86_pmu_event_idx(struct perf_event *event)
2530 struct hw_perf_event *hwc = &event->hw;
2532 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2535 if (is_metric_idx(hwc->idx))
2536 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2538 return hwc->event_base_rdpmc + 1;
2541 static ssize_t get_attr_rdpmc(struct device *cdev,
2542 struct device_attribute *attr,
2545 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2548 static ssize_t set_attr_rdpmc(struct device *cdev,
2549 struct device_attribute *attr,
2550 const char *buf, size_t count)
2552 static DEFINE_MUTEX(rdpmc_mutex);
2556 ret = kstrtoul(buf, 0, &val);
2563 if (x86_pmu.attr_rdpmc_broken)
2566 guard(mutex)(&rdpmc_mutex);
2568 if (val != x86_pmu.attr_rdpmc) {
2570 * Changing into or out of never available or always available,
2571 * aka perf-event-bypassing mode. This path is extremely slow,
2572 * but only root can trigger it, so it's okay.
2575 static_branch_inc(&rdpmc_never_available_key);
2576 else if (x86_pmu.attr_rdpmc == 0)
2577 static_branch_dec(&rdpmc_never_available_key);
2580 static_branch_inc(&rdpmc_always_available_key);
2581 else if (x86_pmu.attr_rdpmc == 2)
2582 static_branch_dec(&rdpmc_always_available_key);
2584 on_each_cpu(cr4_update_pce, NULL, 1);
2585 x86_pmu.attr_rdpmc = val;
2591 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2593 static struct attribute *x86_pmu_attrs[] = {
2594 &dev_attr_rdpmc.attr,
2598 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2599 .attrs = x86_pmu_attrs,
2602 static ssize_t max_precise_show(struct device *cdev,
2603 struct device_attribute *attr,
2606 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2609 static DEVICE_ATTR_RO(max_precise);
2611 static struct attribute *x86_pmu_caps_attrs[] = {
2612 &dev_attr_max_precise.attr,
2616 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2618 .attrs = x86_pmu_caps_attrs,
2621 static const struct attribute_group *x86_pmu_attr_groups[] = {
2622 &x86_pmu_attr_group,
2623 &x86_pmu_format_group,
2624 &x86_pmu_events_group,
2625 &x86_pmu_caps_group,
2629 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2631 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2634 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2635 struct perf_event_pmu_context *next_epc)
2637 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2640 void perf_check_microcode(void)
2642 if (x86_pmu.check_microcode)
2643 x86_pmu.check_microcode();
2646 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2648 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2651 if (value && x86_pmu.limit_period) {
2653 x86_pmu.limit_period(event, &left);
2661 static int x86_pmu_aux_output_match(struct perf_event *event)
2663 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2666 if (x86_pmu.aux_output_match)
2667 return x86_pmu.aux_output_match(event);
2672 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2676 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2681 static struct pmu pmu = {
2682 .pmu_enable = x86_pmu_enable,
2683 .pmu_disable = x86_pmu_disable,
2685 .attr_groups = x86_pmu_attr_groups,
2687 .event_init = x86_pmu_event_init,
2689 .event_mapped = x86_pmu_event_mapped,
2690 .event_unmapped = x86_pmu_event_unmapped,
2694 .start = x86_pmu_start,
2695 .stop = x86_pmu_stop,
2696 .read = x86_pmu_read,
2698 .start_txn = x86_pmu_start_txn,
2699 .cancel_txn = x86_pmu_cancel_txn,
2700 .commit_txn = x86_pmu_commit_txn,
2702 .event_idx = x86_pmu_event_idx,
2703 .sched_task = x86_pmu_sched_task,
2704 .swap_task_ctx = x86_pmu_swap_task_ctx,
2705 .check_period = x86_pmu_check_period,
2707 .aux_output_match = x86_pmu_aux_output_match,
2709 .filter = x86_pmu_filter,
2712 void arch_perf_update_userpage(struct perf_event *event,
2713 struct perf_event_mmap_page *userpg, u64 now)
2715 struct cyc2ns_data data;
2718 userpg->cap_user_time = 0;
2719 userpg->cap_user_time_zero = 0;
2720 userpg->cap_user_rdpmc =
2721 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2722 userpg->pmc_width = x86_pmu.cntval_bits;
2724 if (!using_native_sched_clock() || !sched_clock_stable())
2727 cyc2ns_read_begin(&data);
2729 offset = data.cyc2ns_offset + __sched_clock_offset;
2732 * Internal timekeeping for enabled/running/stopped times
2733 * is always in the local_clock domain.
2735 userpg->cap_user_time = 1;
2736 userpg->time_mult = data.cyc2ns_mul;
2737 userpg->time_shift = data.cyc2ns_shift;
2738 userpg->time_offset = offset - now;
2741 * cap_user_time_zero doesn't make sense when we're using a different
2742 * time base for the records.
2744 if (!event->attr.use_clockid) {
2745 userpg->cap_user_time_zero = 1;
2746 userpg->time_zero = offset;
2753 * Determine whether the regs were taken from an irq/exception handler rather
2754 * than from perf_arch_fetch_caller_regs().
2756 static bool perf_hw_regs(struct pt_regs *regs)
2758 return regs->flags & X86_EFLAGS_FIXED;
2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2764 struct unwind_state state;
2767 if (perf_guest_state()) {
2768 /* TODO: We don't support guest os callchain now */
2772 if (perf_callchain_store(entry, regs->ip))
2775 if (perf_hw_regs(regs))
2776 unwind_start(&state, current, regs, NULL);
2778 unwind_start(&state, current, NULL, (void *)regs->sp);
2780 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781 addr = unwind_get_return_address(&state);
2782 if (!addr || perf_callchain_store(entry, addr))
2788 valid_user_frame(const void __user *fp, unsigned long size)
2790 return __access_ok(fp, size);
2793 static unsigned long get_segment_base(unsigned int segment)
2795 struct desc_struct *desc;
2796 unsigned int idx = segment >> 3;
2798 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800 struct ldt_struct *ldt;
2802 /* IRQs are off, so this synchronizes with smp_store_release */
2803 ldt = READ_ONCE(current->active_mm->context.ldt);
2804 if (!ldt || idx >= ldt->nr_entries)
2807 desc = &ldt->entries[idx];
2812 if (idx >= GDT_ENTRIES)
2815 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2818 return get_desc_base(desc);
2821 #ifdef CONFIG_UPROBES
2823 * Heuristic-based check if uprobe is installed at the function entry.
2825 * Under assumption of user code being compiled with frame pointers,
2826 * `push %rbp/%ebp` is a good indicator that we indeed are.
2828 * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2829 * If we get this wrong, captured stack trace might have one extra bogus
2830 * entry, but the rest of stack trace will still be meaningful.
2832 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2834 struct arch_uprobe *auprobe;
2836 if (!current->utask)
2839 auprobe = current->utask->auprobe;
2843 /* push %rbp/%ebp */
2844 if (auprobe->insn[0] == 0x55)
2847 /* endbr64 (64-bit only) */
2848 if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2855 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2859 #endif /* CONFIG_UPROBES */
2861 #ifdef CONFIG_IA32_EMULATION
2863 #include <linux/compat.h>
2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2868 /* 32-bit process in 64-bit kernel. */
2869 unsigned long ss_base, cs_base;
2870 struct stack_frame_ia32 frame;
2871 const struct stack_frame_ia32 __user *fp;
2874 if (user_64bit_mode(regs))
2877 cs_base = get_segment_base(regs->cs);
2878 ss_base = get_segment_base(regs->ss);
2880 fp = compat_ptr(ss_base + regs->bp);
2881 pagefault_disable();
2883 /* see perf_callchain_user() below for why we do this */
2884 if (is_uprobe_at_func_entry(regs) &&
2885 !get_user(ret_addr, (const u32 __user *)regs->sp))
2886 perf_callchain_store(entry, ret_addr);
2888 while (entry->nr < entry->max_stack) {
2889 if (!valid_user_frame(fp, sizeof(frame)))
2892 if (__get_user(frame.next_frame, &fp->next_frame))
2894 if (__get_user(frame.return_address, &fp->return_address))
2897 perf_callchain_store(entry, cs_base + frame.return_address);
2898 fp = compat_ptr(ss_base + frame.next_frame);
2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2914 struct stack_frame frame;
2915 const struct stack_frame __user *fp;
2916 unsigned long ret_addr;
2918 if (perf_guest_state()) {
2919 /* TODO: We don't support guest os callchain now */
2924 * We don't know what to do with VM86 stacks.. ignore them for now.
2926 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2929 fp = (void __user *)regs->bp;
2931 perf_callchain_store(entry, regs->ip);
2933 if (!nmi_uaccess_okay())
2936 if (perf_callchain_user32(regs, entry))
2939 pagefault_disable();
2942 * If we are called from uprobe handler, and we are indeed at the very
2943 * entry to user function (which is normally a `push %rbp` instruction,
2944 * under assumption of application being compiled with frame pointers),
2945 * we should read return address from *regs->sp before proceeding
2946 * to follow frame pointers, otherwise we'll skip immediate caller
2947 * as %rbp is not yet setup.
2949 if (is_uprobe_at_func_entry(regs) &&
2950 !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2951 perf_callchain_store(entry, ret_addr);
2953 while (entry->nr < entry->max_stack) {
2954 if (!valid_user_frame(fp, sizeof(frame)))
2957 if (__get_user(frame.next_frame, &fp->next_frame))
2959 if (__get_user(frame.return_address, &fp->return_address))
2962 perf_callchain_store(entry, frame.return_address);
2963 fp = (void __user *)frame.next_frame;
2969 * Deal with code segment offsets for the various execution modes:
2971 * VM86 - the good olde 16 bit days, where the linear address is
2972 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2974 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2975 * to figure out what the 32bit base address is.
2977 * X32 - has TIF_X32 set, but is running in x86_64
2979 * X86_64 - CS,DS,SS,ES are all zero based.
2981 static unsigned long code_segment_base(struct pt_regs *regs)
2984 * For IA32 we look at the GDT/LDT segment base to convert the
2985 * effective IP to a linear address.
2988 #ifdef CONFIG_X86_32
2990 * If we are in VM86 mode, add the segment offset to convert to a
2993 if (regs->flags & X86_VM_MASK)
2994 return 0x10 * regs->cs;
2996 if (user_mode(regs) && regs->cs != __USER_CS)
2997 return get_segment_base(regs->cs);
2999 if (user_mode(regs) && !user_64bit_mode(regs) &&
3000 regs->cs != __USER32_CS)
3001 return get_segment_base(regs->cs);
3006 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3008 return regs->ip + code_segment_base(regs);
3011 static unsigned long common_misc_flags(struct pt_regs *regs)
3013 if (regs->flags & PERF_EFLAGS_EXACT)
3014 return PERF_RECORD_MISC_EXACT_IP;
3019 static unsigned long guest_misc_flags(struct pt_regs *regs)
3021 unsigned long guest_state = perf_guest_state();
3023 if (!(guest_state & PERF_GUEST_ACTIVE))
3026 if (guest_state & PERF_GUEST_USER)
3027 return PERF_RECORD_MISC_GUEST_USER;
3029 return PERF_RECORD_MISC_GUEST_KERNEL;
3033 static unsigned long host_misc_flags(struct pt_regs *regs)
3035 if (user_mode(regs))
3036 return PERF_RECORD_MISC_USER;
3038 return PERF_RECORD_MISC_KERNEL;
3041 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3043 unsigned long flags = common_misc_flags(regs);
3045 flags |= guest_misc_flags(regs);
3050 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3052 unsigned long flags = common_misc_flags(regs);
3054 flags |= host_misc_flags(regs);
3059 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3061 /* This API doesn't currently support enumerating hybrid PMUs. */
3062 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3063 !x86_pmu_initialized()) {
3064 memset(cap, 0, sizeof(*cap));
3069 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3070 * all E-cores are disabled via BIOS. When E-cores are disabled, the
3071 * base PMU holds the correct number of counters for P-cores.
3073 cap->version = x86_pmu.version;
3074 cap->num_counters_gp = x86_pmu_num_counters(NULL);
3075 cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL);
3076 cap->bit_width_gp = x86_pmu.cntval_bits;
3077 cap->bit_width_fixed = x86_pmu.cntval_bits;
3078 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3079 cap->events_mask_len = x86_pmu.events_mask_len;
3080 cap->pebs_ept = x86_pmu.pebs_ept;
3082 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3084 u64 perf_get_hw_event_config(int hw_event)
3086 int max = x86_pmu.max_events;
3089 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3093 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);