]> Git Repo - J-linux.git/blob - arch/s390/kernel/smp.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <[email protected]>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <[email protected]>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/access-regs.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/ctlreg.h>
42 #include <asm/pfault.h>
43 #include <asm/diag.h>
44 #include <asm/facility.h>
45 #include <asm/fpu.h>
46 #include <asm/ipl.h>
47 #include <asm/setup.h>
48 #include <asm/irq.h>
49 #include <asm/tlbflush.h>
50 #include <asm/vtimer.h>
51 #include <asm/abs_lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/stacktrace.h>
59 #include <asm/topology.h>
60 #include <asm/vdso.h>
61 #include <asm/maccess.h>
62 #include "entry.h"
63
64 enum {
65         ec_schedule = 0,
66         ec_call_function_single,
67         ec_stop_cpu,
68         ec_mcck_pending,
69         ec_irq_work,
70 };
71
72 enum {
73         CPU_STATE_STANDBY,
74         CPU_STATE_CONFIGURED,
75 };
76
77 static DEFINE_PER_CPU(struct cpu *, cpu_device);
78
79 struct pcpu {
80         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
81         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
82         signed char state;              /* physical cpu state */
83         signed char polarization;       /* physical polarization */
84         u16 address;                    /* physical cpu address */
85 };
86
87 static u8 boot_core_type;
88 static struct pcpu pcpu_devices[NR_CPUS];
89
90 unsigned int smp_cpu_mt_shift;
91 EXPORT_SYMBOL(smp_cpu_mt_shift);
92
93 unsigned int smp_cpu_mtid;
94 EXPORT_SYMBOL(smp_cpu_mtid);
95
96 #ifdef CONFIG_CRASH_DUMP
97 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
98 #endif
99
100 static unsigned int smp_max_threads __initdata = -1U;
101 cpumask_t cpu_setup_mask;
102
103 static int __init early_nosmt(char *s)
104 {
105         smp_max_threads = 1;
106         return 0;
107 }
108 early_param("nosmt", early_nosmt);
109
110 static int __init early_smt(char *s)
111 {
112         get_option(&s, &smp_max_threads);
113         return 0;
114 }
115 early_param("smt", early_smt);
116
117 /*
118  * The smp_cpu_state_mutex must be held when changing the state or polarization
119  * member of a pcpu data structure within the pcpu_devices array.
120  */
121 DEFINE_MUTEX(smp_cpu_state_mutex);
122
123 /*
124  * Signal processor helper functions.
125  */
126 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
127 {
128         int cc;
129
130         while (1) {
131                 cc = __pcpu_sigp(addr, order, parm, NULL);
132                 if (cc != SIGP_CC_BUSY)
133                         return cc;
134                 cpu_relax();
135         }
136 }
137
138 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
139 {
140         int cc, retry;
141
142         for (retry = 0; ; retry++) {
143                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
144                 if (cc != SIGP_CC_BUSY)
145                         break;
146                 if (retry >= 3)
147                         udelay(10);
148         }
149         return cc;
150 }
151
152 static inline int pcpu_stopped(struct pcpu *pcpu)
153 {
154         u32 status;
155
156         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
157                         0, &status) != SIGP_CC_STATUS_STORED)
158                 return 0;
159         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
160 }
161
162 static inline int pcpu_running(struct pcpu *pcpu)
163 {
164         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
165                         0, NULL) != SIGP_CC_STATUS_STORED)
166                 return 1;
167         /* Status stored condition code is equivalent to cpu not running. */
168         return 0;
169 }
170
171 /*
172  * Find struct pcpu by cpu address.
173  */
174 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
175 {
176         int cpu;
177
178         for_each_cpu(cpu, mask)
179                 if (pcpu_devices[cpu].address == address)
180                         return pcpu_devices + cpu;
181         return NULL;
182 }
183
184 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
185 {
186         int order;
187
188         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
189                 return;
190         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
191         pcpu->ec_clk = get_tod_clock_fast();
192         pcpu_sigp_retry(pcpu, order, 0);
193 }
194
195 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
196 {
197         unsigned long async_stack, nodat_stack, mcck_stack;
198         struct lowcore *lc;
199
200         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
202         async_stack = stack_alloc();
203         mcck_stack = stack_alloc();
204         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
205                 goto out;
206         memcpy(lc, &S390_lowcore, 512);
207         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208         lc->async_stack = async_stack + STACK_INIT_OFFSET;
209         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
211         lc->cpu_nr = cpu;
212         lc->spinlock_lockval = arch_spin_lockval(cpu);
213         lc->spinlock_index = 0;
214         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
215         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
216         lc->preempt_count = PREEMPT_DISABLED;
217         if (nmi_alloc_mcesa(&lc->mcesad))
218                 goto out;
219         if (abs_lowcore_map(cpu, lc, true))
220                 goto out_mcesa;
221         lowcore_ptr[cpu] = lc;
222         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
223         return 0;
224
225 out_mcesa:
226         nmi_free_mcesa(&lc->mcesad);
227 out:
228         stack_free(mcck_stack);
229         stack_free(async_stack);
230         free_pages(nodat_stack, THREAD_SIZE_ORDER);
231         free_pages((unsigned long) lc, LC_ORDER);
232         return -ENOMEM;
233 }
234
235 static void pcpu_free_lowcore(struct pcpu *pcpu)
236 {
237         unsigned long async_stack, nodat_stack, mcck_stack;
238         struct lowcore *lc;
239         int cpu;
240
241         cpu = pcpu - pcpu_devices;
242         lc = lowcore_ptr[cpu];
243         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
244         async_stack = lc->async_stack - STACK_INIT_OFFSET;
245         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
246         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
247         lowcore_ptr[cpu] = NULL;
248         abs_lowcore_unmap(cpu);
249         nmi_free_mcesa(&lc->mcesad);
250         stack_free(async_stack);
251         stack_free(mcck_stack);
252         free_pages(nodat_stack, THREAD_SIZE_ORDER);
253         free_pages((unsigned long) lc, LC_ORDER);
254 }
255
256 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
257 {
258         struct lowcore *lc, *abs_lc;
259
260         lc = lowcore_ptr[cpu];
261         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263         lc->cpu_nr = cpu;
264         lc->restart_flags = RESTART_FLAG_CTLREGS;
265         lc->spinlock_lockval = arch_spin_lockval(cpu);
266         lc->spinlock_index = 0;
267         lc->percpu_offset = __per_cpu_offset[cpu];
268         lc->kernel_asce = S390_lowcore.kernel_asce;
269         lc->user_asce = s390_invalid_asce;
270         lc->machine_flags = S390_lowcore.machine_flags;
271         lc->user_timer = lc->system_timer =
272                 lc->steal_timer = lc->avg_steal_timer = 0;
273         abs_lc = get_abs_lowcore();
274         memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
275         put_abs_lowcore(abs_lc);
276         lc->cregs_save_area[1] = lc->kernel_asce;
277         lc->cregs_save_area[7] = lc->user_asce;
278         save_access_regs((unsigned int *) lc->access_regs_save_area);
279         arch_spin_lock_setup(cpu);
280 }
281
282 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
283 {
284         struct lowcore *lc;
285         int cpu;
286
287         cpu = pcpu - pcpu_devices;
288         lc = lowcore_ptr[cpu];
289         lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
290         lc->current_task = (unsigned long)tsk;
291         lc->lpp = LPP_MAGIC;
292         lc->current_pid = tsk->pid;
293         lc->user_timer = tsk->thread.user_timer;
294         lc->guest_timer = tsk->thread.guest_timer;
295         lc->system_timer = tsk->thread.system_timer;
296         lc->hardirq_timer = tsk->thread.hardirq_timer;
297         lc->softirq_timer = tsk->thread.softirq_timer;
298         lc->steal_timer = 0;
299 }
300
301 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
302 {
303         struct lowcore *lc;
304         int cpu;
305
306         cpu = pcpu - pcpu_devices;
307         lc = lowcore_ptr[cpu];
308         lc->restart_stack = lc->kernel_stack;
309         lc->restart_fn = (unsigned long) func;
310         lc->restart_data = (unsigned long) data;
311         lc->restart_source = -1U;
312         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
313 }
314
315 typedef void (pcpu_delegate_fn)(void *);
316
317 /*
318  * Call function via PSW restart on pcpu and stop the current cpu.
319  */
320 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
321 {
322         func(data);     /* should not return */
323 }
324
325 static void pcpu_delegate(struct pcpu *pcpu,
326                           pcpu_delegate_fn *func,
327                           void *data, unsigned long stack)
328 {
329         struct lowcore *lc, *abs_lc;
330         unsigned int source_cpu;
331
332         lc = lowcore_ptr[pcpu - pcpu_devices];
333         source_cpu = stap();
334
335         if (pcpu->address == source_cpu) {
336                 call_on_stack(2, stack, void, __pcpu_delegate,
337                               pcpu_delegate_fn *, func, void *, data);
338         }
339         /* Stop target cpu (if func returns this stops the current cpu). */
340         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
341         pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
342         /* Restart func on the target cpu and stop the current cpu. */
343         if (lc) {
344                 lc->restart_stack = stack;
345                 lc->restart_fn = (unsigned long)func;
346                 lc->restart_data = (unsigned long)data;
347                 lc->restart_source = source_cpu;
348         } else {
349                 abs_lc = get_abs_lowcore();
350                 abs_lc->restart_stack = stack;
351                 abs_lc->restart_fn = (unsigned long)func;
352                 abs_lc->restart_data = (unsigned long)data;
353                 abs_lc->restart_source = source_cpu;
354                 put_abs_lowcore(abs_lc);
355         }
356         asm volatile(
357                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
358                 "       brc     2,0b    # busy, try again\n"
359                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
360                 "       brc     2,1b    # busy, try again\n"
361                 : : "d" (pcpu->address), "d" (source_cpu),
362                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
363                 : "0", "1", "cc");
364         for (;;) ;
365 }
366
367 /*
368  * Enable additional logical cpus for multi-threading.
369  */
370 static int pcpu_set_smt(unsigned int mtid)
371 {
372         int cc;
373
374         if (smp_cpu_mtid == mtid)
375                 return 0;
376         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
377         if (cc == 0) {
378                 smp_cpu_mtid = mtid;
379                 smp_cpu_mt_shift = 0;
380                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
381                         smp_cpu_mt_shift++;
382                 pcpu_devices[0].address = stap();
383         }
384         return cc;
385 }
386
387 /*
388  * Call function on an online CPU.
389  */
390 void smp_call_online_cpu(void (*func)(void *), void *data)
391 {
392         struct pcpu *pcpu;
393
394         /* Use the current cpu if it is online. */
395         pcpu = pcpu_find_address(cpu_online_mask, stap());
396         if (!pcpu)
397                 /* Use the first online cpu. */
398                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
399         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
400 }
401
402 /*
403  * Call function on the ipl CPU.
404  */
405 void smp_call_ipl_cpu(void (*func)(void *), void *data)
406 {
407         struct lowcore *lc = lowcore_ptr[0];
408
409         if (pcpu_devices[0].address == stap())
410                 lc = &S390_lowcore;
411
412         pcpu_delegate(&pcpu_devices[0], func, data,
413                       lc->nodat_stack);
414 }
415
416 int smp_find_processor_id(u16 address)
417 {
418         int cpu;
419
420         for_each_present_cpu(cpu)
421                 if (pcpu_devices[cpu].address == address)
422                         return cpu;
423         return -1;
424 }
425
426 void schedule_mcck_handler(void)
427 {
428         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
429 }
430
431 bool notrace arch_vcpu_is_preempted(int cpu)
432 {
433         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
434                 return false;
435         if (pcpu_running(pcpu_devices + cpu))
436                 return false;
437         return true;
438 }
439 EXPORT_SYMBOL(arch_vcpu_is_preempted);
440
441 void notrace smp_yield_cpu(int cpu)
442 {
443         if (!MACHINE_HAS_DIAG9C)
444                 return;
445         diag_stat_inc_norecursion(DIAG_STAT_X09C);
446         asm volatile("diag %0,0,0x9c"
447                      : : "d" (pcpu_devices[cpu].address));
448 }
449 EXPORT_SYMBOL_GPL(smp_yield_cpu);
450
451 /*
452  * Send cpus emergency shutdown signal. This gives the cpus the
453  * opportunity to complete outstanding interrupts.
454  */
455 void notrace smp_emergency_stop(void)
456 {
457         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
458         static cpumask_t cpumask;
459         u64 end;
460         int cpu;
461
462         arch_spin_lock(&lock);
463         cpumask_copy(&cpumask, cpu_online_mask);
464         cpumask_clear_cpu(smp_processor_id(), &cpumask);
465
466         end = get_tod_clock() + (1000000UL << 12);
467         for_each_cpu(cpu, &cpumask) {
468                 struct pcpu *pcpu = pcpu_devices + cpu;
469                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
470                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
471                                    0, NULL) == SIGP_CC_BUSY &&
472                        get_tod_clock() < end)
473                         cpu_relax();
474         }
475         while (get_tod_clock() < end) {
476                 for_each_cpu(cpu, &cpumask)
477                         if (pcpu_stopped(pcpu_devices + cpu))
478                                 cpumask_clear_cpu(cpu, &cpumask);
479                 if (cpumask_empty(&cpumask))
480                         break;
481                 cpu_relax();
482         }
483         arch_spin_unlock(&lock);
484 }
485 NOKPROBE_SYMBOL(smp_emergency_stop);
486
487 /*
488  * Stop all cpus but the current one.
489  */
490 void smp_send_stop(void)
491 {
492         int cpu;
493
494         /* Disable all interrupts/machine checks */
495         __load_psw_mask(PSW_KERNEL_BITS);
496         trace_hardirqs_off();
497
498         debug_set_critical();
499
500         if (oops_in_progress)
501                 smp_emergency_stop();
502
503         /* stop all processors */
504         for_each_online_cpu(cpu) {
505                 if (cpu == smp_processor_id())
506                         continue;
507                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
508                 while (!pcpu_stopped(pcpu_devices + cpu))
509                         cpu_relax();
510         }
511 }
512
513 /*
514  * This is the main routine where commands issued by other
515  * cpus are handled.
516  */
517 static void smp_handle_ext_call(void)
518 {
519         unsigned long bits;
520
521         /* handle bit signal external calls */
522         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
523         if (test_bit(ec_stop_cpu, &bits))
524                 smp_stop_cpu();
525         if (test_bit(ec_schedule, &bits))
526                 scheduler_ipi();
527         if (test_bit(ec_call_function_single, &bits))
528                 generic_smp_call_function_single_interrupt();
529         if (test_bit(ec_mcck_pending, &bits))
530                 s390_handle_mcck();
531         if (test_bit(ec_irq_work, &bits))
532                 irq_work_run();
533 }
534
535 static void do_ext_call_interrupt(struct ext_code ext_code,
536                                   unsigned int param32, unsigned long param64)
537 {
538         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
539         smp_handle_ext_call();
540 }
541
542 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
543 {
544         int cpu;
545
546         for_each_cpu(cpu, mask)
547                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
548 }
549
550 void arch_send_call_function_single_ipi(int cpu)
551 {
552         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
553 }
554
555 /*
556  * this function sends a 'reschedule' IPI to another CPU.
557  * it goes straight through and wastes no time serializing
558  * anything. Worst case is that we lose a reschedule ...
559  */
560 void arch_smp_send_reschedule(int cpu)
561 {
562         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
563 }
564
565 #ifdef CONFIG_IRQ_WORK
566 void arch_irq_work_raise(void)
567 {
568         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
569 }
570 #endif
571
572 #ifdef CONFIG_CRASH_DUMP
573
574 int smp_store_status(int cpu)
575 {
576         struct lowcore *lc;
577         struct pcpu *pcpu;
578         unsigned long pa;
579
580         pcpu = pcpu_devices + cpu;
581         lc = lowcore_ptr[cpu];
582         pa = __pa(&lc->floating_pt_save_area);
583         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
584                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
585                 return -EIO;
586         if (!cpu_has_vx() && !MACHINE_HAS_GS)
587                 return 0;
588         pa = lc->mcesad & MCESA_ORIGIN_MASK;
589         if (MACHINE_HAS_GS)
590                 pa |= lc->mcesad & MCESA_LC_MASK;
591         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
592                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
593                 return -EIO;
594         return 0;
595 }
596
597 /*
598  * Collect CPU state of the previous, crashed system.
599  * There are four cases:
600  * 1) standard zfcp/nvme dump
601  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
602  *    The state for all CPUs except the boot CPU needs to be collected
603  *    with sigp stop-and-store-status. The boot CPU state is located in
604  *    the absolute lowcore of the memory stored in the HSA. The zcore code
605  *    will copy the boot CPU state from the HSA.
606  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
607  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
608  *    The state for all CPUs except the boot CPU needs to be collected
609  *    with sigp stop-and-store-status. The firmware or the boot-loader
610  *    stored the registers of the boot CPU in the absolute lowcore in the
611  *    memory of the old system.
612  * 3) kdump and the old kernel did not store the CPU state,
613  *    or stand-alone kdump for DASD
614  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
615  *    The state for all CPUs except the boot CPU needs to be collected
616  *    with sigp stop-and-store-status. The kexec code or the boot-loader
617  *    stored the registers of the boot CPU in the memory of the old system.
618  * 4) kdump and the old kernel stored the CPU state
619  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
620  *    This case does not exist for s390 anymore, setup_arch explicitly
621  *    deactivates the elfcorehdr= kernel parameter
622  */
623 static bool dump_available(void)
624 {
625         return oldmem_data.start || is_ipl_type_dump();
626 }
627
628 void __init smp_save_dump_ipl_cpu(void)
629 {
630         struct save_area *sa;
631         void *regs;
632
633         if (!dump_available())
634                 return;
635         sa = save_area_alloc(true);
636         regs = memblock_alloc(512, 8);
637         if (!sa || !regs)
638                 panic("could not allocate memory for boot CPU save area\n");
639         copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
640         save_area_add_regs(sa, regs);
641         memblock_free(regs, 512);
642         if (cpu_has_vx())
643                 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
644 }
645
646 void __init smp_save_dump_secondary_cpus(void)
647 {
648         int addr, boot_cpu_addr, max_cpu_addr;
649         struct save_area *sa;
650         void *page;
651
652         if (!dump_available())
653                 return;
654         /* Allocate a page as dumping area for the store status sigps */
655         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
656         if (!page)
657                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
658                       PAGE_SIZE, 1UL << 31);
659
660         /* Set multi-threading state to the previous system. */
661         pcpu_set_smt(sclp.mtid_prev);
662         boot_cpu_addr = stap();
663         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
664         for (addr = 0; addr <= max_cpu_addr; addr++) {
665                 if (addr == boot_cpu_addr)
666                         continue;
667                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
668                     SIGP_CC_NOT_OPERATIONAL)
669                         continue;
670                 sa = save_area_alloc(false);
671                 if (!sa)
672                         panic("could not allocate memory for save area\n");
673                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
674                 save_area_add_regs(sa, page);
675                 if (cpu_has_vx()) {
676                         __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
677                         save_area_add_vxrs(sa, page);
678                 }
679         }
680         memblock_free(page, PAGE_SIZE);
681         diag_amode31_ops.diag308_reset();
682         pcpu_set_smt(0);
683 }
684 #endif /* CONFIG_CRASH_DUMP */
685
686 void smp_cpu_set_polarization(int cpu, int val)
687 {
688         pcpu_devices[cpu].polarization = val;
689 }
690
691 int smp_cpu_get_polarization(int cpu)
692 {
693         return pcpu_devices[cpu].polarization;
694 }
695
696 int smp_cpu_get_cpu_address(int cpu)
697 {
698         return pcpu_devices[cpu].address;
699 }
700
701 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
702 {
703         static int use_sigp_detection;
704         int address;
705
706         if (use_sigp_detection || sclp_get_core_info(info, early)) {
707                 use_sigp_detection = 1;
708                 for (address = 0;
709                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
710                      address += (1U << smp_cpu_mt_shift)) {
711                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
712                             SIGP_CC_NOT_OPERATIONAL)
713                                 continue;
714                         info->core[info->configured].core_id =
715                                 address >> smp_cpu_mt_shift;
716                         info->configured++;
717                 }
718                 info->combined = info->configured;
719         }
720 }
721
722 static int smp_add_present_cpu(int cpu);
723
724 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
725                         bool configured, bool early)
726 {
727         struct pcpu *pcpu;
728         int cpu, nr, i;
729         u16 address;
730
731         nr = 0;
732         if (sclp.has_core_type && core->type != boot_core_type)
733                 return nr;
734         cpu = cpumask_first(avail);
735         address = core->core_id << smp_cpu_mt_shift;
736         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
737                 if (pcpu_find_address(cpu_present_mask, address + i))
738                         continue;
739                 pcpu = pcpu_devices + cpu;
740                 pcpu->address = address + i;
741                 if (configured)
742                         pcpu->state = CPU_STATE_CONFIGURED;
743                 else
744                         pcpu->state = CPU_STATE_STANDBY;
745                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
746                 set_cpu_present(cpu, true);
747                 if (!early && smp_add_present_cpu(cpu) != 0)
748                         set_cpu_present(cpu, false);
749                 else
750                         nr++;
751                 cpumask_clear_cpu(cpu, avail);
752                 cpu = cpumask_next(cpu, avail);
753         }
754         return nr;
755 }
756
757 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
758 {
759         struct sclp_core_entry *core;
760         static cpumask_t avail;
761         bool configured;
762         u16 core_id;
763         int nr, i;
764
765         cpus_read_lock();
766         mutex_lock(&smp_cpu_state_mutex);
767         nr = 0;
768         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
769         /*
770          * Add IPL core first (which got logical CPU number 0) to make sure
771          * that all SMT threads get subsequent logical CPU numbers.
772          */
773         if (early) {
774                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
775                 for (i = 0; i < info->configured; i++) {
776                         core = &info->core[i];
777                         if (core->core_id == core_id) {
778                                 nr += smp_add_core(core, &avail, true, early);
779                                 break;
780                         }
781                 }
782         }
783         for (i = 0; i < info->combined; i++) {
784                 configured = i < info->configured;
785                 nr += smp_add_core(&info->core[i], &avail, configured, early);
786         }
787         mutex_unlock(&smp_cpu_state_mutex);
788         cpus_read_unlock();
789         return nr;
790 }
791
792 void __init smp_detect_cpus(void)
793 {
794         unsigned int cpu, mtid, c_cpus, s_cpus;
795         struct sclp_core_info *info;
796         u16 address;
797
798         /* Get CPU information */
799         info = memblock_alloc(sizeof(*info), 8);
800         if (!info)
801                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
802                       __func__, sizeof(*info), 8);
803         smp_get_core_info(info, 1);
804         /* Find boot CPU type */
805         if (sclp.has_core_type) {
806                 address = stap();
807                 for (cpu = 0; cpu < info->combined; cpu++)
808                         if (info->core[cpu].core_id == address) {
809                                 /* The boot cpu dictates the cpu type. */
810                                 boot_core_type = info->core[cpu].type;
811                                 break;
812                         }
813                 if (cpu >= info->combined)
814                         panic("Could not find boot CPU type");
815         }
816
817         /* Set multi-threading state for the current system */
818         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
819         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
820         pcpu_set_smt(mtid);
821
822         /* Print number of CPUs */
823         c_cpus = s_cpus = 0;
824         for (cpu = 0; cpu < info->combined; cpu++) {
825                 if (sclp.has_core_type &&
826                     info->core[cpu].type != boot_core_type)
827                         continue;
828                 if (cpu < info->configured)
829                         c_cpus += smp_cpu_mtid + 1;
830                 else
831                         s_cpus += smp_cpu_mtid + 1;
832         }
833         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
834
835         /* Add CPUs present at boot */
836         __smp_rescan_cpus(info, true);
837         memblock_free(info, sizeof(*info));
838 }
839
840 /*
841  *      Activate a secondary processor.
842  */
843 static void smp_start_secondary(void *cpuvoid)
844 {
845         int cpu = raw_smp_processor_id();
846
847         S390_lowcore.last_update_clock = get_tod_clock();
848         S390_lowcore.restart_stack = (unsigned long)restart_stack;
849         S390_lowcore.restart_fn = (unsigned long)do_restart;
850         S390_lowcore.restart_data = 0;
851         S390_lowcore.restart_source = -1U;
852         S390_lowcore.restart_flags = 0;
853         restore_access_regs(S390_lowcore.access_regs_save_area);
854         cpu_init();
855         rcutree_report_cpu_starting(cpu);
856         init_cpu_timer();
857         vtime_init();
858         vdso_getcpu_init();
859         pfault_init();
860         cpumask_set_cpu(cpu, &cpu_setup_mask);
861         update_cpu_masks();
862         notify_cpu_starting(cpu);
863         if (topology_cpu_dedicated(cpu))
864                 set_cpu_flag(CIF_DEDICATED_CPU);
865         else
866                 clear_cpu_flag(CIF_DEDICATED_CPU);
867         set_cpu_online(cpu, true);
868         inc_irq_stat(CPU_RST);
869         local_irq_enable();
870         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
871 }
872
873 /* Upping and downing of CPUs */
874 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
875 {
876         struct pcpu *pcpu = pcpu_devices + cpu;
877         int rc;
878
879         if (pcpu->state != CPU_STATE_CONFIGURED)
880                 return -EIO;
881         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
882             SIGP_CC_ORDER_CODE_ACCEPTED)
883                 return -EIO;
884
885         rc = pcpu_alloc_lowcore(pcpu, cpu);
886         if (rc)
887                 return rc;
888         /*
889          * Make sure global control register contents do not change
890          * until new CPU has initialized control registers.
891          */
892         system_ctlreg_lock();
893         pcpu_prepare_secondary(pcpu, cpu);
894         pcpu_attach_task(pcpu, tidle);
895         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
896         /* Wait until cpu puts itself in the online & active maps */
897         while (!cpu_online(cpu))
898                 cpu_relax();
899         system_ctlreg_unlock();
900         return 0;
901 }
902
903 static unsigned int setup_possible_cpus __initdata;
904
905 static int __init _setup_possible_cpus(char *s)
906 {
907         get_option(&s, &setup_possible_cpus);
908         return 0;
909 }
910 early_param("possible_cpus", _setup_possible_cpus);
911
912 int __cpu_disable(void)
913 {
914         struct ctlreg cregs[16];
915         int cpu;
916
917         /* Handle possible pending IPIs */
918         smp_handle_ext_call();
919         cpu = smp_processor_id();
920         set_cpu_online(cpu, false);
921         cpumask_clear_cpu(cpu, &cpu_setup_mask);
922         update_cpu_masks();
923         /* Disable pseudo page faults on this cpu. */
924         pfault_fini();
925         /* Disable interrupt sources via control register. */
926         __local_ctl_store(0, 15, cregs);
927         cregs[0].val  &= ~0x0000ee70UL; /* disable all external interrupts */
928         cregs[6].val  &= ~0xff000000UL; /* disable all I/O interrupts */
929         cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
930         __local_ctl_load(0, 15, cregs);
931         clear_cpu_flag(CIF_NOHZ_DELAY);
932         return 0;
933 }
934
935 void __cpu_die(unsigned int cpu)
936 {
937         struct pcpu *pcpu;
938
939         /* Wait until target cpu is down */
940         pcpu = pcpu_devices + cpu;
941         while (!pcpu_stopped(pcpu))
942                 cpu_relax();
943         pcpu_free_lowcore(pcpu);
944         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
945         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
946 }
947
948 void __noreturn cpu_die(void)
949 {
950         idle_task_exit();
951         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
952         for (;;) ;
953 }
954
955 void __init smp_fill_possible_mask(void)
956 {
957         unsigned int possible, sclp_max, cpu;
958
959         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
960         sclp_max = min(smp_max_threads, sclp_max);
961         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
962         possible = setup_possible_cpus ?: nr_cpu_ids;
963         possible = min(possible, sclp_max);
964         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
965                 set_cpu_possible(cpu, true);
966 }
967
968 void __init smp_prepare_cpus(unsigned int max_cpus)
969 {
970         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
971                 panic("Couldn't request external interrupt 0x1201");
972         system_ctl_set_bit(0, 14);
973         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
974                 panic("Couldn't request external interrupt 0x1202");
975         system_ctl_set_bit(0, 13);
976 }
977
978 void __init smp_prepare_boot_cpu(void)
979 {
980         struct pcpu *pcpu = pcpu_devices;
981
982         WARN_ON(!cpu_present(0) || !cpu_online(0));
983         pcpu->state = CPU_STATE_CONFIGURED;
984         S390_lowcore.percpu_offset = __per_cpu_offset[0];
985         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
986 }
987
988 void __init smp_setup_processor_id(void)
989 {
990         pcpu_devices[0].address = stap();
991         S390_lowcore.cpu_nr = 0;
992         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
993         S390_lowcore.spinlock_index = 0;
994 }
995
996 /*
997  * the frequency of the profiling timer can be changed
998  * by writing a multiplier value into /proc/profile.
999  *
1000  * usually you want to run this on all CPUs ;)
1001  */
1002 int setup_profiling_timer(unsigned int multiplier)
1003 {
1004         return 0;
1005 }
1006
1007 static ssize_t cpu_configure_show(struct device *dev,
1008                                   struct device_attribute *attr, char *buf)
1009 {
1010         ssize_t count;
1011
1012         mutex_lock(&smp_cpu_state_mutex);
1013         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1014         mutex_unlock(&smp_cpu_state_mutex);
1015         return count;
1016 }
1017
1018 static ssize_t cpu_configure_store(struct device *dev,
1019                                    struct device_attribute *attr,
1020                                    const char *buf, size_t count)
1021 {
1022         struct pcpu *pcpu;
1023         int cpu, val, rc, i;
1024         char delim;
1025
1026         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1027                 return -EINVAL;
1028         if (val != 0 && val != 1)
1029                 return -EINVAL;
1030         cpus_read_lock();
1031         mutex_lock(&smp_cpu_state_mutex);
1032         rc = -EBUSY;
1033         /* disallow configuration changes of online cpus */
1034         cpu = dev->id;
1035         cpu = smp_get_base_cpu(cpu);
1036         for (i = 0; i <= smp_cpu_mtid; i++)
1037                 if (cpu_online(cpu + i))
1038                         goto out;
1039         pcpu = pcpu_devices + cpu;
1040         rc = 0;
1041         switch (val) {
1042         case 0:
1043                 if (pcpu->state != CPU_STATE_CONFIGURED)
1044                         break;
1045                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1046                 if (rc)
1047                         break;
1048                 for (i = 0; i <= smp_cpu_mtid; i++) {
1049                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1050                                 continue;
1051                         pcpu[i].state = CPU_STATE_STANDBY;
1052                         smp_cpu_set_polarization(cpu + i,
1053                                                  POLARIZATION_UNKNOWN);
1054                 }
1055                 topology_expect_change();
1056                 break;
1057         case 1:
1058                 if (pcpu->state != CPU_STATE_STANDBY)
1059                         break;
1060                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1061                 if (rc)
1062                         break;
1063                 for (i = 0; i <= smp_cpu_mtid; i++) {
1064                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1065                                 continue;
1066                         pcpu[i].state = CPU_STATE_CONFIGURED;
1067                         smp_cpu_set_polarization(cpu + i,
1068                                                  POLARIZATION_UNKNOWN);
1069                 }
1070                 topology_expect_change();
1071                 break;
1072         default:
1073                 break;
1074         }
1075 out:
1076         mutex_unlock(&smp_cpu_state_mutex);
1077         cpus_read_unlock();
1078         return rc ? rc : count;
1079 }
1080 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1081
1082 static ssize_t show_cpu_address(struct device *dev,
1083                                 struct device_attribute *attr, char *buf)
1084 {
1085         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1086 }
1087 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1088
1089 static struct attribute *cpu_common_attrs[] = {
1090         &dev_attr_configure.attr,
1091         &dev_attr_address.attr,
1092         NULL,
1093 };
1094
1095 static struct attribute_group cpu_common_attr_group = {
1096         .attrs = cpu_common_attrs,
1097 };
1098
1099 static struct attribute *cpu_online_attrs[] = {
1100         &dev_attr_idle_count.attr,
1101         &dev_attr_idle_time_us.attr,
1102         NULL,
1103 };
1104
1105 static struct attribute_group cpu_online_attr_group = {
1106         .attrs = cpu_online_attrs,
1107 };
1108
1109 static int smp_cpu_online(unsigned int cpu)
1110 {
1111         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1112
1113         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1114 }
1115
1116 static int smp_cpu_pre_down(unsigned int cpu)
1117 {
1118         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1119
1120         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1121         return 0;
1122 }
1123
1124 static int smp_add_present_cpu(int cpu)
1125 {
1126         struct device *s;
1127         struct cpu *c;
1128         int rc;
1129
1130         c = kzalloc(sizeof(*c), GFP_KERNEL);
1131         if (!c)
1132                 return -ENOMEM;
1133         per_cpu(cpu_device, cpu) = c;
1134         s = &c->dev;
1135         c->hotpluggable = !!cpu;
1136         rc = register_cpu(c, cpu);
1137         if (rc)
1138                 goto out;
1139         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1140         if (rc)
1141                 goto out_cpu;
1142         rc = topology_cpu_init(c);
1143         if (rc)
1144                 goto out_topology;
1145         return 0;
1146
1147 out_topology:
1148         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1149 out_cpu:
1150         unregister_cpu(c);
1151 out:
1152         return rc;
1153 }
1154
1155 int __ref smp_rescan_cpus(void)
1156 {
1157         struct sclp_core_info *info;
1158         int nr;
1159
1160         info = kzalloc(sizeof(*info), GFP_KERNEL);
1161         if (!info)
1162                 return -ENOMEM;
1163         smp_get_core_info(info, 0);
1164         nr = __smp_rescan_cpus(info, false);
1165         kfree(info);
1166         if (nr)
1167                 topology_schedule_update();
1168         return 0;
1169 }
1170
1171 static ssize_t __ref rescan_store(struct device *dev,
1172                                   struct device_attribute *attr,
1173                                   const char *buf,
1174                                   size_t count)
1175 {
1176         int rc;
1177
1178         rc = lock_device_hotplug_sysfs();
1179         if (rc)
1180                 return rc;
1181         rc = smp_rescan_cpus();
1182         unlock_device_hotplug();
1183         return rc ? rc : count;
1184 }
1185 static DEVICE_ATTR_WO(rescan);
1186
1187 static int __init s390_smp_init(void)
1188 {
1189         struct device *dev_root;
1190         int cpu, rc = 0;
1191
1192         dev_root = bus_get_dev_root(&cpu_subsys);
1193         if (dev_root) {
1194                 rc = device_create_file(dev_root, &dev_attr_rescan);
1195                 put_device(dev_root);
1196                 if (rc)
1197                         return rc;
1198         }
1199
1200         for_each_present_cpu(cpu) {
1201                 rc = smp_add_present_cpu(cpu);
1202                 if (rc)
1203                         goto out;
1204         }
1205
1206         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1207                                smp_cpu_online, smp_cpu_pre_down);
1208         rc = rc <= 0 ? rc : 0;
1209 out:
1210         return rc;
1211 }
1212 subsys_initcall(s390_smp_init);
This page took 0.101377 seconds and 4 git commands to generate.