]> Git Repo - J-linux.git/blob - arch/s390/kernel/smp.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <[email protected]>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <[email protected]>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/access-regs.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/ctlreg.h>
42 #include <asm/pfault.h>
43 #include <asm/diag.h>
44 #include <asm/facility.h>
45 #include <asm/fpu.h>
46 #include <asm/ipl.h>
47 #include <asm/setup.h>
48 #include <asm/irq.h>
49 #include <asm/tlbflush.h>
50 #include <asm/vtimer.h>
51 #include <asm/abs_lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/stacktrace.h>
59 #include <asm/topology.h>
60 #include <asm/vdso.h>
61 #include <asm/maccess.h>
62 #include "entry.h"
63
64 enum {
65         ec_schedule = 0,
66         ec_call_function_single,
67         ec_stop_cpu,
68         ec_mcck_pending,
69         ec_irq_work,
70 };
71
72 enum {
73         CPU_STATE_STANDBY,
74         CPU_STATE_CONFIGURED,
75 };
76
77 static u8 boot_core_type;
78 DEFINE_PER_CPU(struct pcpu, pcpu_devices);
79 /*
80  * Pointer to the pcpu area of the boot CPU. This is required when a restart
81  * interrupt is triggered on an offline CPU. For that case accessing percpu
82  * data with the common primitives does not work, since the percpu offset is
83  * stored in a non existent lowcore.
84  */
85 static struct pcpu *ipl_pcpu;
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices array.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (per_cpu(pcpu_devices, cpu).address == address)
177                         return &per_cpu(pcpu_devices, cpu);
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199         async_stack = stack_alloc();
200         mcck_stack = stack_alloc();
201         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202                 goto out;
203         memcpy(lc, get_lowcore(), 512);
204         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205         lc->async_stack = async_stack + STACK_INIT_OFFSET;
206         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208         lc->cpu_nr = cpu;
209         lc->spinlock_lockval = arch_spin_lockval(cpu);
210         lc->spinlock_index = 0;
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         lc->preempt_count = PREEMPT_DISABLED;
214         if (nmi_alloc_mcesa(&lc->mcesad))
215                 goto out;
216         if (abs_lowcore_map(cpu, lc, true))
217                 goto out_mcesa;
218         lowcore_ptr[cpu] = lc;
219         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
220         return 0;
221
222 out_mcesa:
223         nmi_free_mcesa(&lc->mcesad);
224 out:
225         stack_free(mcck_stack);
226         stack_free(async_stack);
227         free_pages(nodat_stack, THREAD_SIZE_ORDER);
228         free_pages((unsigned long) lc, LC_ORDER);
229         return -ENOMEM;
230 }
231
232 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
233 {
234         unsigned long async_stack, nodat_stack, mcck_stack;
235         struct lowcore *lc;
236
237         lc = lowcore_ptr[cpu];
238         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
239         async_stack = lc->async_stack - STACK_INIT_OFFSET;
240         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
241         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242         lowcore_ptr[cpu] = NULL;
243         abs_lowcore_unmap(cpu);
244         nmi_free_mcesa(&lc->mcesad);
245         stack_free(async_stack);
246         stack_free(mcck_stack);
247         free_pages(nodat_stack, THREAD_SIZE_ORDER);
248         free_pages((unsigned long) lc, LC_ORDER);
249 }
250
251 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
252 {
253         struct lowcore *lc, *abs_lc;
254
255         lc = lowcore_ptr[cpu];
256         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258         lc->cpu_nr = cpu;
259         lc->pcpu = (unsigned long)pcpu;
260         lc->restart_flags = RESTART_FLAG_CTLREGS;
261         lc->spinlock_lockval = arch_spin_lockval(cpu);
262         lc->spinlock_index = 0;
263         lc->percpu_offset = __per_cpu_offset[cpu];
264         lc->kernel_asce = get_lowcore()->kernel_asce;
265         lc->user_asce = s390_invalid_asce;
266         lc->machine_flags = get_lowcore()->machine_flags;
267         lc->user_timer = lc->system_timer =
268                 lc->steal_timer = lc->avg_steal_timer = 0;
269         abs_lc = get_abs_lowcore();
270         memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
271         put_abs_lowcore(abs_lc);
272         lc->cregs_save_area[1] = lc->kernel_asce;
273         lc->cregs_save_area[7] = lc->user_asce;
274         save_access_regs((unsigned int *) lc->access_regs_save_area);
275         arch_spin_lock_setup(cpu);
276 }
277
278 static void pcpu_attach_task(int cpu, struct task_struct *tsk)
279 {
280         struct lowcore *lc;
281
282         lc = lowcore_ptr[cpu];
283         lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
284         lc->current_task = (unsigned long)tsk;
285         lc->lpp = LPP_MAGIC;
286         lc->current_pid = tsk->pid;
287         lc->user_timer = tsk->thread.user_timer;
288         lc->guest_timer = tsk->thread.guest_timer;
289         lc->system_timer = tsk->thread.system_timer;
290         lc->hardirq_timer = tsk->thread.hardirq_timer;
291         lc->softirq_timer = tsk->thread.softirq_timer;
292         lc->steal_timer = 0;
293 }
294
295 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
296 {
297         struct lowcore *lc;
298
299         lc = lowcore_ptr[cpu];
300         lc->restart_stack = lc->kernel_stack;
301         lc->restart_fn = (unsigned long) func;
302         lc->restart_data = (unsigned long) data;
303         lc->restart_source = -1U;
304         pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
305 }
306
307 typedef void (pcpu_delegate_fn)(void *);
308
309 /*
310  * Call function via PSW restart on pcpu and stop the current cpu.
311  */
312 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
313 {
314         func(data);     /* should not return */
315 }
316
317 static void pcpu_delegate(struct pcpu *pcpu, int cpu,
318                           pcpu_delegate_fn *func,
319                           void *data, unsigned long stack)
320 {
321         struct lowcore *lc, *abs_lc;
322         unsigned int source_cpu;
323
324         lc = lowcore_ptr[cpu];
325         source_cpu = stap();
326
327         if (pcpu->address == source_cpu) {
328                 call_on_stack(2, stack, void, __pcpu_delegate,
329                               pcpu_delegate_fn *, func, void *, data);
330         }
331         /* Stop target cpu (if func returns this stops the current cpu). */
332         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333         pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
334         /* Restart func on the target cpu and stop the current cpu. */
335         if (lc) {
336                 lc->restart_stack = stack;
337                 lc->restart_fn = (unsigned long)func;
338                 lc->restart_data = (unsigned long)data;
339                 lc->restart_source = source_cpu;
340         } else {
341                 abs_lc = get_abs_lowcore();
342                 abs_lc->restart_stack = stack;
343                 abs_lc->restart_fn = (unsigned long)func;
344                 abs_lc->restart_data = (unsigned long)data;
345                 abs_lc->restart_source = source_cpu;
346                 put_abs_lowcore(abs_lc);
347         }
348         asm volatile(
349                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
350                 "       brc     2,0b    # busy, try again\n"
351                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
352                 "       brc     2,1b    # busy, try again\n"
353                 : : "d" (pcpu->address), "d" (source_cpu),
354                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
355                 : "0", "1", "cc");
356         for (;;) ;
357 }
358
359 /*
360  * Enable additional logical cpus for multi-threading.
361  */
362 static int pcpu_set_smt(unsigned int mtid)
363 {
364         int cc;
365
366         if (smp_cpu_mtid == mtid)
367                 return 0;
368         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
369         if (cc == 0) {
370                 smp_cpu_mtid = mtid;
371                 smp_cpu_mt_shift = 0;
372                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
373                         smp_cpu_mt_shift++;
374                 per_cpu(pcpu_devices, 0).address = stap();
375         }
376         return cc;
377 }
378
379 /*
380  * Call function on the ipl CPU.
381  */
382 void smp_call_ipl_cpu(void (*func)(void *), void *data)
383 {
384         struct lowcore *lc = lowcore_ptr[0];
385
386         if (ipl_pcpu->address == stap())
387                 lc = get_lowcore();
388
389         pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
390 }
391
392 int smp_find_processor_id(u16 address)
393 {
394         int cpu;
395
396         for_each_present_cpu(cpu)
397                 if (per_cpu(pcpu_devices, cpu).address == address)
398                         return cpu;
399         return -1;
400 }
401
402 void schedule_mcck_handler(void)
403 {
404         pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
405 }
406
407 bool notrace arch_vcpu_is_preempted(int cpu)
408 {
409         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
410                 return false;
411         if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
412                 return false;
413         return true;
414 }
415 EXPORT_SYMBOL(arch_vcpu_is_preempted);
416
417 void notrace smp_yield_cpu(int cpu)
418 {
419         if (!MACHINE_HAS_DIAG9C)
420                 return;
421         diag_stat_inc_norecursion(DIAG_STAT_X09C);
422         asm volatile("diag %0,0,0x9c"
423                      : : "d" (per_cpu(pcpu_devices, cpu).address));
424 }
425 EXPORT_SYMBOL_GPL(smp_yield_cpu);
426
427 /*
428  * Send cpus emergency shutdown signal. This gives the cpus the
429  * opportunity to complete outstanding interrupts.
430  */
431 void notrace smp_emergency_stop(void)
432 {
433         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
434         static cpumask_t cpumask;
435         u64 end;
436         int cpu;
437
438         arch_spin_lock(&lock);
439         cpumask_copy(&cpumask, cpu_online_mask);
440         cpumask_clear_cpu(smp_processor_id(), &cpumask);
441
442         end = get_tod_clock() + (1000000UL << 12);
443         for_each_cpu(cpu, &cpumask) {
444                 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
445                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
446                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
447                                    0, NULL) == SIGP_CC_BUSY &&
448                        get_tod_clock() < end)
449                         cpu_relax();
450         }
451         while (get_tod_clock() < end) {
452                 for_each_cpu(cpu, &cpumask)
453                         if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
454                                 cpumask_clear_cpu(cpu, &cpumask);
455                 if (cpumask_empty(&cpumask))
456                         break;
457                 cpu_relax();
458         }
459         arch_spin_unlock(&lock);
460 }
461 NOKPROBE_SYMBOL(smp_emergency_stop);
462
463 /*
464  * Stop all cpus but the current one.
465  */
466 void smp_send_stop(void)
467 {
468         struct pcpu *pcpu;
469         int cpu;
470
471         /* Disable all interrupts/machine checks */
472         __load_psw_mask(PSW_KERNEL_BITS);
473         trace_hardirqs_off();
474
475         debug_set_critical();
476
477         if (oops_in_progress)
478                 smp_emergency_stop();
479
480         /* stop all processors */
481         for_each_online_cpu(cpu) {
482                 if (cpu == smp_processor_id())
483                         continue;
484                 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
485                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
486                 while (!pcpu_stopped(pcpu))
487                         cpu_relax();
488         }
489 }
490
491 /*
492  * This is the main routine where commands issued by other
493  * cpus are handled.
494  */
495 static void smp_handle_ext_call(void)
496 {
497         unsigned long bits;
498
499         /* handle bit signal external calls */
500         bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
501         if (test_bit(ec_stop_cpu, &bits))
502                 smp_stop_cpu();
503         if (test_bit(ec_schedule, &bits))
504                 scheduler_ipi();
505         if (test_bit(ec_call_function_single, &bits))
506                 generic_smp_call_function_single_interrupt();
507         if (test_bit(ec_mcck_pending, &bits))
508                 s390_handle_mcck();
509         if (test_bit(ec_irq_work, &bits))
510                 irq_work_run();
511 }
512
513 static void do_ext_call_interrupt(struct ext_code ext_code,
514                                   unsigned int param32, unsigned long param64)
515 {
516         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517         smp_handle_ext_call();
518 }
519
520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522         int cpu;
523
524         for_each_cpu(cpu, mask)
525                 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
526 }
527
528 void arch_send_call_function_single_ipi(int cpu)
529 {
530         pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
531 }
532
533 /*
534  * this function sends a 'reschedule' IPI to another CPU.
535  * it goes straight through and wastes no time serializing
536  * anything. Worst case is that we lose a reschedule ...
537  */
538 void arch_smp_send_reschedule(int cpu)
539 {
540         pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
541 }
542
543 #ifdef CONFIG_IRQ_WORK
544 void arch_irq_work_raise(void)
545 {
546         pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
547 }
548 #endif
549
550 #ifdef CONFIG_CRASH_DUMP
551
552 int smp_store_status(int cpu)
553 {
554         struct lowcore *lc;
555         struct pcpu *pcpu;
556         unsigned long pa;
557
558         pcpu = per_cpu_ptr(&pcpu_devices, cpu);
559         lc = lowcore_ptr[cpu];
560         pa = __pa(&lc->floating_pt_save_area);
561         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
562                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
563                 return -EIO;
564         if (!cpu_has_vx() && !MACHINE_HAS_GS)
565                 return 0;
566         pa = lc->mcesad & MCESA_ORIGIN_MASK;
567         if (MACHINE_HAS_GS)
568                 pa |= lc->mcesad & MCESA_LC_MASK;
569         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
570                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
571                 return -EIO;
572         return 0;
573 }
574
575 /*
576  * Collect CPU state of the previous, crashed system.
577  * There are three cases:
578  * 1) standard zfcp/nvme dump
579  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
580  *    The state for all CPUs except the boot CPU needs to be collected
581  *    with sigp stop-and-store-status. The boot CPU state is located in
582  *    the absolute lowcore of the memory stored in the HSA. The zcore code
583  *    will copy the boot CPU state from the HSA.
584  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
585  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
586  *    The state for all CPUs except the boot CPU needs to be collected
587  *    with sigp stop-and-store-status. The firmware or the boot-loader
588  *    stored the registers of the boot CPU in the absolute lowcore in the
589  *    memory of the old system.
590  * 3) kdump or stand-alone kdump for DASD
591  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
592  *    The state for all CPUs except the boot CPU needs to be collected
593  *    with sigp stop-and-store-status. The kexec code or the boot-loader
594  *    stored the registers of the boot CPU in the memory of the old system.
595  *
596  * Note that the legacy kdump mode where the old kernel stored the CPU states
597  * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
598  * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
599  * of the elfcorehdr= parameter.
600  */
601 static bool dump_available(void)
602 {
603         return oldmem_data.start || is_ipl_type_dump();
604 }
605
606 void __init smp_save_dump_ipl_cpu(void)
607 {
608         struct save_area *sa;
609         void *regs;
610
611         if (!dump_available())
612                 return;
613         sa = save_area_alloc(true);
614         regs = memblock_alloc(512, 8);
615         if (!sa || !regs)
616                 panic("could not allocate memory for boot CPU save area\n");
617         copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
618         save_area_add_regs(sa, regs);
619         memblock_free(regs, 512);
620         if (cpu_has_vx())
621                 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
622 }
623
624 void __init smp_save_dump_secondary_cpus(void)
625 {
626         int addr, boot_cpu_addr, max_cpu_addr;
627         struct save_area *sa;
628         void *page;
629
630         if (!dump_available())
631                 return;
632         /* Allocate a page as dumping area for the store status sigps */
633         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
634         if (!page)
635                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
636                       PAGE_SIZE, 1UL << 31);
637
638         /* Set multi-threading state to the previous system. */
639         pcpu_set_smt(sclp.mtid_prev);
640         boot_cpu_addr = stap();
641         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
642         for (addr = 0; addr <= max_cpu_addr; addr++) {
643                 if (addr == boot_cpu_addr)
644                         continue;
645                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
646                     SIGP_CC_NOT_OPERATIONAL)
647                         continue;
648                 sa = save_area_alloc(false);
649                 if (!sa)
650                         panic("could not allocate memory for save area\n");
651                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
652                 save_area_add_regs(sa, page);
653                 if (cpu_has_vx()) {
654                         __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
655                         save_area_add_vxrs(sa, page);
656                 }
657         }
658         memblock_free(page, PAGE_SIZE);
659         diag_amode31_ops.diag308_reset();
660         pcpu_set_smt(0);
661 }
662 #endif /* CONFIG_CRASH_DUMP */
663
664 void smp_cpu_set_polarization(int cpu, int val)
665 {
666         per_cpu(pcpu_devices, cpu).polarization = val;
667 }
668
669 int smp_cpu_get_polarization(int cpu)
670 {
671         return per_cpu(pcpu_devices, cpu).polarization;
672 }
673
674 void smp_cpu_set_capacity(int cpu, unsigned long val)
675 {
676         per_cpu(pcpu_devices, cpu).capacity = val;
677 }
678
679 unsigned long smp_cpu_get_capacity(int cpu)
680 {
681         return per_cpu(pcpu_devices, cpu).capacity;
682 }
683
684 void smp_set_core_capacity(int cpu, unsigned long val)
685 {
686         int i;
687
688         cpu = smp_get_base_cpu(cpu);
689         for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
690                 smp_cpu_set_capacity(i, val);
691 }
692
693 int smp_cpu_get_cpu_address(int cpu)
694 {
695         return per_cpu(pcpu_devices, cpu).address;
696 }
697
698 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
699 {
700         static int use_sigp_detection;
701         int address;
702
703         if (use_sigp_detection || sclp_get_core_info(info, early)) {
704                 use_sigp_detection = 1;
705                 for (address = 0;
706                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
707                      address += (1U << smp_cpu_mt_shift)) {
708                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
709                             SIGP_CC_NOT_OPERATIONAL)
710                                 continue;
711                         info->core[info->configured].core_id =
712                                 address >> smp_cpu_mt_shift;
713                         info->configured++;
714                 }
715                 info->combined = info->configured;
716         }
717 }
718
719 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
720                         bool configured, bool early)
721 {
722         struct pcpu *pcpu;
723         int cpu, nr, i;
724         u16 address;
725
726         nr = 0;
727         if (sclp.has_core_type && core->type != boot_core_type)
728                 return nr;
729         cpu = cpumask_first(avail);
730         address = core->core_id << smp_cpu_mt_shift;
731         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
732                 if (pcpu_find_address(cpu_present_mask, address + i))
733                         continue;
734                 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
735                 pcpu->address = address + i;
736                 if (configured)
737                         pcpu->state = CPU_STATE_CONFIGURED;
738                 else
739                         pcpu->state = CPU_STATE_STANDBY;
740                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
741                 smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
742                 set_cpu_present(cpu, true);
743                 if (!early && arch_register_cpu(cpu))
744                         set_cpu_present(cpu, false);
745                 else
746                         nr++;
747                 cpumask_clear_cpu(cpu, avail);
748                 cpu = cpumask_next(cpu, avail);
749         }
750         return nr;
751 }
752
753 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
754 {
755         struct sclp_core_entry *core;
756         static cpumask_t avail;
757         bool configured;
758         u16 core_id;
759         int nr, i;
760
761         cpus_read_lock();
762         mutex_lock(&smp_cpu_state_mutex);
763         nr = 0;
764         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
765         /*
766          * Add IPL core first (which got logical CPU number 0) to make sure
767          * that all SMT threads get subsequent logical CPU numbers.
768          */
769         if (early) {
770                 core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
771                 for (i = 0; i < info->configured; i++) {
772                         core = &info->core[i];
773                         if (core->core_id == core_id) {
774                                 nr += smp_add_core(core, &avail, true, early);
775                                 break;
776                         }
777                 }
778         }
779         for (i = 0; i < info->combined; i++) {
780                 configured = i < info->configured;
781                 nr += smp_add_core(&info->core[i], &avail, configured, early);
782         }
783         mutex_unlock(&smp_cpu_state_mutex);
784         cpus_read_unlock();
785         return nr;
786 }
787
788 void __init smp_detect_cpus(void)
789 {
790         unsigned int cpu, mtid, c_cpus, s_cpus;
791         struct sclp_core_info *info;
792         u16 address;
793
794         /* Get CPU information */
795         info = memblock_alloc(sizeof(*info), 8);
796         if (!info)
797                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
798                       __func__, sizeof(*info), 8);
799         smp_get_core_info(info, 1);
800         /* Find boot CPU type */
801         if (sclp.has_core_type) {
802                 address = stap();
803                 for (cpu = 0; cpu < info->combined; cpu++)
804                         if (info->core[cpu].core_id == address) {
805                                 /* The boot cpu dictates the cpu type. */
806                                 boot_core_type = info->core[cpu].type;
807                                 break;
808                         }
809                 if (cpu >= info->combined)
810                         panic("Could not find boot CPU type");
811         }
812
813         /* Set multi-threading state for the current system */
814         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
815         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
816         pcpu_set_smt(mtid);
817
818         /* Print number of CPUs */
819         c_cpus = s_cpus = 0;
820         for (cpu = 0; cpu < info->combined; cpu++) {
821                 if (sclp.has_core_type &&
822                     info->core[cpu].type != boot_core_type)
823                         continue;
824                 if (cpu < info->configured)
825                         c_cpus += smp_cpu_mtid + 1;
826                 else
827                         s_cpus += smp_cpu_mtid + 1;
828         }
829         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
830         memblock_free(info, sizeof(*info));
831 }
832
833 /*
834  *      Activate a secondary processor.
835  */
836 static void smp_start_secondary(void *cpuvoid)
837 {
838         struct lowcore *lc = get_lowcore();
839         int cpu = raw_smp_processor_id();
840
841         lc->last_update_clock = get_tod_clock();
842         lc->restart_stack = (unsigned long)restart_stack;
843         lc->restart_fn = (unsigned long)do_restart;
844         lc->restart_data = 0;
845         lc->restart_source = -1U;
846         lc->restart_flags = 0;
847         restore_access_regs(lc->access_regs_save_area);
848         cpu_init();
849         rcutree_report_cpu_starting(cpu);
850         init_cpu_timer();
851         vtime_init();
852         vdso_getcpu_init();
853         pfault_init();
854         cpumask_set_cpu(cpu, &cpu_setup_mask);
855         update_cpu_masks();
856         notify_cpu_starting(cpu);
857         if (topology_cpu_dedicated(cpu))
858                 set_cpu_flag(CIF_DEDICATED_CPU);
859         else
860                 clear_cpu_flag(CIF_DEDICATED_CPU);
861         set_cpu_online(cpu, true);
862         inc_irq_stat(CPU_RST);
863         local_irq_enable();
864         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
865 }
866
867 /* Upping and downing of CPUs */
868 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
869 {
870         struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
871         int rc;
872
873         if (pcpu->state != CPU_STATE_CONFIGURED)
874                 return -EIO;
875         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
876             SIGP_CC_ORDER_CODE_ACCEPTED)
877                 return -EIO;
878
879         rc = pcpu_alloc_lowcore(pcpu, cpu);
880         if (rc)
881                 return rc;
882         /*
883          * Make sure global control register contents do not change
884          * until new CPU has initialized control registers.
885          */
886         system_ctlreg_lock();
887         pcpu_prepare_secondary(pcpu, cpu);
888         pcpu_attach_task(cpu, tidle);
889         pcpu_start_fn(cpu, smp_start_secondary, NULL);
890         /* Wait until cpu puts itself in the online & active maps */
891         while (!cpu_online(cpu))
892                 cpu_relax();
893         system_ctlreg_unlock();
894         return 0;
895 }
896
897 static unsigned int setup_possible_cpus __initdata;
898
899 static int __init _setup_possible_cpus(char *s)
900 {
901         get_option(&s, &setup_possible_cpus);
902         return 0;
903 }
904 early_param("possible_cpus", _setup_possible_cpus);
905
906 int __cpu_disable(void)
907 {
908         struct ctlreg cregs[16];
909         int cpu;
910
911         /* Handle possible pending IPIs */
912         smp_handle_ext_call();
913         cpu = smp_processor_id();
914         set_cpu_online(cpu, false);
915         cpumask_clear_cpu(cpu, &cpu_setup_mask);
916         update_cpu_masks();
917         /* Disable pseudo page faults on this cpu. */
918         pfault_fini();
919         /* Disable interrupt sources via control register. */
920         __local_ctl_store(0, 15, cregs);
921         cregs[0].val  &= ~0x0000ee70UL; /* disable all external interrupts */
922         cregs[6].val  &= ~0xff000000UL; /* disable all I/O interrupts */
923         cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
924         __local_ctl_load(0, 15, cregs);
925         clear_cpu_flag(CIF_NOHZ_DELAY);
926         return 0;
927 }
928
929 void __cpu_die(unsigned int cpu)
930 {
931         struct pcpu *pcpu;
932
933         /* Wait until target cpu is down */
934         pcpu = per_cpu_ptr(&pcpu_devices, cpu);
935         while (!pcpu_stopped(pcpu))
936                 cpu_relax();
937         pcpu_free_lowcore(pcpu, cpu);
938         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
939         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
940         pcpu->flags = 0;
941 }
942
943 void __noreturn cpu_die(void)
944 {
945         idle_task_exit();
946         pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
947         for (;;) ;
948 }
949
950 void __init smp_fill_possible_mask(void)
951 {
952         unsigned int possible, sclp_max, cpu;
953
954         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
955         sclp_max = min(smp_max_threads, sclp_max);
956         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
957         possible = setup_possible_cpus ?: nr_cpu_ids;
958         possible = min(possible, sclp_max);
959         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
960                 set_cpu_possible(cpu, true);
961 }
962
963 void __init smp_prepare_cpus(unsigned int max_cpus)
964 {
965         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
966                 panic("Couldn't request external interrupt 0x1201");
967         system_ctl_set_bit(0, 14);
968         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
969                 panic("Couldn't request external interrupt 0x1202");
970         system_ctl_set_bit(0, 13);
971         smp_rescan_cpus(true);
972 }
973
974 void __init smp_prepare_boot_cpu(void)
975 {
976         struct lowcore *lc = get_lowcore();
977
978         WARN_ON(!cpu_present(0) || !cpu_online(0));
979         lc->percpu_offset = __per_cpu_offset[0];
980         ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
981         ipl_pcpu->state = CPU_STATE_CONFIGURED;
982         lc->pcpu = (unsigned long)ipl_pcpu;
983         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
984         smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
985 }
986
987 void __init smp_setup_processor_id(void)
988 {
989         struct lowcore *lc = get_lowcore();
990
991         lc->cpu_nr = 0;
992         per_cpu(pcpu_devices, 0).address = stap();
993         lc->spinlock_lockval = arch_spin_lockval(0);
994         lc->spinlock_index = 0;
995 }
996
997 /*
998  * the frequency of the profiling timer can be changed
999  * by writing a multiplier value into /proc/profile.
1000  *
1001  * usually you want to run this on all CPUs ;)
1002  */
1003 int setup_profiling_timer(unsigned int multiplier)
1004 {
1005         return 0;
1006 }
1007
1008 static ssize_t cpu_configure_show(struct device *dev,
1009                                   struct device_attribute *attr, char *buf)
1010 {
1011         ssize_t count;
1012
1013         mutex_lock(&smp_cpu_state_mutex);
1014         count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015         mutex_unlock(&smp_cpu_state_mutex);
1016         return count;
1017 }
1018
1019 static ssize_t cpu_configure_store(struct device *dev,
1020                                    struct device_attribute *attr,
1021                                    const char *buf, size_t count)
1022 {
1023         struct pcpu *pcpu;
1024         int cpu, val, rc, i;
1025         char delim;
1026
1027         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028                 return -EINVAL;
1029         if (val != 0 && val != 1)
1030                 return -EINVAL;
1031         cpus_read_lock();
1032         mutex_lock(&smp_cpu_state_mutex);
1033         rc = -EBUSY;
1034         /* disallow configuration changes of online cpus */
1035         cpu = dev->id;
1036         cpu = smp_get_base_cpu(cpu);
1037         for (i = 0; i <= smp_cpu_mtid; i++)
1038                 if (cpu_online(cpu + i))
1039                         goto out;
1040         pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041         rc = 0;
1042         switch (val) {
1043         case 0:
1044                 if (pcpu->state != CPU_STATE_CONFIGURED)
1045                         break;
1046                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047                 if (rc)
1048                         break;
1049                 for (i = 0; i <= smp_cpu_mtid; i++) {
1050                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051                                 continue;
1052                         per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053                         smp_cpu_set_polarization(cpu + i,
1054                                                  POLARIZATION_UNKNOWN);
1055                 }
1056                 topology_expect_change();
1057                 break;
1058         case 1:
1059                 if (pcpu->state != CPU_STATE_STANDBY)
1060                         break;
1061                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062                 if (rc)
1063                         break;
1064                 for (i = 0; i <= smp_cpu_mtid; i++) {
1065                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066                                 continue;
1067                         per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068                         smp_cpu_set_polarization(cpu + i,
1069                                                  POLARIZATION_UNKNOWN);
1070                 }
1071                 topology_expect_change();
1072                 break;
1073         default:
1074                 break;
1075         }
1076 out:
1077         mutex_unlock(&smp_cpu_state_mutex);
1078         cpus_read_unlock();
1079         return rc ? rc : count;
1080 }
1081 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1082
1083 static ssize_t show_cpu_address(struct device *dev,
1084                                 struct device_attribute *attr, char *buf)
1085 {
1086         return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087 }
1088 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090 static struct attribute *cpu_common_attrs[] = {
1091         &dev_attr_configure.attr,
1092         &dev_attr_address.attr,
1093         NULL,
1094 };
1095
1096 static struct attribute_group cpu_common_attr_group = {
1097         .attrs = cpu_common_attrs,
1098 };
1099
1100 static struct attribute *cpu_online_attrs[] = {
1101         &dev_attr_idle_count.attr,
1102         &dev_attr_idle_time_us.attr,
1103         NULL,
1104 };
1105
1106 static struct attribute_group cpu_online_attr_group = {
1107         .attrs = cpu_online_attrs,
1108 };
1109
1110 static int smp_cpu_online(unsigned int cpu)
1111 {
1112         struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114         return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115 }
1116
1117 static int smp_cpu_pre_down(unsigned int cpu)
1118 {
1119         struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121         sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122         return 0;
1123 }
1124
1125 bool arch_cpu_is_hotpluggable(int cpu)
1126 {
1127         return !!cpu;
1128 }
1129
1130 int arch_register_cpu(int cpu)
1131 {
1132         struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1133         int rc;
1134
1135         c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1136         rc = register_cpu(c, cpu);
1137         if (rc)
1138                 goto out;
1139         rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140         if (rc)
1141                 goto out_cpu;
1142         rc = topology_cpu_init(c);
1143         if (rc)
1144                 goto out_topology;
1145         return 0;
1146
1147 out_topology:
1148         sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149 out_cpu:
1150         unregister_cpu(c);
1151 out:
1152         return rc;
1153 }
1154
1155 int __ref smp_rescan_cpus(bool early)
1156 {
1157         struct sclp_core_info *info;
1158         int nr;
1159
1160         info = kzalloc(sizeof(*info), GFP_KERNEL);
1161         if (!info)
1162                 return -ENOMEM;
1163         smp_get_core_info(info, 0);
1164         nr = __smp_rescan_cpus(info, early);
1165         kfree(info);
1166         if (nr)
1167                 topology_schedule_update();
1168         return 0;
1169 }
1170
1171 static ssize_t __ref rescan_store(struct device *dev,
1172                                   struct device_attribute *attr,
1173                                   const char *buf,
1174                                   size_t count)
1175 {
1176         int rc;
1177
1178         rc = lock_device_hotplug_sysfs();
1179         if (rc)
1180                 return rc;
1181         rc = smp_rescan_cpus(false);
1182         unlock_device_hotplug();
1183         return rc ? rc : count;
1184 }
1185 static DEVICE_ATTR_WO(rescan);
1186
1187 static int __init s390_smp_init(void)
1188 {
1189         struct device *dev_root;
1190         int rc;
1191
1192         dev_root = bus_get_dev_root(&cpu_subsys);
1193         if (dev_root) {
1194                 rc = device_create_file(dev_root, &dev_attr_rescan);
1195                 put_device(dev_root);
1196                 if (rc)
1197                         return rc;
1198         }
1199         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200                                smp_cpu_online, smp_cpu_pre_down);
1201         rc = rc <= 0 ? rc : 0;
1202         return rc;
1203 }
1204 subsys_initcall(s390_smp_init);
This page took 0.094532 seconds and 4 git commands to generate.