1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
106 #include <trace/events/sched.h>
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
112 * Minimum number of threads to boot the kernel
114 #define MIN_THREADS 20
117 * Maximum number of threads
119 #define MAX_THREADS FUTEX_TID_MASK
122 * Protected counters by write_lock_irq(&tasklist_lock)
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
127 static int max_threads; /* tunable limit on nr_threads */
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
145 return lockdep_is_held(&tasklist_lock);
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
150 int nr_processes(void)
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
161 void __weak arch_release_task_struct(struct task_struct *tsk)
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
168 static inline struct task_struct *alloc_task_struct_node(int node)
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 static inline void free_task_struct(struct task_struct *tsk)
175 kmem_cache_free(task_struct_cachep, tsk);
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 #ifdef CONFIG_VMAP_STACK
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 static int free_vm_stack_cache(unsigned int cpu)
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 #ifdef CONFIG_VMAP_STACK
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 s = this_cpu_xchg(cached_stacks[i], NULL);
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 0, node, __builtin_return_address(0));
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
256 tsk->stack_vm_area = find_vm_area(stack);
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
265 tsk->stack = kasan_reset_tag(page_address(page));
272 static inline void free_thread_stack(struct task_struct *tsk)
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
291 vfree_atomic(tsk->stack);
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
299 static struct kmem_cache *thread_stack_cache;
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
311 static void free_thread_stack(struct task_struct *tsk)
313 kmem_cache_free(thread_stack_cache, tsk->stack);
316 void thread_stack_cache_init(void)
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
321 BUG_ON(thread_stack_cache == NULL);
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 struct vm_area_struct *vma;
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
372 void vm_area_free(struct vm_area_struct *vma)
374 kmem_cache_free(vm_area_cachep, vma);
377 static void account_kernel_stack(struct task_struct *tsk, int account)
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
383 /* All stack pages are in the same node. */
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 #ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
407 * If memcg_kmem_charge_page() fails, page->mem_cgroup
408 * pointer is NULL, and memcg_kmem_uncharge_page() in
409 * free_thread_stack() will ignore this page.
411 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
421 static void release_task_stack(struct task_struct *tsk)
423 if (WARN_ON(tsk->state != TASK_DEAD))
424 return; /* Better to leak the stack than to free prematurely */
426 account_kernel_stack(tsk, -1);
427 free_thread_stack(tsk);
429 #ifdef CONFIG_VMAP_STACK
430 tsk->stack_vm_area = NULL;
434 #ifdef CONFIG_THREAD_INFO_IN_TASK
435 void put_task_stack(struct task_struct *tsk)
437 if (refcount_dec_and_test(&tsk->stack_refcount))
438 release_task_stack(tsk);
442 void free_task(struct task_struct *tsk)
446 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 * The task is finally done with both the stack and thread_info,
451 release_task_stack(tsk);
454 * If the task had a separate stack allocation, it should be gone
457 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 rt_mutex_debug_task_free(tsk);
460 ftrace_graph_exit_task(tsk);
461 arch_release_task_struct(tsk);
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
464 free_task_struct(tsk);
466 EXPORT_SYMBOL(free_task);
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
475 unsigned long charge;
478 uprobe_start_dup_mmap();
479 if (mmap_write_lock_killable(oldmm)) {
481 goto fail_uprobe_end;
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
486 * Not linked in yet - no deadlock potential:
488 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
498 rb_link = &mm->mm_rb.rb_node;
501 retval = ksm_fork(mm, oldmm);
504 retval = khugepaged_fork(mm, oldmm);
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
518 * Don't duplicate many vmas if we've been oom-killed (for
521 if (fatal_signal_pending(current)) {
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
532 tmp = vm_area_dup(mpnt);
535 retval = vma_dup_policy(mpnt, tmp);
537 goto fail_nomem_policy;
539 retval = dup_userfaultfd(tmp, &uf);
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
544 * VM_WIPEONFORK gets a clean slate in the child.
545 * Don't prepare anon_vma until fault since we don't
546 * copy page for current vma.
548 tmp->anon_vma = NULL;
549 } else if (anon_vma_fork(tmp, mpnt))
550 goto fail_nomem_anon_vma_fork;
551 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554 struct inode *inode = file_inode(file);
555 struct address_space *mapping = file->f_mapping;
558 if (tmp->vm_flags & VM_DENYWRITE)
559 put_write_access(inode);
560 i_mmap_lock_write(mapping);
561 if (tmp->vm_flags & VM_SHARED)
562 mapping_allow_writable(mapping);
563 flush_dcache_mmap_lock(mapping);
564 /* insert tmp into the share list, just after mpnt */
565 vma_interval_tree_insert_after(tmp, mpnt,
567 flush_dcache_mmap_unlock(mapping);
568 i_mmap_unlock_write(mapping);
572 * Clear hugetlb-related page reserves for children. This only
573 * affects MAP_PRIVATE mappings. Faults generated by the child
574 * are not guaranteed to succeed, even if read-only
576 if (is_vm_hugetlb_page(tmp))
577 reset_vma_resv_huge_pages(tmp);
580 * Link in the new vma and copy the page table entries.
583 pprev = &tmp->vm_next;
587 __vma_link_rb(mm, tmp, rb_link, rb_parent);
588 rb_link = &tmp->vm_rb.rb_right;
589 rb_parent = &tmp->vm_rb;
592 if (!(tmp->vm_flags & VM_WIPEONFORK))
593 retval = copy_page_range(tmp, mpnt);
595 if (tmp->vm_ops && tmp->vm_ops->open)
596 tmp->vm_ops->open(tmp);
601 /* a new mm has just been created */
602 retval = arch_dup_mmap(oldmm, mm);
604 mmap_write_unlock(mm);
606 mmap_write_unlock(oldmm);
607 dup_userfaultfd_complete(&uf);
609 uprobe_end_dup_mmap();
611 fail_nomem_anon_vma_fork:
612 mpol_put(vma_policy(tmp));
617 vm_unacct_memory(charge);
621 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 mm->pgd = pgd_alloc(mm);
624 if (unlikely(!mm->pgd))
629 static inline void mm_free_pgd(struct mm_struct *mm)
631 pgd_free(mm, mm->pgd);
634 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 mmap_write_lock(oldmm);
637 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
638 mmap_write_unlock(oldmm);
641 #define mm_alloc_pgd(mm) (0)
642 #define mm_free_pgd(mm)
643 #endif /* CONFIG_MMU */
645 static void check_mm(struct mm_struct *mm)
649 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
650 "Please make sure 'struct resident_page_types[]' is updated as well");
652 for (i = 0; i < NR_MM_COUNTERS; i++) {
653 long x = atomic_long_read(&mm->rss_stat.count[i]);
656 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
657 mm, resident_page_types[i], x);
660 if (mm_pgtables_bytes(mm))
661 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
662 mm_pgtables_bytes(mm));
664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
665 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
669 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
670 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
677 void __mmdrop(struct mm_struct *mm)
679 BUG_ON(mm == &init_mm);
680 WARN_ON_ONCE(mm == current->mm);
681 WARN_ON_ONCE(mm == current->active_mm);
684 mmu_notifier_subscriptions_destroy(mm);
686 put_user_ns(mm->user_ns);
689 EXPORT_SYMBOL_GPL(__mmdrop);
691 static void mmdrop_async_fn(struct work_struct *work)
693 struct mm_struct *mm;
695 mm = container_of(work, struct mm_struct, async_put_work);
699 static void mmdrop_async(struct mm_struct *mm)
701 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
702 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
703 schedule_work(&mm->async_put_work);
707 static inline void free_signal_struct(struct signal_struct *sig)
709 taskstats_tgid_free(sig);
710 sched_autogroup_exit(sig);
712 * __mmdrop is not safe to call from softirq context on x86 due to
713 * pgd_dtor so postpone it to the async context
716 mmdrop_async(sig->oom_mm);
717 kmem_cache_free(signal_cachep, sig);
720 static inline void put_signal_struct(struct signal_struct *sig)
722 if (refcount_dec_and_test(&sig->sigcnt))
723 free_signal_struct(sig);
726 void __put_task_struct(struct task_struct *tsk)
728 WARN_ON(!tsk->exit_state);
729 WARN_ON(refcount_read(&tsk->usage));
730 WARN_ON(tsk == current);
734 task_numa_free(tsk, true);
735 security_task_free(tsk);
737 delayacct_tsk_free(tsk);
738 put_signal_struct(tsk->signal);
740 if (!profile_handoff_task(tsk))
743 EXPORT_SYMBOL_GPL(__put_task_struct);
745 void __init __weak arch_task_cache_init(void) { }
750 static void set_max_threads(unsigned int max_threads_suggested)
753 unsigned long nr_pages = totalram_pages();
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
760 threads = MAX_THREADS;
762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
763 (u64) THREAD_SIZE * 8UL);
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772 /* Initialized by the architecture: */
773 int arch_task_struct_size __read_mostly;
776 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
777 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 /* Fetch thread_struct whitelist for the architecture. */
780 arch_thread_struct_whitelist(offset, size);
783 * Handle zero-sized whitelist or empty thread_struct, otherwise
784 * adjust offset to position of thread_struct in task_struct.
786 if (unlikely(*size == 0))
789 *offset += offsetof(struct task_struct, thread);
791 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793 void __init fork_init(void)
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 #ifndef ARCH_MIN_TASKALIGN
798 #define ARCH_MIN_TASKALIGN 0
800 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
801 unsigned long useroffset, usersize;
803 /* create a slab on which task_structs can be allocated */
804 task_struct_whitelist(&useroffset, &usersize);
805 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
806 arch_task_struct_size, align,
807 SLAB_PANIC|SLAB_ACCOUNT,
808 useroffset, usersize, NULL);
811 /* do the arch specific task caches init */
812 arch_task_cache_init();
814 set_max_threads(MAX_THREADS);
816 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
818 init_task.signal->rlim[RLIMIT_SIGPENDING] =
819 init_task.signal->rlim[RLIMIT_NPROC];
821 for (i = 0; i < UCOUNT_COUNTS; i++) {
822 init_user_ns.ucount_max[i] = max_threads/2;
825 #ifdef CONFIG_VMAP_STACK
826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 NULL, free_vm_stack_cache);
832 lockdep_init_task(&init_task);
836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 struct task_struct *src)
843 void set_task_stack_end_magic(struct task_struct *tsk)
845 unsigned long *stackend;
847 stackend = end_of_stack(tsk);
848 *stackend = STACK_END_MAGIC; /* for overflow detection */
851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
853 struct task_struct *tsk;
854 unsigned long *stack;
855 struct vm_struct *stack_vm_area __maybe_unused;
858 if (node == NUMA_NO_NODE)
859 node = tsk_fork_get_node(orig);
860 tsk = alloc_task_struct_node(node);
864 stack = alloc_thread_stack_node(tsk, node);
868 if (memcg_charge_kernel_stack(tsk))
871 stack_vm_area = task_stack_vm_area(tsk);
873 err = arch_dup_task_struct(tsk, orig);
876 * arch_dup_task_struct() clobbers the stack-related fields. Make
877 * sure they're properly initialized before using any stack-related
881 #ifdef CONFIG_VMAP_STACK
882 tsk->stack_vm_area = stack_vm_area;
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 refcount_set(&tsk->stack_refcount, 1);
891 err = scs_prepare(tsk, node);
895 #ifdef CONFIG_SECCOMP
897 * We must handle setting up seccomp filters once we're under
898 * the sighand lock in case orig has changed between now and
899 * then. Until then, filter must be NULL to avoid messing up
900 * the usage counts on the error path calling free_task.
902 tsk->seccomp.filter = NULL;
905 setup_thread_stack(tsk, orig);
906 clear_user_return_notifier(tsk);
907 clear_tsk_need_resched(tsk);
908 set_task_stack_end_magic(tsk);
909 clear_syscall_work_syscall_user_dispatch(tsk);
911 #ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
931 account_kernel_stack(tsk, 1);
935 #ifdef CONFIG_FAULT_INJECTION
939 #ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_queue = NULL;
941 tsk->use_memdelay = 0;
945 tsk->active_memcg = NULL;
950 free_thread_stack(tsk);
952 free_task_struct(tsk);
956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
960 static int __init coredump_filter_setup(char *s)
962 default_dump_filter =
963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 MMF_DUMP_FILTER_MASK;
968 __setup("coredump_filter=", coredump_filter_setup);
970 #include <linux/init_task.h>
972 static void mm_init_aio(struct mm_struct *mm)
975 spin_lock_init(&mm->ioctx_lock);
976 mm->ioctx_table = NULL;
980 static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 struct task_struct *p)
985 WRITE_ONCE(mm->owner, NULL);
989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996 static void mm_init_uprobes_state(struct mm_struct *mm)
998 #ifdef CONFIG_UPROBES
999 mm->uprobes_state.xol_area = NULL;
1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 struct user_namespace *user_ns)
1007 mm->mm_rb = RB_ROOT;
1008 mm->vmacache_seqnum = 0;
1009 atomic_set(&mm->mm_users, 1);
1010 atomic_set(&mm->mm_count, 1);
1012 INIT_LIST_HEAD(&mm->mmlist);
1013 mm->core_state = NULL;
1014 mm_pgtables_bytes_init(mm);
1017 atomic_set(&mm->has_pinned, 0);
1018 atomic64_set(&mm->pinned_vm, 0);
1019 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1020 spin_lock_init(&mm->page_table_lock);
1021 spin_lock_init(&mm->arg_lock);
1022 mm_init_cpumask(mm);
1024 mm_init_owner(mm, p);
1025 RCU_INIT_POINTER(mm->exe_file, NULL);
1026 mmu_notifier_subscriptions_init(mm);
1027 init_tlb_flush_pending(mm);
1028 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1029 mm->pmd_huge_pte = NULL;
1031 mm_init_uprobes_state(mm);
1034 mm->flags = current->mm->flags & MMF_INIT_MASK;
1035 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1037 mm->flags = default_dump_filter;
1041 if (mm_alloc_pgd(mm))
1044 if (init_new_context(p, mm))
1045 goto fail_nocontext;
1047 mm->user_ns = get_user_ns(user_ns);
1058 * Allocate and initialize an mm_struct.
1060 struct mm_struct *mm_alloc(void)
1062 struct mm_struct *mm;
1068 memset(mm, 0, sizeof(*mm));
1069 return mm_init(mm, current, current_user_ns());
1072 static inline void __mmput(struct mm_struct *mm)
1074 VM_BUG_ON(atomic_read(&mm->mm_users));
1076 uprobe_clear_state(mm);
1079 khugepaged_exit(mm); /* must run before exit_mmap */
1081 mm_put_huge_zero_page(mm);
1082 set_mm_exe_file(mm, NULL);
1083 if (!list_empty(&mm->mmlist)) {
1084 spin_lock(&mmlist_lock);
1085 list_del(&mm->mmlist);
1086 spin_unlock(&mmlist_lock);
1089 module_put(mm->binfmt->module);
1094 * Decrement the use count and release all resources for an mm.
1096 void mmput(struct mm_struct *mm)
1100 if (atomic_dec_and_test(&mm->mm_users))
1103 EXPORT_SYMBOL_GPL(mmput);
1106 static void mmput_async_fn(struct work_struct *work)
1108 struct mm_struct *mm = container_of(work, struct mm_struct,
1114 void mmput_async(struct mm_struct *mm)
1116 if (atomic_dec_and_test(&mm->mm_users)) {
1117 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1118 schedule_work(&mm->async_put_work);
1124 * set_mm_exe_file - change a reference to the mm's executable file
1126 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1128 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1129 * invocations: in mmput() nobody alive left, in execve task is single
1130 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1131 * mm->exe_file, but does so without using set_mm_exe_file() in order
1132 * to do avoid the need for any locks.
1134 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1136 struct file *old_exe_file;
1139 * It is safe to dereference the exe_file without RCU as
1140 * this function is only called if nobody else can access
1141 * this mm -- see comment above for justification.
1143 old_exe_file = rcu_dereference_raw(mm->exe_file);
1146 get_file(new_exe_file);
1147 rcu_assign_pointer(mm->exe_file, new_exe_file);
1153 * get_mm_exe_file - acquire a reference to the mm's executable file
1155 * Returns %NULL if mm has no associated executable file.
1156 * User must release file via fput().
1158 struct file *get_mm_exe_file(struct mm_struct *mm)
1160 struct file *exe_file;
1163 exe_file = rcu_dereference(mm->exe_file);
1164 if (exe_file && !get_file_rcu(exe_file))
1169 EXPORT_SYMBOL(get_mm_exe_file);
1172 * get_task_exe_file - acquire a reference to the task's executable file
1174 * Returns %NULL if task's mm (if any) has no associated executable file or
1175 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1176 * User must release file via fput().
1178 struct file *get_task_exe_file(struct task_struct *task)
1180 struct file *exe_file = NULL;
1181 struct mm_struct *mm;
1186 if (!(task->flags & PF_KTHREAD))
1187 exe_file = get_mm_exe_file(mm);
1192 EXPORT_SYMBOL(get_task_exe_file);
1195 * get_task_mm - acquire a reference to the task's mm
1197 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1198 * this kernel workthread has transiently adopted a user mm with use_mm,
1199 * to do its AIO) is not set and if so returns a reference to it, after
1200 * bumping up the use count. User must release the mm via mmput()
1201 * after use. Typically used by /proc and ptrace.
1203 struct mm_struct *get_task_mm(struct task_struct *task)
1205 struct mm_struct *mm;
1210 if (task->flags & PF_KTHREAD)
1218 EXPORT_SYMBOL_GPL(get_task_mm);
1220 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1222 struct mm_struct *mm;
1225 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1227 return ERR_PTR(err);
1229 mm = get_task_mm(task);
1230 if (mm && mm != current->mm &&
1231 !ptrace_may_access(task, mode)) {
1233 mm = ERR_PTR(-EACCES);
1235 mutex_unlock(&task->signal->exec_update_mutex);
1240 static void complete_vfork_done(struct task_struct *tsk)
1242 struct completion *vfork;
1245 vfork = tsk->vfork_done;
1246 if (likely(vfork)) {
1247 tsk->vfork_done = NULL;
1253 static int wait_for_vfork_done(struct task_struct *child,
1254 struct completion *vfork)
1258 freezer_do_not_count();
1259 cgroup_enter_frozen();
1260 killed = wait_for_completion_killable(vfork);
1261 cgroup_leave_frozen(false);
1266 child->vfork_done = NULL;
1270 put_task_struct(child);
1274 /* Please note the differences between mmput and mm_release.
1275 * mmput is called whenever we stop holding onto a mm_struct,
1276 * error success whatever.
1278 * mm_release is called after a mm_struct has been removed
1279 * from the current process.
1281 * This difference is important for error handling, when we
1282 * only half set up a mm_struct for a new process and need to restore
1283 * the old one. Because we mmput the new mm_struct before
1284 * restoring the old one. . .
1285 * Eric Biederman 10 January 1998
1287 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1289 uprobe_free_utask(tsk);
1291 /* Get rid of any cached register state */
1292 deactivate_mm(tsk, mm);
1295 * Signal userspace if we're not exiting with a core dump
1296 * because we want to leave the value intact for debugging
1299 if (tsk->clear_child_tid) {
1300 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1301 atomic_read(&mm->mm_users) > 1) {
1303 * We don't check the error code - if userspace has
1304 * not set up a proper pointer then tough luck.
1306 put_user(0, tsk->clear_child_tid);
1307 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1308 1, NULL, NULL, 0, 0);
1310 tsk->clear_child_tid = NULL;
1314 * All done, finally we can wake up parent and return this mm to him.
1315 * Also kthread_stop() uses this completion for synchronization.
1317 if (tsk->vfork_done)
1318 complete_vfork_done(tsk);
1321 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1323 futex_exit_release(tsk);
1324 mm_release(tsk, mm);
1327 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1329 futex_exec_release(tsk);
1330 mm_release(tsk, mm);
1334 * dup_mm() - duplicates an existing mm structure
1335 * @tsk: the task_struct with which the new mm will be associated.
1336 * @oldmm: the mm to duplicate.
1338 * Allocates a new mm structure and duplicates the provided @oldmm structure
1341 * Return: the duplicated mm or NULL on failure.
1343 static struct mm_struct *dup_mm(struct task_struct *tsk,
1344 struct mm_struct *oldmm)
1346 struct mm_struct *mm;
1353 memcpy(mm, oldmm, sizeof(*mm));
1355 if (!mm_init(mm, tsk, mm->user_ns))
1358 err = dup_mmap(mm, oldmm);
1362 mm->hiwater_rss = get_mm_rss(mm);
1363 mm->hiwater_vm = mm->total_vm;
1365 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371 /* don't put binfmt in mmput, we haven't got module yet */
1373 mm_init_owner(mm, NULL);
1380 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1382 struct mm_struct *mm, *oldmm;
1385 tsk->min_flt = tsk->maj_flt = 0;
1386 tsk->nvcsw = tsk->nivcsw = 0;
1387 #ifdef CONFIG_DETECT_HUNG_TASK
1388 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1389 tsk->last_switch_time = 0;
1393 tsk->active_mm = NULL;
1396 * Are we cloning a kernel thread?
1398 * We need to steal a active VM for that..
1400 oldmm = current->mm;
1404 /* initialize the new vmacache entries */
1405 vmacache_flush(tsk);
1407 if (clone_flags & CLONE_VM) {
1414 mm = dup_mm(tsk, current->mm);
1420 tsk->active_mm = mm;
1427 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1429 struct fs_struct *fs = current->fs;
1430 if (clone_flags & CLONE_FS) {
1431 /* tsk->fs is already what we want */
1432 spin_lock(&fs->lock);
1434 spin_unlock(&fs->lock);
1438 spin_unlock(&fs->lock);
1441 tsk->fs = copy_fs_struct(fs);
1447 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1449 struct files_struct *oldf, *newf;
1453 * A background process may not have any files ...
1455 oldf = current->files;
1459 if (clone_flags & CLONE_FILES) {
1460 atomic_inc(&oldf->count);
1464 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1474 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1477 struct io_context *ioc = current->io_context;
1478 struct io_context *new_ioc;
1483 * Share io context with parent, if CLONE_IO is set
1485 if (clone_flags & CLONE_IO) {
1487 tsk->io_context = ioc;
1488 } else if (ioprio_valid(ioc->ioprio)) {
1489 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1490 if (unlikely(!new_ioc))
1493 new_ioc->ioprio = ioc->ioprio;
1494 put_io_context(new_ioc);
1500 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1502 struct sighand_struct *sig;
1504 if (clone_flags & CLONE_SIGHAND) {
1505 refcount_inc(¤t->sighand->count);
1508 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1509 RCU_INIT_POINTER(tsk->sighand, sig);
1513 refcount_set(&sig->count, 1);
1514 spin_lock_irq(¤t->sighand->siglock);
1515 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1516 spin_unlock_irq(¤t->sighand->siglock);
1518 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1519 if (clone_flags & CLONE_CLEAR_SIGHAND)
1520 flush_signal_handlers(tsk, 0);
1525 void __cleanup_sighand(struct sighand_struct *sighand)
1527 if (refcount_dec_and_test(&sighand->count)) {
1528 signalfd_cleanup(sighand);
1530 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1531 * without an RCU grace period, see __lock_task_sighand().
1533 kmem_cache_free(sighand_cachep, sighand);
1538 * Initialize POSIX timer handling for a thread group.
1540 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1542 struct posix_cputimers *pct = &sig->posix_cputimers;
1543 unsigned long cpu_limit;
1545 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1546 posix_cputimers_group_init(pct, cpu_limit);
1549 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1551 struct signal_struct *sig;
1553 if (clone_flags & CLONE_THREAD)
1556 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1561 sig->nr_threads = 1;
1562 atomic_set(&sig->live, 1);
1563 refcount_set(&sig->sigcnt, 1);
1565 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1566 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1567 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1569 init_waitqueue_head(&sig->wait_chldexit);
1570 sig->curr_target = tsk;
1571 init_sigpending(&sig->shared_pending);
1572 INIT_HLIST_HEAD(&sig->multiprocess);
1573 seqlock_init(&sig->stats_lock);
1574 prev_cputime_init(&sig->prev_cputime);
1576 #ifdef CONFIG_POSIX_TIMERS
1577 INIT_LIST_HEAD(&sig->posix_timers);
1578 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1579 sig->real_timer.function = it_real_fn;
1582 task_lock(current->group_leader);
1583 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1584 task_unlock(current->group_leader);
1586 posix_cpu_timers_init_group(sig);
1588 tty_audit_fork(sig);
1589 sched_autogroup_fork(sig);
1591 sig->oom_score_adj = current->signal->oom_score_adj;
1592 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1594 mutex_init(&sig->cred_guard_mutex);
1595 mutex_init(&sig->exec_update_mutex);
1600 static void copy_seccomp(struct task_struct *p)
1602 #ifdef CONFIG_SECCOMP
1604 * Must be called with sighand->lock held, which is common to
1605 * all threads in the group. Holding cred_guard_mutex is not
1606 * needed because this new task is not yet running and cannot
1609 assert_spin_locked(¤t->sighand->siglock);
1611 /* Ref-count the new filter user, and assign it. */
1612 get_seccomp_filter(current);
1613 p->seccomp = current->seccomp;
1616 * Explicitly enable no_new_privs here in case it got set
1617 * between the task_struct being duplicated and holding the
1618 * sighand lock. The seccomp state and nnp must be in sync.
1620 if (task_no_new_privs(current))
1621 task_set_no_new_privs(p);
1624 * If the parent gained a seccomp mode after copying thread
1625 * flags and between before we held the sighand lock, we have
1626 * to manually enable the seccomp thread flag here.
1628 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1629 set_task_syscall_work(p, SECCOMP);
1633 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1635 current->clear_child_tid = tidptr;
1637 return task_pid_vnr(current);
1640 static void rt_mutex_init_task(struct task_struct *p)
1642 raw_spin_lock_init(&p->pi_lock);
1643 #ifdef CONFIG_RT_MUTEXES
1644 p->pi_waiters = RB_ROOT_CACHED;
1645 p->pi_top_task = NULL;
1646 p->pi_blocked_on = NULL;
1650 static inline void init_task_pid_links(struct task_struct *task)
1654 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1655 INIT_HLIST_NODE(&task->pid_links[type]);
1660 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1662 if (type == PIDTYPE_PID)
1663 task->thread_pid = pid;
1665 task->signal->pids[type] = pid;
1668 static inline void rcu_copy_process(struct task_struct *p)
1670 #ifdef CONFIG_PREEMPT_RCU
1671 p->rcu_read_lock_nesting = 0;
1672 p->rcu_read_unlock_special.s = 0;
1673 p->rcu_blocked_node = NULL;
1674 INIT_LIST_HEAD(&p->rcu_node_entry);
1675 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1676 #ifdef CONFIG_TASKS_RCU
1677 p->rcu_tasks_holdout = false;
1678 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1679 p->rcu_tasks_idle_cpu = -1;
1680 #endif /* #ifdef CONFIG_TASKS_RCU */
1681 #ifdef CONFIG_TASKS_TRACE_RCU
1682 p->trc_reader_nesting = 0;
1683 p->trc_reader_special.s = 0;
1684 INIT_LIST_HEAD(&p->trc_holdout_list);
1685 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1688 struct pid *pidfd_pid(const struct file *file)
1690 if (file->f_op == &pidfd_fops)
1691 return file->private_data;
1693 return ERR_PTR(-EBADF);
1696 static int pidfd_release(struct inode *inode, struct file *file)
1698 struct pid *pid = file->private_data;
1700 file->private_data = NULL;
1705 #ifdef CONFIG_PROC_FS
1707 * pidfd_show_fdinfo - print information about a pidfd
1708 * @m: proc fdinfo file
1709 * @f: file referencing a pidfd
1712 * This function will print the pid that a given pidfd refers to in the
1713 * pid namespace of the procfs instance.
1714 * If the pid namespace of the process is not a descendant of the pid
1715 * namespace of the procfs instance 0 will be shown as its pid. This is
1716 * similar to calling getppid() on a process whose parent is outside of
1717 * its pid namespace.
1720 * If pid namespaces are supported then this function will also print
1721 * the pid of a given pidfd refers to for all descendant pid namespaces
1722 * starting from the current pid namespace of the instance, i.e. the
1723 * Pid field and the first entry in the NSpid field will be identical.
1724 * If the pid namespace of the process is not a descendant of the pid
1725 * namespace of the procfs instance 0 will be shown as its first NSpid
1726 * entry and no others will be shown.
1727 * Note that this differs from the Pid and NSpid fields in
1728 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1729 * the pid namespace of the procfs instance. The difference becomes
1730 * obvious when sending around a pidfd between pid namespaces from a
1731 * different branch of the tree, i.e. where no ancestoral relation is
1732 * present between the pid namespaces:
1733 * - create two new pid namespaces ns1 and ns2 in the initial pid
1734 * namespace (also take care to create new mount namespaces in the
1735 * new pid namespace and mount procfs)
1736 * - create a process with a pidfd in ns1
1737 * - send pidfd from ns1 to ns2
1738 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1739 * have exactly one entry, which is 0
1741 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1743 struct pid *pid = f->private_data;
1744 struct pid_namespace *ns;
1747 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1748 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1749 nr = pid_nr_ns(pid, ns);
1752 seq_put_decimal_ll(m, "Pid:\t", nr);
1754 #ifdef CONFIG_PID_NS
1755 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1759 /* If nr is non-zero it means that 'pid' is valid and that
1760 * ns, i.e. the pid namespace associated with the procfs
1761 * instance, is in the pid namespace hierarchy of pid.
1762 * Start at one below the already printed level.
1764 for (i = ns->level + 1; i <= pid->level; i++)
1765 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1773 * Poll support for process exit notification.
1775 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1777 struct pid *pid = file->private_data;
1778 __poll_t poll_flags = 0;
1780 poll_wait(file, &pid->wait_pidfd, pts);
1783 * Inform pollers only when the whole thread group exits.
1784 * If the thread group leader exits before all other threads in the
1785 * group, then poll(2) should block, similar to the wait(2) family.
1787 if (thread_group_exited(pid))
1788 poll_flags = EPOLLIN | EPOLLRDNORM;
1793 const struct file_operations pidfd_fops = {
1794 .release = pidfd_release,
1796 #ifdef CONFIG_PROC_FS
1797 .show_fdinfo = pidfd_show_fdinfo,
1801 static void __delayed_free_task(struct rcu_head *rhp)
1803 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1808 static __always_inline void delayed_free_task(struct task_struct *tsk)
1810 if (IS_ENABLED(CONFIG_MEMCG))
1811 call_rcu(&tsk->rcu, __delayed_free_task);
1816 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1818 /* Skip if kernel thread */
1822 /* Skip if spawning a thread or using vfork */
1823 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1826 /* We need to synchronize with __set_oom_adj */
1827 mutex_lock(&oom_adj_mutex);
1828 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1829 /* Update the values in case they were changed after copy_signal */
1830 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1831 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1832 mutex_unlock(&oom_adj_mutex);
1836 * This creates a new process as a copy of the old one,
1837 * but does not actually start it yet.
1839 * It copies the registers, and all the appropriate
1840 * parts of the process environment (as per the clone
1841 * flags). The actual kick-off is left to the caller.
1843 static __latent_entropy struct task_struct *copy_process(
1847 struct kernel_clone_args *args)
1849 int pidfd = -1, retval;
1850 struct task_struct *p;
1851 struct multiprocess_signals delayed;
1852 struct file *pidfile = NULL;
1853 u64 clone_flags = args->flags;
1854 struct nsproxy *nsp = current->nsproxy;
1857 * Don't allow sharing the root directory with processes in a different
1860 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1861 return ERR_PTR(-EINVAL);
1863 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1864 return ERR_PTR(-EINVAL);
1867 * Thread groups must share signals as well, and detached threads
1868 * can only be started up within the thread group.
1870 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1871 return ERR_PTR(-EINVAL);
1874 * Shared signal handlers imply shared VM. By way of the above,
1875 * thread groups also imply shared VM. Blocking this case allows
1876 * for various simplifications in other code.
1878 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1879 return ERR_PTR(-EINVAL);
1882 * Siblings of global init remain as zombies on exit since they are
1883 * not reaped by their parent (swapper). To solve this and to avoid
1884 * multi-rooted process trees, prevent global and container-inits
1885 * from creating siblings.
1887 if ((clone_flags & CLONE_PARENT) &&
1888 current->signal->flags & SIGNAL_UNKILLABLE)
1889 return ERR_PTR(-EINVAL);
1892 * If the new process will be in a different pid or user namespace
1893 * do not allow it to share a thread group with the forking task.
1895 if (clone_flags & CLONE_THREAD) {
1896 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1897 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1898 return ERR_PTR(-EINVAL);
1902 * If the new process will be in a different time namespace
1903 * do not allow it to share VM or a thread group with the forking task.
1905 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1906 if (nsp->time_ns != nsp->time_ns_for_children)
1907 return ERR_PTR(-EINVAL);
1910 if (clone_flags & CLONE_PIDFD) {
1912 * - CLONE_DETACHED is blocked so that we can potentially
1913 * reuse it later for CLONE_PIDFD.
1914 * - CLONE_THREAD is blocked until someone really needs it.
1916 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1917 return ERR_PTR(-EINVAL);
1921 * Force any signals received before this point to be delivered
1922 * before the fork happens. Collect up signals sent to multiple
1923 * processes that happen during the fork and delay them so that
1924 * they appear to happen after the fork.
1926 sigemptyset(&delayed.signal);
1927 INIT_HLIST_NODE(&delayed.node);
1929 spin_lock_irq(¤t->sighand->siglock);
1930 if (!(clone_flags & CLONE_THREAD))
1931 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1932 recalc_sigpending();
1933 spin_unlock_irq(¤t->sighand->siglock);
1934 retval = -ERESTARTNOINTR;
1935 if (signal_pending(current))
1939 p = dup_task_struct(current, node);
1944 * This _must_ happen before we call free_task(), i.e. before we jump
1945 * to any of the bad_fork_* labels. This is to avoid freeing
1946 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1947 * kernel threads (PF_KTHREAD).
1949 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1951 * Clear TID on mm_release()?
1953 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1955 ftrace_graph_init_task(p);
1957 rt_mutex_init_task(p);
1959 lockdep_assert_irqs_enabled();
1960 #ifdef CONFIG_PROVE_LOCKING
1961 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1964 if (atomic_read(&p->real_cred->user->processes) >=
1965 task_rlimit(p, RLIMIT_NPROC)) {
1966 if (p->real_cred->user != INIT_USER &&
1967 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1970 current->flags &= ~PF_NPROC_EXCEEDED;
1972 retval = copy_creds(p, clone_flags);
1977 * If multiple threads are within copy_process(), then this check
1978 * triggers too late. This doesn't hurt, the check is only there
1979 * to stop root fork bombs.
1982 if (data_race(nr_threads >= max_threads))
1983 goto bad_fork_cleanup_count;
1985 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1986 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1987 p->flags |= PF_FORKNOEXEC;
1988 INIT_LIST_HEAD(&p->children);
1989 INIT_LIST_HEAD(&p->sibling);
1990 rcu_copy_process(p);
1991 p->vfork_done = NULL;
1992 spin_lock_init(&p->alloc_lock);
1994 init_sigpending(&p->pending);
1996 p->utime = p->stime = p->gtime = 0;
1997 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1998 p->utimescaled = p->stimescaled = 0;
2000 prev_cputime_init(&p->prev_cputime);
2002 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2003 seqcount_init(&p->vtime.seqcount);
2004 p->vtime.starttime = 0;
2005 p->vtime.state = VTIME_INACTIVE;
2008 #ifdef CONFIG_IO_URING
2012 #if defined(SPLIT_RSS_COUNTING)
2013 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2016 p->default_timer_slack_ns = current->timer_slack_ns;
2022 task_io_accounting_init(&p->ioac);
2023 acct_clear_integrals(p);
2025 posix_cputimers_init(&p->posix_cputimers);
2027 p->io_context = NULL;
2028 audit_set_context(p, NULL);
2031 p->mempolicy = mpol_dup(p->mempolicy);
2032 if (IS_ERR(p->mempolicy)) {
2033 retval = PTR_ERR(p->mempolicy);
2034 p->mempolicy = NULL;
2035 goto bad_fork_cleanup_threadgroup_lock;
2038 #ifdef CONFIG_CPUSETS
2039 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2040 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2041 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2043 #ifdef CONFIG_TRACE_IRQFLAGS
2044 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2045 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2046 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2047 p->softirqs_enabled = 1;
2048 p->softirq_context = 0;
2051 p->pagefault_disabled = 0;
2053 #ifdef CONFIG_LOCKDEP
2054 lockdep_init_task(p);
2057 #ifdef CONFIG_DEBUG_MUTEXES
2058 p->blocked_on = NULL; /* not blocked yet */
2060 #ifdef CONFIG_BCACHE
2061 p->sequential_io = 0;
2062 p->sequential_io_avg = 0;
2065 /* Perform scheduler related setup. Assign this task to a CPU. */
2066 retval = sched_fork(clone_flags, p);
2068 goto bad_fork_cleanup_policy;
2070 retval = perf_event_init_task(p);
2072 goto bad_fork_cleanup_policy;
2073 retval = audit_alloc(p);
2075 goto bad_fork_cleanup_perf;
2076 /* copy all the process information */
2078 retval = security_task_alloc(p, clone_flags);
2080 goto bad_fork_cleanup_audit;
2081 retval = copy_semundo(clone_flags, p);
2083 goto bad_fork_cleanup_security;
2084 retval = copy_files(clone_flags, p);
2086 goto bad_fork_cleanup_semundo;
2087 retval = copy_fs(clone_flags, p);
2089 goto bad_fork_cleanup_files;
2090 retval = copy_sighand(clone_flags, p);
2092 goto bad_fork_cleanup_fs;
2093 retval = copy_signal(clone_flags, p);
2095 goto bad_fork_cleanup_sighand;
2096 retval = copy_mm(clone_flags, p);
2098 goto bad_fork_cleanup_signal;
2099 retval = copy_namespaces(clone_flags, p);
2101 goto bad_fork_cleanup_mm;
2102 retval = copy_io(clone_flags, p);
2104 goto bad_fork_cleanup_namespaces;
2105 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2107 goto bad_fork_cleanup_io;
2109 stackleak_task_init(p);
2111 if (pid != &init_struct_pid) {
2112 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2113 args->set_tid_size);
2115 retval = PTR_ERR(pid);
2116 goto bad_fork_cleanup_thread;
2121 * This has to happen after we've potentially unshared the file
2122 * descriptor table (so that the pidfd doesn't leak into the child
2123 * if the fd table isn't shared).
2125 if (clone_flags & CLONE_PIDFD) {
2126 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2128 goto bad_fork_free_pid;
2132 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2133 O_RDWR | O_CLOEXEC);
2134 if (IS_ERR(pidfile)) {
2135 put_unused_fd(pidfd);
2136 retval = PTR_ERR(pidfile);
2137 goto bad_fork_free_pid;
2139 get_pid(pid); /* held by pidfile now */
2141 retval = put_user(pidfd, args->pidfd);
2143 goto bad_fork_put_pidfd;
2152 * sigaltstack should be cleared when sharing the same VM
2154 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2158 * Syscall tracing and stepping should be turned off in the
2159 * child regardless of CLONE_PTRACE.
2161 user_disable_single_step(p);
2162 clear_task_syscall_work(p, SYSCALL_TRACE);
2163 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2164 clear_task_syscall_work(p, SYSCALL_EMU);
2166 clear_tsk_latency_tracing(p);
2168 /* ok, now we should be set up.. */
2169 p->pid = pid_nr(pid);
2170 if (clone_flags & CLONE_THREAD) {
2171 p->group_leader = current->group_leader;
2172 p->tgid = current->tgid;
2174 p->group_leader = p;
2179 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2180 p->dirty_paused_when = 0;
2182 p->pdeath_signal = 0;
2183 INIT_LIST_HEAD(&p->thread_group);
2184 p->task_works = NULL;
2187 * Ensure that the cgroup subsystem policies allow the new process to be
2188 * forked. It should be noted that the new process's css_set can be changed
2189 * between here and cgroup_post_fork() if an organisation operation is in
2192 retval = cgroup_can_fork(p, args);
2194 goto bad_fork_put_pidfd;
2197 * From this point on we must avoid any synchronous user-space
2198 * communication until we take the tasklist-lock. In particular, we do
2199 * not want user-space to be able to predict the process start-time by
2200 * stalling fork(2) after we recorded the start_time but before it is
2201 * visible to the system.
2204 p->start_time = ktime_get_ns();
2205 p->start_boottime = ktime_get_boottime_ns();
2208 * Make it visible to the rest of the system, but dont wake it up yet.
2209 * Need tasklist lock for parent etc handling!
2211 write_lock_irq(&tasklist_lock);
2213 /* CLONE_PARENT re-uses the old parent */
2214 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2215 p->real_parent = current->real_parent;
2216 p->parent_exec_id = current->parent_exec_id;
2217 if (clone_flags & CLONE_THREAD)
2218 p->exit_signal = -1;
2220 p->exit_signal = current->group_leader->exit_signal;
2222 p->real_parent = current;
2223 p->parent_exec_id = current->self_exec_id;
2224 p->exit_signal = args->exit_signal;
2227 klp_copy_process(p);
2229 spin_lock(¤t->sighand->siglock);
2232 * Copy seccomp details explicitly here, in case they were changed
2233 * before holding sighand lock.
2237 rseq_fork(p, clone_flags);
2239 /* Don't start children in a dying pid namespace */
2240 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2242 goto bad_fork_cancel_cgroup;
2245 /* Let kill terminate clone/fork in the middle */
2246 if (fatal_signal_pending(current)) {
2248 goto bad_fork_cancel_cgroup;
2251 /* past the last point of failure */
2253 fd_install(pidfd, pidfile);
2255 init_task_pid_links(p);
2256 if (likely(p->pid)) {
2257 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2259 init_task_pid(p, PIDTYPE_PID, pid);
2260 if (thread_group_leader(p)) {
2261 init_task_pid(p, PIDTYPE_TGID, pid);
2262 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2263 init_task_pid(p, PIDTYPE_SID, task_session(current));
2265 if (is_child_reaper(pid)) {
2266 ns_of_pid(pid)->child_reaper = p;
2267 p->signal->flags |= SIGNAL_UNKILLABLE;
2269 p->signal->shared_pending.signal = delayed.signal;
2270 p->signal->tty = tty_kref_get(current->signal->tty);
2272 * Inherit has_child_subreaper flag under the same
2273 * tasklist_lock with adding child to the process tree
2274 * for propagate_has_child_subreaper optimization.
2276 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2277 p->real_parent->signal->is_child_subreaper;
2278 list_add_tail(&p->sibling, &p->real_parent->children);
2279 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2280 attach_pid(p, PIDTYPE_TGID);
2281 attach_pid(p, PIDTYPE_PGID);
2282 attach_pid(p, PIDTYPE_SID);
2283 __this_cpu_inc(process_counts);
2285 current->signal->nr_threads++;
2286 atomic_inc(¤t->signal->live);
2287 refcount_inc(¤t->signal->sigcnt);
2288 task_join_group_stop(p);
2289 list_add_tail_rcu(&p->thread_group,
2290 &p->group_leader->thread_group);
2291 list_add_tail_rcu(&p->thread_node,
2292 &p->signal->thread_head);
2294 attach_pid(p, PIDTYPE_PID);
2298 hlist_del_init(&delayed.node);
2299 spin_unlock(¤t->sighand->siglock);
2300 syscall_tracepoint_update(p);
2301 write_unlock_irq(&tasklist_lock);
2303 proc_fork_connector(p);
2305 cgroup_post_fork(p, args);
2308 trace_task_newtask(p, clone_flags);
2309 uprobe_copy_process(p, clone_flags);
2311 copy_oom_score_adj(clone_flags, p);
2315 bad_fork_cancel_cgroup:
2316 spin_unlock(¤t->sighand->siglock);
2317 write_unlock_irq(&tasklist_lock);
2318 cgroup_cancel_fork(p, args);
2320 if (clone_flags & CLONE_PIDFD) {
2322 put_unused_fd(pidfd);
2325 if (pid != &init_struct_pid)
2327 bad_fork_cleanup_thread:
2329 bad_fork_cleanup_io:
2332 bad_fork_cleanup_namespaces:
2333 exit_task_namespaces(p);
2334 bad_fork_cleanup_mm:
2336 mm_clear_owner(p->mm, p);
2339 bad_fork_cleanup_signal:
2340 if (!(clone_flags & CLONE_THREAD))
2341 free_signal_struct(p->signal);
2342 bad_fork_cleanup_sighand:
2343 __cleanup_sighand(p->sighand);
2344 bad_fork_cleanup_fs:
2345 exit_fs(p); /* blocking */
2346 bad_fork_cleanup_files:
2347 exit_files(p); /* blocking */
2348 bad_fork_cleanup_semundo:
2350 bad_fork_cleanup_security:
2351 security_task_free(p);
2352 bad_fork_cleanup_audit:
2354 bad_fork_cleanup_perf:
2355 perf_event_free_task(p);
2356 bad_fork_cleanup_policy:
2357 lockdep_free_task(p);
2359 mpol_put(p->mempolicy);
2360 bad_fork_cleanup_threadgroup_lock:
2362 delayacct_tsk_free(p);
2363 bad_fork_cleanup_count:
2364 atomic_dec(&p->cred->user->processes);
2367 p->state = TASK_DEAD;
2369 delayed_free_task(p);
2371 spin_lock_irq(¤t->sighand->siglock);
2372 hlist_del_init(&delayed.node);
2373 spin_unlock_irq(¤t->sighand->siglock);
2374 return ERR_PTR(retval);
2377 static inline void init_idle_pids(struct task_struct *idle)
2381 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2382 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2383 init_task_pid(idle, type, &init_struct_pid);
2387 struct task_struct *fork_idle(int cpu)
2389 struct task_struct *task;
2390 struct kernel_clone_args args = {
2394 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2395 if (!IS_ERR(task)) {
2396 init_idle_pids(task);
2397 init_idle(task, cpu);
2403 struct mm_struct *copy_init_mm(void)
2405 return dup_mm(NULL, &init_mm);
2409 * Ok, this is the main fork-routine.
2411 * It copies the process, and if successful kick-starts
2412 * it and waits for it to finish using the VM if required.
2414 * args->exit_signal is expected to be checked for sanity by the caller.
2416 pid_t kernel_clone(struct kernel_clone_args *args)
2418 u64 clone_flags = args->flags;
2419 struct completion vfork;
2421 struct task_struct *p;
2426 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2427 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2428 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2429 * field in struct clone_args and it still doesn't make sense to have
2430 * them both point at the same memory location. Performing this check
2431 * here has the advantage that we don't need to have a separate helper
2432 * to check for legacy clone().
2434 if ((args->flags & CLONE_PIDFD) &&
2435 (args->flags & CLONE_PARENT_SETTID) &&
2436 (args->pidfd == args->parent_tid))
2440 * Determine whether and which event to report to ptracer. When
2441 * called from kernel_thread or CLONE_UNTRACED is explicitly
2442 * requested, no event is reported; otherwise, report if the event
2443 * for the type of forking is enabled.
2445 if (!(clone_flags & CLONE_UNTRACED)) {
2446 if (clone_flags & CLONE_VFORK)
2447 trace = PTRACE_EVENT_VFORK;
2448 else if (args->exit_signal != SIGCHLD)
2449 trace = PTRACE_EVENT_CLONE;
2451 trace = PTRACE_EVENT_FORK;
2453 if (likely(!ptrace_event_enabled(current, trace)))
2457 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2458 add_latent_entropy();
2464 * Do this prior waking up the new thread - the thread pointer
2465 * might get invalid after that point, if the thread exits quickly.
2467 trace_sched_process_fork(current, p);
2469 pid = get_task_pid(p, PIDTYPE_PID);
2472 if (clone_flags & CLONE_PARENT_SETTID)
2473 put_user(nr, args->parent_tid);
2475 if (clone_flags & CLONE_VFORK) {
2476 p->vfork_done = &vfork;
2477 init_completion(&vfork);
2481 wake_up_new_task(p);
2483 /* forking complete and child started to run, tell ptracer */
2484 if (unlikely(trace))
2485 ptrace_event_pid(trace, pid);
2487 if (clone_flags & CLONE_VFORK) {
2488 if (!wait_for_vfork_done(p, &vfork))
2489 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2497 * Create a kernel thread.
2499 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2501 struct kernel_clone_args args = {
2502 .flags = ((lower_32_bits(flags) | CLONE_VM |
2503 CLONE_UNTRACED) & ~CSIGNAL),
2504 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2505 .stack = (unsigned long)fn,
2506 .stack_size = (unsigned long)arg,
2509 return kernel_clone(&args);
2512 #ifdef __ARCH_WANT_SYS_FORK
2513 SYSCALL_DEFINE0(fork)
2516 struct kernel_clone_args args = {
2517 .exit_signal = SIGCHLD,
2520 return kernel_clone(&args);
2522 /* can not support in nommu mode */
2528 #ifdef __ARCH_WANT_SYS_VFORK
2529 SYSCALL_DEFINE0(vfork)
2531 struct kernel_clone_args args = {
2532 .flags = CLONE_VFORK | CLONE_VM,
2533 .exit_signal = SIGCHLD,
2536 return kernel_clone(&args);
2540 #ifdef __ARCH_WANT_SYS_CLONE
2541 #ifdef CONFIG_CLONE_BACKWARDS
2542 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2543 int __user *, parent_tidptr,
2545 int __user *, child_tidptr)
2546 #elif defined(CONFIG_CLONE_BACKWARDS2)
2547 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2548 int __user *, parent_tidptr,
2549 int __user *, child_tidptr,
2551 #elif defined(CONFIG_CLONE_BACKWARDS3)
2552 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2554 int __user *, parent_tidptr,
2555 int __user *, child_tidptr,
2558 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2559 int __user *, parent_tidptr,
2560 int __user *, child_tidptr,
2564 struct kernel_clone_args args = {
2565 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2566 .pidfd = parent_tidptr,
2567 .child_tid = child_tidptr,
2568 .parent_tid = parent_tidptr,
2569 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2574 return kernel_clone(&args);
2578 #ifdef __ARCH_WANT_SYS_CLONE3
2580 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2581 struct clone_args __user *uargs,
2585 struct clone_args args;
2586 pid_t *kset_tid = kargs->set_tid;
2588 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2589 CLONE_ARGS_SIZE_VER0);
2590 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2591 CLONE_ARGS_SIZE_VER1);
2592 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2593 CLONE_ARGS_SIZE_VER2);
2594 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2596 if (unlikely(usize > PAGE_SIZE))
2598 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2601 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2605 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2608 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2611 if (unlikely(args.set_tid && args.set_tid_size == 0))
2615 * Verify that higher 32bits of exit_signal are unset and that
2616 * it is a valid signal
2618 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2619 !valid_signal(args.exit_signal)))
2622 if ((args.flags & CLONE_INTO_CGROUP) &&
2623 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2626 *kargs = (struct kernel_clone_args){
2627 .flags = args.flags,
2628 .pidfd = u64_to_user_ptr(args.pidfd),
2629 .child_tid = u64_to_user_ptr(args.child_tid),
2630 .parent_tid = u64_to_user_ptr(args.parent_tid),
2631 .exit_signal = args.exit_signal,
2632 .stack = args.stack,
2633 .stack_size = args.stack_size,
2635 .set_tid_size = args.set_tid_size,
2636 .cgroup = args.cgroup,
2640 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2641 (kargs->set_tid_size * sizeof(pid_t))))
2644 kargs->set_tid = kset_tid;
2650 * clone3_stack_valid - check and prepare stack
2651 * @kargs: kernel clone args
2653 * Verify that the stack arguments userspace gave us are sane.
2654 * In addition, set the stack direction for userspace since it's easy for us to
2657 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2659 if (kargs->stack == 0) {
2660 if (kargs->stack_size > 0)
2663 if (kargs->stack_size == 0)
2666 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2669 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2670 kargs->stack += kargs->stack_size;
2677 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2679 /* Verify that no unknown flags are passed along. */
2681 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2685 * - make the CLONE_DETACHED bit reuseable for clone3
2686 * - make the CSIGNAL bits reuseable for clone3
2688 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2691 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2692 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2695 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2699 if (!clone3_stack_valid(kargs))
2706 * clone3 - create a new process with specific properties
2707 * @uargs: argument structure
2708 * @size: size of @uargs
2710 * clone3() is the extensible successor to clone()/clone2().
2711 * It takes a struct as argument that is versioned by its size.
2713 * Return: On success, a positive PID for the child process.
2714 * On error, a negative errno number.
2716 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2720 struct kernel_clone_args kargs;
2721 pid_t set_tid[MAX_PID_NS_LEVEL];
2723 kargs.set_tid = set_tid;
2725 err = copy_clone_args_from_user(&kargs, uargs, size);
2729 if (!clone3_args_valid(&kargs))
2732 return kernel_clone(&kargs);
2736 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2738 struct task_struct *leader, *parent, *child;
2741 read_lock(&tasklist_lock);
2742 leader = top = top->group_leader;
2744 for_each_thread(leader, parent) {
2745 list_for_each_entry(child, &parent->children, sibling) {
2746 res = visitor(child, data);
2758 if (leader != top) {
2760 parent = child->real_parent;
2761 leader = parent->group_leader;
2765 read_unlock(&tasklist_lock);
2768 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2769 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2772 static void sighand_ctor(void *data)
2774 struct sighand_struct *sighand = data;
2776 spin_lock_init(&sighand->siglock);
2777 init_waitqueue_head(&sighand->signalfd_wqh);
2780 void __init proc_caches_init(void)
2782 unsigned int mm_size;
2784 sighand_cachep = kmem_cache_create("sighand_cache",
2785 sizeof(struct sighand_struct), 0,
2786 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2787 SLAB_ACCOUNT, sighand_ctor);
2788 signal_cachep = kmem_cache_create("signal_cache",
2789 sizeof(struct signal_struct), 0,
2790 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2792 files_cachep = kmem_cache_create("files_cache",
2793 sizeof(struct files_struct), 0,
2794 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2796 fs_cachep = kmem_cache_create("fs_cache",
2797 sizeof(struct fs_struct), 0,
2798 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2802 * The mm_cpumask is located at the end of mm_struct, and is
2803 * dynamically sized based on the maximum CPU number this system
2804 * can have, taking hotplug into account (nr_cpu_ids).
2806 mm_size = sizeof(struct mm_struct) + cpumask_size();
2808 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2809 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2810 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2811 offsetof(struct mm_struct, saved_auxv),
2812 sizeof_field(struct mm_struct, saved_auxv),
2814 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2816 nsproxy_cache_init();
2820 * Check constraints on flags passed to the unshare system call.
2822 static int check_unshare_flags(unsigned long unshare_flags)
2824 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2825 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2826 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2827 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2831 * Not implemented, but pretend it works if there is nothing
2832 * to unshare. Note that unsharing the address space or the
2833 * signal handlers also need to unshare the signal queues (aka
2836 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2837 if (!thread_group_empty(current))
2840 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2841 if (refcount_read(¤t->sighand->count) > 1)
2844 if (unshare_flags & CLONE_VM) {
2845 if (!current_is_single_threaded())
2853 * Unshare the filesystem structure if it is being shared
2855 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2857 struct fs_struct *fs = current->fs;
2859 if (!(unshare_flags & CLONE_FS) || !fs)
2862 /* don't need lock here; in the worst case we'll do useless copy */
2866 *new_fsp = copy_fs_struct(fs);
2874 * Unshare file descriptor table if it is being shared
2876 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2877 struct files_struct **new_fdp)
2879 struct files_struct *fd = current->files;
2882 if ((unshare_flags & CLONE_FILES) &&
2883 (fd && atomic_read(&fd->count) > 1)) {
2884 *new_fdp = dup_fd(fd, max_fds, &error);
2893 * unshare allows a process to 'unshare' part of the process
2894 * context which was originally shared using clone. copy_*
2895 * functions used by kernel_clone() cannot be used here directly
2896 * because they modify an inactive task_struct that is being
2897 * constructed. Here we are modifying the current, active,
2900 int ksys_unshare(unsigned long unshare_flags)
2902 struct fs_struct *fs, *new_fs = NULL;
2903 struct files_struct *fd, *new_fd = NULL;
2904 struct cred *new_cred = NULL;
2905 struct nsproxy *new_nsproxy = NULL;
2910 * If unsharing a user namespace must also unshare the thread group
2911 * and unshare the filesystem root and working directories.
2913 if (unshare_flags & CLONE_NEWUSER)
2914 unshare_flags |= CLONE_THREAD | CLONE_FS;
2916 * If unsharing vm, must also unshare signal handlers.
2918 if (unshare_flags & CLONE_VM)
2919 unshare_flags |= CLONE_SIGHAND;
2921 * If unsharing a signal handlers, must also unshare the signal queues.
2923 if (unshare_flags & CLONE_SIGHAND)
2924 unshare_flags |= CLONE_THREAD;
2926 * If unsharing namespace, must also unshare filesystem information.
2928 if (unshare_flags & CLONE_NEWNS)
2929 unshare_flags |= CLONE_FS;
2931 err = check_unshare_flags(unshare_flags);
2933 goto bad_unshare_out;
2935 * CLONE_NEWIPC must also detach from the undolist: after switching
2936 * to a new ipc namespace, the semaphore arrays from the old
2937 * namespace are unreachable.
2939 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2941 err = unshare_fs(unshare_flags, &new_fs);
2943 goto bad_unshare_out;
2944 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2946 goto bad_unshare_cleanup_fs;
2947 err = unshare_userns(unshare_flags, &new_cred);
2949 goto bad_unshare_cleanup_fd;
2950 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2953 goto bad_unshare_cleanup_cred;
2955 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2958 * CLONE_SYSVSEM is equivalent to sys_exit().
2962 if (unshare_flags & CLONE_NEWIPC) {
2963 /* Orphan segments in old ns (see sem above). */
2965 shm_init_task(current);
2969 switch_task_namespaces(current, new_nsproxy);
2975 spin_lock(&fs->lock);
2976 current->fs = new_fs;
2981 spin_unlock(&fs->lock);
2985 fd = current->files;
2986 current->files = new_fd;
2990 task_unlock(current);
2993 /* Install the new user namespace */
2994 commit_creds(new_cred);
2999 perf_event_namespaces(current);
3001 bad_unshare_cleanup_cred:
3004 bad_unshare_cleanup_fd:
3006 put_files_struct(new_fd);
3008 bad_unshare_cleanup_fs:
3010 free_fs_struct(new_fs);
3016 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3018 return ksys_unshare(unshare_flags);
3022 * Helper to unshare the files of the current task.
3023 * We don't want to expose copy_files internals to
3024 * the exec layer of the kernel.
3027 int unshare_files(struct files_struct **displaced)
3029 struct task_struct *task = current;
3030 struct files_struct *copy = NULL;
3033 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3034 if (error || !copy) {
3038 *displaced = task->files;
3045 int sysctl_max_threads(struct ctl_table *table, int write,
3046 void *buffer, size_t *lenp, loff_t *ppos)
3050 int threads = max_threads;
3052 int max = MAX_THREADS;
3059 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3063 max_threads = threads;