]> Git Repo - J-linux.git/blob - drivers/spi/spi.c
drivers: remove struct module * setting from struct class
[J-linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field)                         \
121 do {                                                                    \
122         int i;                                                          \
123         ret = 0;                                                        \
124         for_each_possible_cpu(i) {                                      \
125                 const struct spi_statistics *pcpu_stats;                \
126                 u64 inc;                                                \
127                 unsigned int start;                                     \
128                 pcpu_stats = per_cpu_ptr(in, i);                        \
129                 do {                                                    \
130                         start = u64_stats_fetch_begin(          \
131                                         &pcpu_stats->syncp);            \
132                         inc = u64_stats_read(&pcpu_stats->field);       \
133                 } while (u64_stats_fetch_retry(                 \
134                                         &pcpu_stats->syncp, start));    \
135                 ret += inc;                                             \
136         }                                                               \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file)                               \
140 static ssize_t spi_controller_##field##_show(struct device *dev,        \
141                                              struct device_attribute *attr, \
142                                              char *buf)                 \
143 {                                                                       \
144         struct spi_controller *ctlr = container_of(dev,                 \
145                                          struct spi_controller, dev);   \
146         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }                                                                       \
148 static struct device_attribute dev_attr_spi_controller_##field = {      \
149         .attr = { .name = file, .mode = 0444 },                         \
150         .show = spi_controller_##field##_show,                          \
151 };                                                                      \
152 static ssize_t spi_device_##field##_show(struct device *dev,            \
153                                          struct device_attribute *attr, \
154                                         char *buf)                      \
155 {                                                                       \
156         struct spi_device *spi = to_spi_device(dev);                    \
157         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }                                                                       \
159 static struct device_attribute dev_attr_spi_device_##field = {          \
160         .attr = { .name = file, .mode = 0444 },                         \
161         .show = spi_device_##field##_show,                              \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166                                             char *buf)                  \
167 {                                                                       \
168         ssize_t len;                                                    \
169         u64 val;                                                        \
170         spi_pcpu_stats_totalize(val, stat, field);                      \
171         len = sysfs_emit(buf, "%llu\n", val);                           \
172         return len;                                                     \
173 }                                                                       \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field)                                      \
177         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
178                                  field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
194         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
195                                  "transfer_bytes_histo_" number,        \
196                                  transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218         &dev_attr_modalias.attr,
219         &dev_attr_driver_override.attr,
220         NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224         .attrs  = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228         &dev_attr_spi_device_messages.attr,
229         &dev_attr_spi_device_transfers.attr,
230         &dev_attr_spi_device_errors.attr,
231         &dev_attr_spi_device_timedout.attr,
232         &dev_attr_spi_device_spi_sync.attr,
233         &dev_attr_spi_device_spi_sync_immediate.attr,
234         &dev_attr_spi_device_spi_async.attr,
235         &dev_attr_spi_device_bytes.attr,
236         &dev_attr_spi_device_bytes_rx.attr,
237         &dev_attr_spi_device_bytes_tx.attr,
238         &dev_attr_spi_device_transfer_bytes_histo0.attr,
239         &dev_attr_spi_device_transfer_bytes_histo1.attr,
240         &dev_attr_spi_device_transfer_bytes_histo2.attr,
241         &dev_attr_spi_device_transfer_bytes_histo3.attr,
242         &dev_attr_spi_device_transfer_bytes_histo4.attr,
243         &dev_attr_spi_device_transfer_bytes_histo5.attr,
244         &dev_attr_spi_device_transfer_bytes_histo6.attr,
245         &dev_attr_spi_device_transfer_bytes_histo7.attr,
246         &dev_attr_spi_device_transfer_bytes_histo8.attr,
247         &dev_attr_spi_device_transfer_bytes_histo9.attr,
248         &dev_attr_spi_device_transfer_bytes_histo10.attr,
249         &dev_attr_spi_device_transfer_bytes_histo11.attr,
250         &dev_attr_spi_device_transfer_bytes_histo12.attr,
251         &dev_attr_spi_device_transfer_bytes_histo13.attr,
252         &dev_attr_spi_device_transfer_bytes_histo14.attr,
253         &dev_attr_spi_device_transfer_bytes_histo15.attr,
254         &dev_attr_spi_device_transfer_bytes_histo16.attr,
255         &dev_attr_spi_device_transfers_split_maxsize.attr,
256         NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260         .name  = "statistics",
261         .attrs  = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265         &spi_dev_group,
266         &spi_device_statistics_group,
267         NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271         &dev_attr_spi_controller_messages.attr,
272         &dev_attr_spi_controller_transfers.attr,
273         &dev_attr_spi_controller_errors.attr,
274         &dev_attr_spi_controller_timedout.attr,
275         &dev_attr_spi_controller_spi_sync.attr,
276         &dev_attr_spi_controller_spi_sync_immediate.attr,
277         &dev_attr_spi_controller_spi_async.attr,
278         &dev_attr_spi_controller_bytes.attr,
279         &dev_attr_spi_controller_bytes_rx.attr,
280         &dev_attr_spi_controller_bytes_tx.attr,
281         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298         &dev_attr_spi_controller_transfers_split_maxsize.attr,
299         NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303         .name  = "statistics",
304         .attrs  = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308         &spi_controller_statistics_group,
309         NULL,
310 };
311
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313                                               struct spi_transfer *xfer,
314                                               struct spi_controller *ctlr)
315 {
316         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317         struct spi_statistics *stats;
318
319         if (l2len < 0)
320                 l2len = 0;
321
322         get_cpu();
323         stats = this_cpu_ptr(pcpu_stats);
324         u64_stats_update_begin(&stats->syncp);
325
326         u64_stats_inc(&stats->transfers);
327         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329         u64_stats_add(&stats->bytes, xfer->len);
330         if ((xfer->tx_buf) &&
331             (xfer->tx_buf != ctlr->dummy_tx))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if ((xfer->rx_buf) &&
334             (xfer->rx_buf != ctlr->dummy_rx))
335                 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337         u64_stats_update_end(&stats->syncp);
338         put_cpu();
339 }
340
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347         while (id->name[0]) {
348                 if (!strcmp(name, id->name))
349                         return id;
350                 id++;
351         }
352         return NULL;
353 }
354
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359         return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365         const void *match;
366
367         match = device_get_match_data(&sdev->dev);
368         if (match)
369                 return match;
370
371         return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377         const struct spi_device *spi = to_spi_device(dev);
378         const struct spi_driver *sdrv = to_spi_driver(drv);
379
380         /* Check override first, and if set, only use the named driver */
381         if (spi->driver_override)
382                 return strcmp(spi->driver_override, drv->name) == 0;
383
384         /* Attempt an OF style match */
385         if (of_driver_match_device(dev, drv))
386                 return 1;
387
388         /* Then try ACPI */
389         if (acpi_driver_match_device(dev, drv))
390                 return 1;
391
392         if (sdrv->id_table)
393                 return !!spi_match_id(sdrv->id_table, spi->modalias);
394
395         return strcmp(spi->modalias, drv->name) == 0;
396 }
397
398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 {
400         const struct spi_device         *spi = to_spi_device(dev);
401         int rc;
402
403         rc = acpi_device_uevent_modalias(dev, env);
404         if (rc != -ENODEV)
405                 return rc;
406
407         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409
410 static int spi_probe(struct device *dev)
411 {
412         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
413         struct spi_device               *spi = to_spi_device(dev);
414         int ret;
415
416         ret = of_clk_set_defaults(dev->of_node, false);
417         if (ret)
418                 return ret;
419
420         if (dev->of_node) {
421                 spi->irq = of_irq_get(dev->of_node, 0);
422                 if (spi->irq == -EPROBE_DEFER)
423                         return -EPROBE_DEFER;
424                 if (spi->irq < 0)
425                         spi->irq = 0;
426         }
427
428         ret = dev_pm_domain_attach(dev, true);
429         if (ret)
430                 return ret;
431
432         if (sdrv->probe) {
433                 ret = sdrv->probe(spi);
434                 if (ret)
435                         dev_pm_domain_detach(dev, true);
436         }
437
438         return ret;
439 }
440
441 static void spi_remove(struct device *dev)
442 {
443         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
444
445         if (sdrv->remove)
446                 sdrv->remove(to_spi_device(dev));
447
448         dev_pm_domain_detach(dev, true);
449 }
450
451 static void spi_shutdown(struct device *dev)
452 {
453         if (dev->driver) {
454                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
455
456                 if (sdrv->shutdown)
457                         sdrv->shutdown(to_spi_device(dev));
458         }
459 }
460
461 struct bus_type spi_bus_type = {
462         .name           = "spi",
463         .dev_groups     = spi_dev_groups,
464         .match          = spi_match_device,
465         .uevent         = spi_uevent,
466         .probe          = spi_probe,
467         .remove         = spi_remove,
468         .shutdown       = spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471
472 /**
473  * __spi_register_driver - register a SPI driver
474  * @owner: owner module of the driver to register
475  * @sdrv: the driver to register
476  * Context: can sleep
477  *
478  * Return: zero on success, else a negative error code.
479  */
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482         sdrv->driver.owner = owner;
483         sdrv->driver.bus = &spi_bus_type;
484
485         /*
486          * For Really Good Reasons we use spi: modaliases not of:
487          * modaliases for DT so module autoloading won't work if we
488          * don't have a spi_device_id as well as a compatible string.
489          */
490         if (sdrv->driver.of_match_table) {
491                 const struct of_device_id *of_id;
492
493                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494                      of_id++) {
495                         const char *of_name;
496
497                         /* Strip off any vendor prefix */
498                         of_name = strnchr(of_id->compatible,
499                                           sizeof(of_id->compatible), ',');
500                         if (of_name)
501                                 of_name++;
502                         else
503                                 of_name = of_id->compatible;
504
505                         if (sdrv->id_table) {
506                                 const struct spi_device_id *spi_id;
507
508                                 spi_id = spi_match_id(sdrv->id_table, of_name);
509                                 if (spi_id)
510                                         continue;
511                         } else {
512                                 if (strcmp(sdrv->driver.name, of_name) == 0)
513                                         continue;
514                         }
515
516                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
517                                 sdrv->driver.name, of_id->compatible);
518                 }
519         }
520
521         return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524
525 /*-------------------------------------------------------------------------*/
526
527 /*
528  * SPI devices should normally not be created by SPI device drivers; that
529  * would make them board-specific.  Similarly with SPI controller drivers.
530  * Device registration normally goes into like arch/.../mach.../board-YYY.c
531  * with other readonly (flashable) information about mainboard devices.
532  */
533
534 struct boardinfo {
535         struct list_head        list;
536         struct spi_board_info   board_info;
537 };
538
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541
542 /*
543  * Used to protect add/del operation for board_info list and
544  * spi_controller list, and their matching process also used
545  * to protect object of type struct idr.
546  */
547 static DEFINE_MUTEX(board_lock);
548
549 /**
550  * spi_alloc_device - Allocate a new SPI device
551  * @ctlr: Controller to which device is connected
552  * Context: can sleep
553  *
554  * Allows a driver to allocate and initialize a spi_device without
555  * registering it immediately.  This allows a driver to directly
556  * fill the spi_device with device parameters before calling
557  * spi_add_device() on it.
558  *
559  * Caller is responsible to call spi_add_device() on the returned
560  * spi_device structure to add it to the SPI controller.  If the caller
561  * needs to discard the spi_device without adding it, then it should
562  * call spi_dev_put() on it.
563  *
564  * Return: a pointer to the new device, or NULL.
565  */
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568         struct spi_device       *spi;
569
570         if (!spi_controller_get(ctlr))
571                 return NULL;
572
573         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574         if (!spi) {
575                 spi_controller_put(ctlr);
576                 return NULL;
577         }
578
579         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580         if (!spi->pcpu_statistics) {
581                 kfree(spi);
582                 spi_controller_put(ctlr);
583                 return NULL;
584         }
585
586         spi->master = spi->controller = ctlr;
587         spi->dev.parent = &ctlr->dev;
588         spi->dev.bus = &spi_bus_type;
589         spi->dev.release = spidev_release;
590         spi->mode = ctlr->buswidth_override_bits;
591
592         device_initialize(&spi->dev);
593         return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596
597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600
601         if (adev) {
602                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603                 return;
604         }
605
606         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607                      spi_get_chipselect(spi, 0));
608 }
609
610 static int spi_dev_check(struct device *dev, void *data)
611 {
612         struct spi_device *spi = to_spi_device(dev);
613         struct spi_device *new_spi = data;
614
615         if (spi->controller == new_spi->controller &&
616             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
617                 return -EBUSY;
618         return 0;
619 }
620
621 static void spi_cleanup(struct spi_device *spi)
622 {
623         if (spi->controller->cleanup)
624                 spi->controller->cleanup(spi);
625 }
626
627 static int __spi_add_device(struct spi_device *spi)
628 {
629         struct spi_controller *ctlr = spi->controller;
630         struct device *dev = ctlr->dev.parent;
631         int status;
632
633         /*
634          * We need to make sure there's no other device with this
635          * chipselect **BEFORE** we call setup(), else we'll trash
636          * its configuration.
637          */
638         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639         if (status) {
640                 dev_err(dev, "chipselect %d already in use\n",
641                                 spi_get_chipselect(spi, 0));
642                 return status;
643         }
644
645         /* Controller may unregister concurrently */
646         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647             !device_is_registered(&ctlr->dev)) {
648                 return -ENODEV;
649         }
650
651         if (ctlr->cs_gpiods)
652                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
653
654         /*
655          * Drivers may modify this initial i/o setup, but will
656          * normally rely on the device being setup.  Devices
657          * using SPI_CS_HIGH can't coexist well otherwise...
658          */
659         status = spi_setup(spi);
660         if (status < 0) {
661                 dev_err(dev, "can't setup %s, status %d\n",
662                                 dev_name(&spi->dev), status);
663                 return status;
664         }
665
666         /* Device may be bound to an active driver when this returns */
667         status = device_add(&spi->dev);
668         if (status < 0) {
669                 dev_err(dev, "can't add %s, status %d\n",
670                                 dev_name(&spi->dev), status);
671                 spi_cleanup(spi);
672         } else {
673                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674         }
675
676         return status;
677 }
678
679 /**
680  * spi_add_device - Add spi_device allocated with spi_alloc_device
681  * @spi: spi_device to register
682  *
683  * Companion function to spi_alloc_device.  Devices allocated with
684  * spi_alloc_device can be added onto the spi bus with this function.
685  *
686  * Return: 0 on success; negative errno on failure
687  */
688 int spi_add_device(struct spi_device *spi)
689 {
690         struct spi_controller *ctlr = spi->controller;
691         struct device *dev = ctlr->dev.parent;
692         int status;
693
694         /* Chipselects are numbered 0..max; validate. */
695         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
696                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
697                         ctlr->num_chipselect);
698                 return -EINVAL;
699         }
700
701         /* Set the bus ID string */
702         spi_dev_set_name(spi);
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713         struct spi_controller *ctlr = spi->controller;
714         struct device *dev = ctlr->dev.parent;
715
716         /* Chipselects are numbered 0..max; validate. */
717         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
718                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
719                         ctlr->num_chipselect);
720                 return -EINVAL;
721         }
722
723         /* Set the bus ID string */
724         spi_dev_set_name(spi);
725
726         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727         return __spi_add_device(spi);
728 }
729
730 /**
731  * spi_new_device - instantiate one new SPI device
732  * @ctlr: Controller to which device is connected
733  * @chip: Describes the SPI device
734  * Context: can sleep
735  *
736  * On typical mainboards, this is purely internal; and it's not needed
737  * after board init creates the hard-wired devices.  Some development
738  * platforms may not be able to use spi_register_board_info though, and
739  * this is exported so that for example a USB or parport based adapter
740  * driver could add devices (which it would learn about out-of-band).
741  *
742  * Return: the new device, or NULL.
743  */
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745                                   struct spi_board_info *chip)
746 {
747         struct spi_device       *proxy;
748         int                     status;
749
750         /*
751          * NOTE:  caller did any chip->bus_num checks necessary.
752          *
753          * Also, unless we change the return value convention to use
754          * error-or-pointer (not NULL-or-pointer), troubleshootability
755          * suggests syslogged diagnostics are best here (ugh).
756          */
757
758         proxy = spi_alloc_device(ctlr);
759         if (!proxy)
760                 return NULL;
761
762         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763
764         spi_set_chipselect(proxy, 0, chip->chip_select);
765         proxy->max_speed_hz = chip->max_speed_hz;
766         proxy->mode = chip->mode;
767         proxy->irq = chip->irq;
768         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769         proxy->dev.platform_data = (void *) chip->platform_data;
770         proxy->controller_data = chip->controller_data;
771         proxy->controller_state = NULL;
772
773         if (chip->swnode) {
774                 status = device_add_software_node(&proxy->dev, chip->swnode);
775                 if (status) {
776                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777                                 chip->modalias, status);
778                         goto err_dev_put;
779                 }
780         }
781
782         status = spi_add_device(proxy);
783         if (status < 0)
784                 goto err_dev_put;
785
786         return proxy;
787
788 err_dev_put:
789         device_remove_software_node(&proxy->dev);
790         spi_dev_put(proxy);
791         return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794
795 /**
796  * spi_unregister_device - unregister a single SPI device
797  * @spi: spi_device to unregister
798  *
799  * Start making the passed SPI device vanish. Normally this would be handled
800  * by spi_unregister_controller().
801  */
802 void spi_unregister_device(struct spi_device *spi)
803 {
804         if (!spi)
805                 return;
806
807         if (spi->dev.of_node) {
808                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809                 of_node_put(spi->dev.of_node);
810         }
811         if (ACPI_COMPANION(&spi->dev))
812                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813         device_remove_software_node(&spi->dev);
814         device_del(&spi->dev);
815         spi_cleanup(spi);
816         put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821                                               struct spi_board_info *bi)
822 {
823         struct spi_device *dev;
824
825         if (ctlr->bus_num != bi->bus_num)
826                 return;
827
828         dev = spi_new_device(ctlr, bi);
829         if (!dev)
830                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831                         bi->modalias);
832 }
833
834 /**
835  * spi_register_board_info - register SPI devices for a given board
836  * @info: array of chip descriptors
837  * @n: how many descriptors are provided
838  * Context: can sleep
839  *
840  * Board-specific early init code calls this (probably during arch_initcall)
841  * with segments of the SPI device table.  Any device nodes are created later,
842  * after the relevant parent SPI controller (bus_num) is defined.  We keep
843  * this table of devices forever, so that reloading a controller driver will
844  * not make Linux forget about these hard-wired devices.
845  *
846  * Other code can also call this, e.g. a particular add-on board might provide
847  * SPI devices through its expansion connector, so code initializing that board
848  * would naturally declare its SPI devices.
849  *
850  * The board info passed can safely be __initdata ... but be careful of
851  * any embedded pointers (platform_data, etc), they're copied as-is.
852  *
853  * Return: zero on success, else a negative error code.
854  */
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857         struct boardinfo *bi;
858         int i;
859
860         if (!n)
861                 return 0;
862
863         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864         if (!bi)
865                 return -ENOMEM;
866
867         for (i = 0; i < n; i++, bi++, info++) {
868                 struct spi_controller *ctlr;
869
870                 memcpy(&bi->board_info, info, sizeof(*info));
871
872                 mutex_lock(&board_lock);
873                 list_add_tail(&bi->list, &board_list);
874                 list_for_each_entry(ctlr, &spi_controller_list, list)
875                         spi_match_controller_to_boardinfo(ctlr,
876                                                           &bi->board_info);
877                 mutex_unlock(&board_lock);
878         }
879
880         return 0;
881 }
882
883 /*-------------------------------------------------------------------------*/
884
885 /* Core methods for SPI resource management */
886
887 /**
888  * spi_res_alloc - allocate a spi resource that is life-cycle managed
889  *                 during the processing of a spi_message while using
890  *                 spi_transfer_one
891  * @spi:     the spi device for which we allocate memory
892  * @release: the release code to execute for this resource
893  * @size:    size to alloc and return
894  * @gfp:     GFP allocation flags
895  *
896  * Return: the pointer to the allocated data
897  *
898  * This may get enhanced in the future to allocate from a memory pool
899  * of the @spi_device or @spi_controller to avoid repeated allocations.
900  */
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902                            size_t size, gfp_t gfp)
903 {
904         struct spi_res *sres;
905
906         sres = kzalloc(sizeof(*sres) + size, gfp);
907         if (!sres)
908                 return NULL;
909
910         INIT_LIST_HEAD(&sres->entry);
911         sres->release = release;
912
913         return sres->data;
914 }
915
916 /**
917  * spi_res_free - free an spi resource
918  * @res: pointer to the custom data of a resource
919  */
920 static void spi_res_free(void *res)
921 {
922         struct spi_res *sres = container_of(res, struct spi_res, data);
923
924         if (!res)
925                 return;
926
927         WARN_ON(!list_empty(&sres->entry));
928         kfree(sres);
929 }
930
931 /**
932  * spi_res_add - add a spi_res to the spi_message
933  * @message: the spi message
934  * @res:     the spi_resource
935  */
936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938         struct spi_res *sres = container_of(res, struct spi_res, data);
939
940         WARN_ON(!list_empty(&sres->entry));
941         list_add_tail(&sres->entry, &message->resources);
942 }
943
944 /**
945  * spi_res_release - release all spi resources for this message
946  * @ctlr:  the @spi_controller
947  * @message: the @spi_message
948  */
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951         struct spi_res *res, *tmp;
952
953         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954                 if (res->release)
955                         res->release(ctlr, message, res->data);
956
957                 list_del(&res->entry);
958
959                 kfree(res);
960         }
961 }
962
963 /*-------------------------------------------------------------------------*/
964
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967         bool activate = enable;
968
969         /*
970          * Avoid calling into the driver (or doing delays) if the chip select
971          * isn't actually changing from the last time this was called.
972          */
973         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
974                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
975             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976                 return;
977
978         trace_spi_set_cs(spi, activate);
979
980         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
981         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982
983         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
984                 spi_delay_exec(&spi->cs_hold, NULL);
985
986         if (spi->mode & SPI_CS_HIGH)
987                 enable = !enable;
988
989         if (spi_get_csgpiod(spi, 0)) {
990                 if (!(spi->mode & SPI_NO_CS)) {
991                         /*
992                          * Historically ACPI has no means of the GPIO polarity and
993                          * thus the SPISerialBus() resource defines it on the per-chip
994                          * basis. In order to avoid a chain of negations, the GPIO
995                          * polarity is considered being Active High. Even for the cases
996                          * when _DSD() is involved (in the updated versions of ACPI)
997                          * the GPIO CS polarity must be defined Active High to avoid
998                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
999                          * into account.
1000                          */
1001                         if (has_acpi_companion(&spi->dev))
1002                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1003                         else
1004                                 /* Polarity handled by GPIO library */
1005                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1006                 }
1007                 /* Some SPI masters need both GPIO CS & slave_select */
1008                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1009                     spi->controller->set_cs)
1010                         spi->controller->set_cs(spi, !enable);
1011         } else if (spi->controller->set_cs) {
1012                 spi->controller->set_cs(spi, !enable);
1013         }
1014
1015         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1016                 if (activate)
1017                         spi_delay_exec(&spi->cs_setup, NULL);
1018                 else
1019                         spi_delay_exec(&spi->cs_inactive, NULL);
1020         }
1021 }
1022
1023 #ifdef CONFIG_HAS_DMA
1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1025                              struct sg_table *sgt, void *buf, size_t len,
1026                              enum dma_data_direction dir, unsigned long attrs)
1027 {
1028         const bool vmalloced_buf = is_vmalloc_addr(buf);
1029         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1030 #ifdef CONFIG_HIGHMEM
1031         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1032                                 (unsigned long)buf < (PKMAP_BASE +
1033                                         (LAST_PKMAP * PAGE_SIZE)));
1034 #else
1035         const bool kmap_buf = false;
1036 #endif
1037         int desc_len;
1038         int sgs;
1039         struct page *vm_page;
1040         struct scatterlist *sg;
1041         void *sg_buf;
1042         size_t min;
1043         int i, ret;
1044
1045         if (vmalloced_buf || kmap_buf) {
1046                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1047                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1048         } else if (virt_addr_valid(buf)) {
1049                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1050                 sgs = DIV_ROUND_UP(len, desc_len);
1051         } else {
1052                 return -EINVAL;
1053         }
1054
1055         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1056         if (ret != 0)
1057                 return ret;
1058
1059         sg = &sgt->sgl[0];
1060         for (i = 0; i < sgs; i++) {
1061
1062                 if (vmalloced_buf || kmap_buf) {
1063                         /*
1064                          * Next scatterlist entry size is the minimum between
1065                          * the desc_len and the remaining buffer length that
1066                          * fits in a page.
1067                          */
1068                         min = min_t(size_t, desc_len,
1069                                     min_t(size_t, len,
1070                                           PAGE_SIZE - offset_in_page(buf)));
1071                         if (vmalloced_buf)
1072                                 vm_page = vmalloc_to_page(buf);
1073                         else
1074                                 vm_page = kmap_to_page(buf);
1075                         if (!vm_page) {
1076                                 sg_free_table(sgt);
1077                                 return -ENOMEM;
1078                         }
1079                         sg_set_page(sg, vm_page,
1080                                     min, offset_in_page(buf));
1081                 } else {
1082                         min = min_t(size_t, len, desc_len);
1083                         sg_buf = buf;
1084                         sg_set_buf(sg, sg_buf, min);
1085                 }
1086
1087                 buf += min;
1088                 len -= min;
1089                 sg = sg_next(sg);
1090         }
1091
1092         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1093         if (ret < 0) {
1094                 sg_free_table(sgt);
1095                 return ret;
1096         }
1097
1098         return 0;
1099 }
1100
1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1102                 struct sg_table *sgt, void *buf, size_t len,
1103                 enum dma_data_direction dir)
1104 {
1105         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1106 }
1107
1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1109                                 struct device *dev, struct sg_table *sgt,
1110                                 enum dma_data_direction dir,
1111                                 unsigned long attrs)
1112 {
1113         if (sgt->orig_nents) {
1114                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1115                 sg_free_table(sgt);
1116                 sgt->orig_nents = 0;
1117                 sgt->nents = 0;
1118         }
1119 }
1120
1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1122                    struct sg_table *sgt, enum dma_data_direction dir)
1123 {
1124         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1125 }
1126
1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1128 {
1129         struct device *tx_dev, *rx_dev;
1130         struct spi_transfer *xfer;
1131         int ret;
1132
1133         if (!ctlr->can_dma)
1134                 return 0;
1135
1136         if (ctlr->dma_tx)
1137                 tx_dev = ctlr->dma_tx->device->dev;
1138         else if (ctlr->dma_map_dev)
1139                 tx_dev = ctlr->dma_map_dev;
1140         else
1141                 tx_dev = ctlr->dev.parent;
1142
1143         if (ctlr->dma_rx)
1144                 rx_dev = ctlr->dma_rx->device->dev;
1145         else if (ctlr->dma_map_dev)
1146                 rx_dev = ctlr->dma_map_dev;
1147         else
1148                 rx_dev = ctlr->dev.parent;
1149
1150         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1151                 /* The sync is done before each transfer. */
1152                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1153
1154                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1155                         continue;
1156
1157                 if (xfer->tx_buf != NULL) {
1158                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1159                                                 (void *)xfer->tx_buf,
1160                                                 xfer->len, DMA_TO_DEVICE,
1161                                                 attrs);
1162                         if (ret != 0)
1163                                 return ret;
1164                 }
1165
1166                 if (xfer->rx_buf != NULL) {
1167                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1168                                                 xfer->rx_buf, xfer->len,
1169                                                 DMA_FROM_DEVICE, attrs);
1170                         if (ret != 0) {
1171                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1172                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1173                                                 attrs);
1174
1175                                 return ret;
1176                         }
1177                 }
1178         }
1179
1180         ctlr->cur_rx_dma_dev = rx_dev;
1181         ctlr->cur_tx_dma_dev = tx_dev;
1182         ctlr->cur_msg_mapped = true;
1183
1184         return 0;
1185 }
1186
1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1188 {
1189         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1190         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1191         struct spi_transfer *xfer;
1192
1193         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1194                 return 0;
1195
1196         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1197                 /* The sync has already been done after each transfer. */
1198                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1199
1200                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1201                         continue;
1202
1203                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1204                                     DMA_FROM_DEVICE, attrs);
1205                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1206                                     DMA_TO_DEVICE, attrs);
1207         }
1208
1209         ctlr->cur_msg_mapped = false;
1210
1211         return 0;
1212 }
1213
1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1215                                     struct spi_transfer *xfer)
1216 {
1217         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1219
1220         if (!ctlr->cur_msg_mapped)
1221                 return;
1222
1223         if (xfer->tx_sg.orig_nents)
1224                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1225         if (xfer->rx_sg.orig_nents)
1226                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1227 }
1228
1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1230                                  struct spi_transfer *xfer)
1231 {
1232         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1233         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1234
1235         if (!ctlr->cur_msg_mapped)
1236                 return;
1237
1238         if (xfer->rx_sg.orig_nents)
1239                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1240         if (xfer->tx_sg.orig_nents)
1241                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1242 }
1243 #else /* !CONFIG_HAS_DMA */
1244 static inline int __spi_map_msg(struct spi_controller *ctlr,
1245                                 struct spi_message *msg)
1246 {
1247         return 0;
1248 }
1249
1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1251                                   struct spi_message *msg)
1252 {
1253         return 0;
1254 }
1255
1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1257                                     struct spi_transfer *xfer)
1258 {
1259 }
1260
1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1262                                  struct spi_transfer *xfer)
1263 {
1264 }
1265 #endif /* !CONFIG_HAS_DMA */
1266
1267 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1268                                 struct spi_message *msg)
1269 {
1270         struct spi_transfer *xfer;
1271
1272         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1273                 /*
1274                  * Restore the original value of tx_buf or rx_buf if they are
1275                  * NULL.
1276                  */
1277                 if (xfer->tx_buf == ctlr->dummy_tx)
1278                         xfer->tx_buf = NULL;
1279                 if (xfer->rx_buf == ctlr->dummy_rx)
1280                         xfer->rx_buf = NULL;
1281         }
1282
1283         return __spi_unmap_msg(ctlr, msg);
1284 }
1285
1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287 {
1288         struct spi_transfer *xfer;
1289         void *tmp;
1290         unsigned int max_tx, max_rx;
1291
1292         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1293                 && !(msg->spi->mode & SPI_3WIRE)) {
1294                 max_tx = 0;
1295                 max_rx = 0;
1296
1297                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1299                             !xfer->tx_buf)
1300                                 max_tx = max(xfer->len, max_tx);
1301                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1302                             !xfer->rx_buf)
1303                                 max_rx = max(xfer->len, max_rx);
1304                 }
1305
1306                 if (max_tx) {
1307                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1308                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1309                         if (!tmp)
1310                                 return -ENOMEM;
1311                         ctlr->dummy_tx = tmp;
1312                 }
1313
1314                 if (max_rx) {
1315                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1316                                        GFP_KERNEL | GFP_DMA);
1317                         if (!tmp)
1318                                 return -ENOMEM;
1319                         ctlr->dummy_rx = tmp;
1320                 }
1321
1322                 if (max_tx || max_rx) {
1323                         list_for_each_entry(xfer, &msg->transfers,
1324                                             transfer_list) {
1325                                 if (!xfer->len)
1326                                         continue;
1327                                 if (!xfer->tx_buf)
1328                                         xfer->tx_buf = ctlr->dummy_tx;
1329                                 if (!xfer->rx_buf)
1330                                         xfer->rx_buf = ctlr->dummy_rx;
1331                         }
1332                 }
1333         }
1334
1335         return __spi_map_msg(ctlr, msg);
1336 }
1337
1338 static int spi_transfer_wait(struct spi_controller *ctlr,
1339                              struct spi_message *msg,
1340                              struct spi_transfer *xfer)
1341 {
1342         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1343         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1344         u32 speed_hz = xfer->speed_hz;
1345         unsigned long long ms;
1346
1347         if (spi_controller_is_slave(ctlr)) {
1348                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1349                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1350                         return -EINTR;
1351                 }
1352         } else {
1353                 if (!speed_hz)
1354                         speed_hz = 100000;
1355
1356                 /*
1357                  * For each byte we wait for 8 cycles of the SPI clock.
1358                  * Since speed is defined in Hz and we want milliseconds,
1359                  * use respective multiplier, but before the division,
1360                  * otherwise we may get 0 for short transfers.
1361                  */
1362                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1363                 do_div(ms, speed_hz);
1364
1365                 /*
1366                  * Increase it twice and add 200 ms tolerance, use
1367                  * predefined maximum in case of overflow.
1368                  */
1369                 ms += ms + 200;
1370                 if (ms > UINT_MAX)
1371                         ms = UINT_MAX;
1372
1373                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1374                                                  msecs_to_jiffies(ms));
1375
1376                 if (ms == 0) {
1377                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1378                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1379                         dev_err(&msg->spi->dev,
1380                                 "SPI transfer timed out\n");
1381                         return -ETIMEDOUT;
1382                 }
1383         }
1384
1385         return 0;
1386 }
1387
1388 static void _spi_transfer_delay_ns(u32 ns)
1389 {
1390         if (!ns)
1391                 return;
1392         if (ns <= NSEC_PER_USEC) {
1393                 ndelay(ns);
1394         } else {
1395                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1396
1397                 if (us <= 10)
1398                         udelay(us);
1399                 else
1400                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1401         }
1402 }
1403
1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1405 {
1406         u32 delay = _delay->value;
1407         u32 unit = _delay->unit;
1408         u32 hz;
1409
1410         if (!delay)
1411                 return 0;
1412
1413         switch (unit) {
1414         case SPI_DELAY_UNIT_USECS:
1415                 delay *= NSEC_PER_USEC;
1416                 break;
1417         case SPI_DELAY_UNIT_NSECS:
1418                 /* Nothing to do here */
1419                 break;
1420         case SPI_DELAY_UNIT_SCK:
1421                 /* Clock cycles need to be obtained from spi_transfer */
1422                 if (!xfer)
1423                         return -EINVAL;
1424                 /*
1425                  * If there is unknown effective speed, approximate it
1426                  * by underestimating with half of the requested hz.
1427                  */
1428                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1429                 if (!hz)
1430                         return -EINVAL;
1431
1432                 /* Convert delay to nanoseconds */
1433                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1434                 break;
1435         default:
1436                 return -EINVAL;
1437         }
1438
1439         return delay;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1442
1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1444 {
1445         int delay;
1446
1447         might_sleep();
1448
1449         if (!_delay)
1450                 return -EINVAL;
1451
1452         delay = spi_delay_to_ns(_delay, xfer);
1453         if (delay < 0)
1454                 return delay;
1455
1456         _spi_transfer_delay_ns(delay);
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(spi_delay_exec);
1461
1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1463                                           struct spi_transfer *xfer)
1464 {
1465         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1466         u32 delay = xfer->cs_change_delay.value;
1467         u32 unit = xfer->cs_change_delay.unit;
1468         int ret;
1469
1470         /* Return early on "fast" mode - for everything but USECS */
1471         if (!delay) {
1472                 if (unit == SPI_DELAY_UNIT_USECS)
1473                         _spi_transfer_delay_ns(default_delay_ns);
1474                 return;
1475         }
1476
1477         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1478         if (ret) {
1479                 dev_err_once(&msg->spi->dev,
1480                              "Use of unsupported delay unit %i, using default of %luus\n",
1481                              unit, default_delay_ns / NSEC_PER_USEC);
1482                 _spi_transfer_delay_ns(default_delay_ns);
1483         }
1484 }
1485
1486 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1487                                                   struct spi_transfer *xfer)
1488 {
1489         _spi_transfer_cs_change_delay(msg, xfer);
1490 }
1491 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1492
1493 /*
1494  * spi_transfer_one_message - Default implementation of transfer_one_message()
1495  *
1496  * This is a standard implementation of transfer_one_message() for
1497  * drivers which implement a transfer_one() operation.  It provides
1498  * standard handling of delays and chip select management.
1499  */
1500 static int spi_transfer_one_message(struct spi_controller *ctlr,
1501                                     struct spi_message *msg)
1502 {
1503         struct spi_transfer *xfer;
1504         bool keep_cs = false;
1505         int ret = 0;
1506         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1507         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1508
1509         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1510         spi_set_cs(msg->spi, !xfer->cs_off, false);
1511
1512         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1513         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1514
1515         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516                 trace_spi_transfer_start(msg, xfer);
1517
1518                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1519                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1520
1521                 if (!ctlr->ptp_sts_supported) {
1522                         xfer->ptp_sts_word_pre = 0;
1523                         ptp_read_system_prets(xfer->ptp_sts);
1524                 }
1525
1526                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1527                         reinit_completion(&ctlr->xfer_completion);
1528
1529 fallback_pio:
1530                         spi_dma_sync_for_device(ctlr, xfer);
1531                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1532                         if (ret < 0) {
1533                                 spi_dma_sync_for_cpu(ctlr, xfer);
1534
1535                                 if (ctlr->cur_msg_mapped &&
1536                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1537                                         __spi_unmap_msg(ctlr, msg);
1538                                         ctlr->fallback = true;
1539                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1540                                         goto fallback_pio;
1541                                 }
1542
1543                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1544                                                                errors);
1545                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1546                                                                errors);
1547                                 dev_err(&msg->spi->dev,
1548                                         "SPI transfer failed: %d\n", ret);
1549                                 goto out;
1550                         }
1551
1552                         if (ret > 0) {
1553                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1554                                 if (ret < 0)
1555                                         msg->status = ret;
1556                         }
1557
1558                         spi_dma_sync_for_cpu(ctlr, xfer);
1559                 } else {
1560                         if (xfer->len)
1561                                 dev_err(&msg->spi->dev,
1562                                         "Bufferless transfer has length %u\n",
1563                                         xfer->len);
1564                 }
1565
1566                 if (!ctlr->ptp_sts_supported) {
1567                         ptp_read_system_postts(xfer->ptp_sts);
1568                         xfer->ptp_sts_word_post = xfer->len;
1569                 }
1570
1571                 trace_spi_transfer_stop(msg, xfer);
1572
1573                 if (msg->status != -EINPROGRESS)
1574                         goto out;
1575
1576                 spi_transfer_delay_exec(xfer);
1577
1578                 if (xfer->cs_change) {
1579                         if (list_is_last(&xfer->transfer_list,
1580                                          &msg->transfers)) {
1581                                 keep_cs = true;
1582                         } else {
1583                                 if (!xfer->cs_off)
1584                                         spi_set_cs(msg->spi, false, false);
1585                                 _spi_transfer_cs_change_delay(msg, xfer);
1586                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1587                                         spi_set_cs(msg->spi, true, false);
1588                         }
1589                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1590                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1591                         spi_set_cs(msg->spi, xfer->cs_off, false);
1592                 }
1593
1594                 msg->actual_length += xfer->len;
1595         }
1596
1597 out:
1598         if (ret != 0 || !keep_cs)
1599                 spi_set_cs(msg->spi, false, false);
1600
1601         if (msg->status == -EINPROGRESS)
1602                 msg->status = ret;
1603
1604         if (msg->status && ctlr->handle_err)
1605                 ctlr->handle_err(ctlr, msg);
1606
1607         spi_finalize_current_message(ctlr);
1608
1609         return ret;
1610 }
1611
1612 /**
1613  * spi_finalize_current_transfer - report completion of a transfer
1614  * @ctlr: the controller reporting completion
1615  *
1616  * Called by SPI drivers using the core transfer_one_message()
1617  * implementation to notify it that the current interrupt driven
1618  * transfer has finished and the next one may be scheduled.
1619  */
1620 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1621 {
1622         complete(&ctlr->xfer_completion);
1623 }
1624 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1625
1626 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1627 {
1628         if (ctlr->auto_runtime_pm) {
1629                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1630                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1631         }
1632 }
1633
1634 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1635                 struct spi_message *msg, bool was_busy)
1636 {
1637         struct spi_transfer *xfer;
1638         int ret;
1639
1640         if (!was_busy && ctlr->auto_runtime_pm) {
1641                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1642                 if (ret < 0) {
1643                         pm_runtime_put_noidle(ctlr->dev.parent);
1644                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1645                                 ret);
1646                         return ret;
1647                 }
1648         }
1649
1650         if (!was_busy)
1651                 trace_spi_controller_busy(ctlr);
1652
1653         if (!was_busy && ctlr->prepare_transfer_hardware) {
1654                 ret = ctlr->prepare_transfer_hardware(ctlr);
1655                 if (ret) {
1656                         dev_err(&ctlr->dev,
1657                                 "failed to prepare transfer hardware: %d\n",
1658                                 ret);
1659
1660                         if (ctlr->auto_runtime_pm)
1661                                 pm_runtime_put(ctlr->dev.parent);
1662
1663                         msg->status = ret;
1664                         spi_finalize_current_message(ctlr);
1665
1666                         return ret;
1667                 }
1668         }
1669
1670         trace_spi_message_start(msg);
1671
1672         ret = spi_split_transfers_maxsize(ctlr, msg,
1673                                           spi_max_transfer_size(msg->spi),
1674                                           GFP_KERNEL | GFP_DMA);
1675         if (ret) {
1676                 msg->status = ret;
1677                 spi_finalize_current_message(ctlr);
1678                 return ret;
1679         }
1680
1681         if (ctlr->prepare_message) {
1682                 ret = ctlr->prepare_message(ctlr, msg);
1683                 if (ret) {
1684                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1685                                 ret);
1686                         msg->status = ret;
1687                         spi_finalize_current_message(ctlr);
1688                         return ret;
1689                 }
1690                 msg->prepared = true;
1691         }
1692
1693         ret = spi_map_msg(ctlr, msg);
1694         if (ret) {
1695                 msg->status = ret;
1696                 spi_finalize_current_message(ctlr);
1697                 return ret;
1698         }
1699
1700         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1701                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1702                         xfer->ptp_sts_word_pre = 0;
1703                         ptp_read_system_prets(xfer->ptp_sts);
1704                 }
1705         }
1706
1707         /*
1708          * Drivers implementation of transfer_one_message() must arrange for
1709          * spi_finalize_current_message() to get called. Most drivers will do
1710          * this in the calling context, but some don't. For those cases, a
1711          * completion is used to guarantee that this function does not return
1712          * until spi_finalize_current_message() is done accessing
1713          * ctlr->cur_msg.
1714          * Use of the following two flags enable to opportunistically skip the
1715          * use of the completion since its use involves expensive spin locks.
1716          * In case of a race with the context that calls
1717          * spi_finalize_current_message() the completion will always be used,
1718          * due to strict ordering of these flags using barriers.
1719          */
1720         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1721         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1722         reinit_completion(&ctlr->cur_msg_completion);
1723         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1724
1725         ret = ctlr->transfer_one_message(ctlr, msg);
1726         if (ret) {
1727                 dev_err(&ctlr->dev,
1728                         "failed to transfer one message from queue\n");
1729                 return ret;
1730         }
1731
1732         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1733         smp_mb(); /* See spi_finalize_current_message()... */
1734         if (READ_ONCE(ctlr->cur_msg_incomplete))
1735                 wait_for_completion(&ctlr->cur_msg_completion);
1736
1737         return 0;
1738 }
1739
1740 /**
1741  * __spi_pump_messages - function which processes spi message queue
1742  * @ctlr: controller to process queue for
1743  * @in_kthread: true if we are in the context of the message pump thread
1744  *
1745  * This function checks if there is any spi message in the queue that
1746  * needs processing and if so call out to the driver to initialize hardware
1747  * and transfer each message.
1748  *
1749  * Note that it is called both from the kthread itself and also from
1750  * inside spi_sync(); the queue extraction handling at the top of the
1751  * function should deal with this safely.
1752  */
1753 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1754 {
1755         struct spi_message *msg;
1756         bool was_busy = false;
1757         unsigned long flags;
1758         int ret;
1759
1760         /* Take the IO mutex */
1761         mutex_lock(&ctlr->io_mutex);
1762
1763         /* Lock queue */
1764         spin_lock_irqsave(&ctlr->queue_lock, flags);
1765
1766         /* Make sure we are not already running a message */
1767         if (ctlr->cur_msg)
1768                 goto out_unlock;
1769
1770         /* Check if the queue is idle */
1771         if (list_empty(&ctlr->queue) || !ctlr->running) {
1772                 if (!ctlr->busy)
1773                         goto out_unlock;
1774
1775                 /* Defer any non-atomic teardown to the thread */
1776                 if (!in_kthread) {
1777                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1778                             !ctlr->unprepare_transfer_hardware) {
1779                                 spi_idle_runtime_pm(ctlr);
1780                                 ctlr->busy = false;
1781                                 ctlr->queue_empty = true;
1782                                 trace_spi_controller_idle(ctlr);
1783                         } else {
1784                                 kthread_queue_work(ctlr->kworker,
1785                                                    &ctlr->pump_messages);
1786                         }
1787                         goto out_unlock;
1788                 }
1789
1790                 ctlr->busy = false;
1791                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792
1793                 kfree(ctlr->dummy_rx);
1794                 ctlr->dummy_rx = NULL;
1795                 kfree(ctlr->dummy_tx);
1796                 ctlr->dummy_tx = NULL;
1797                 if (ctlr->unprepare_transfer_hardware &&
1798                     ctlr->unprepare_transfer_hardware(ctlr))
1799                         dev_err(&ctlr->dev,
1800                                 "failed to unprepare transfer hardware\n");
1801                 spi_idle_runtime_pm(ctlr);
1802                 trace_spi_controller_idle(ctlr);
1803
1804                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1805                 ctlr->queue_empty = true;
1806                 goto out_unlock;
1807         }
1808
1809         /* Extract head of queue */
1810         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1811         ctlr->cur_msg = msg;
1812
1813         list_del_init(&msg->queue);
1814         if (ctlr->busy)
1815                 was_busy = true;
1816         else
1817                 ctlr->busy = true;
1818         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1819
1820         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1821         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1822
1823         ctlr->cur_msg = NULL;
1824         ctlr->fallback = false;
1825
1826         mutex_unlock(&ctlr->io_mutex);
1827
1828         /* Prod the scheduler in case transfer_one() was busy waiting */
1829         if (!ret)
1830                 cond_resched();
1831         return;
1832
1833 out_unlock:
1834         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1835         mutex_unlock(&ctlr->io_mutex);
1836 }
1837
1838 /**
1839  * spi_pump_messages - kthread work function which processes spi message queue
1840  * @work: pointer to kthread work struct contained in the controller struct
1841  */
1842 static void spi_pump_messages(struct kthread_work *work)
1843 {
1844         struct spi_controller *ctlr =
1845                 container_of(work, struct spi_controller, pump_messages);
1846
1847         __spi_pump_messages(ctlr, true);
1848 }
1849
1850 /**
1851  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1852  * @ctlr: Pointer to the spi_controller structure of the driver
1853  * @xfer: Pointer to the transfer being timestamped
1854  * @progress: How many words (not bytes) have been transferred so far
1855  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1856  *            transfer, for less jitter in time measurement. Only compatible
1857  *            with PIO drivers. If true, must follow up with
1858  *            spi_take_timestamp_post or otherwise system will crash.
1859  *            WARNING: for fully predictable results, the CPU frequency must
1860  *            also be under control (governor).
1861  *
1862  * This is a helper for drivers to collect the beginning of the TX timestamp
1863  * for the requested byte from the SPI transfer. The frequency with which this
1864  * function must be called (once per word, once for the whole transfer, once
1865  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1866  * greater than or equal to the requested byte at the time of the call. The
1867  * timestamp is only taken once, at the first such call. It is assumed that
1868  * the driver advances its @tx buffer pointer monotonically.
1869  */
1870 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1871                             struct spi_transfer *xfer,
1872                             size_t progress, bool irqs_off)
1873 {
1874         if (!xfer->ptp_sts)
1875                 return;
1876
1877         if (xfer->timestamped)
1878                 return;
1879
1880         if (progress > xfer->ptp_sts_word_pre)
1881                 return;
1882
1883         /* Capture the resolution of the timestamp */
1884         xfer->ptp_sts_word_pre = progress;
1885
1886         if (irqs_off) {
1887                 local_irq_save(ctlr->irq_flags);
1888                 preempt_disable();
1889         }
1890
1891         ptp_read_system_prets(xfer->ptp_sts);
1892 }
1893 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1894
1895 /**
1896  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1897  * @ctlr: Pointer to the spi_controller structure of the driver
1898  * @xfer: Pointer to the transfer being timestamped
1899  * @progress: How many words (not bytes) have been transferred so far
1900  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1901  *
1902  * This is a helper for drivers to collect the end of the TX timestamp for
1903  * the requested byte from the SPI transfer. Can be called with an arbitrary
1904  * frequency: only the first call where @tx exceeds or is equal to the
1905  * requested word will be timestamped.
1906  */
1907 void spi_take_timestamp_post(struct spi_controller *ctlr,
1908                              struct spi_transfer *xfer,
1909                              size_t progress, bool irqs_off)
1910 {
1911         if (!xfer->ptp_sts)
1912                 return;
1913
1914         if (xfer->timestamped)
1915                 return;
1916
1917         if (progress < xfer->ptp_sts_word_post)
1918                 return;
1919
1920         ptp_read_system_postts(xfer->ptp_sts);
1921
1922         if (irqs_off) {
1923                 local_irq_restore(ctlr->irq_flags);
1924                 preempt_enable();
1925         }
1926
1927         /* Capture the resolution of the timestamp */
1928         xfer->ptp_sts_word_post = progress;
1929
1930         xfer->timestamped = 1;
1931 }
1932 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1933
1934 /**
1935  * spi_set_thread_rt - set the controller to pump at realtime priority
1936  * @ctlr: controller to boost priority of
1937  *
1938  * This can be called because the controller requested realtime priority
1939  * (by setting the ->rt value before calling spi_register_controller()) or
1940  * because a device on the bus said that its transfers needed realtime
1941  * priority.
1942  *
1943  * NOTE: at the moment if any device on a bus says it needs realtime then
1944  * the thread will be at realtime priority for all transfers on that
1945  * controller.  If this eventually becomes a problem we may see if we can
1946  * find a way to boost the priority only temporarily during relevant
1947  * transfers.
1948  */
1949 static void spi_set_thread_rt(struct spi_controller *ctlr)
1950 {
1951         dev_info(&ctlr->dev,
1952                 "will run message pump with realtime priority\n");
1953         sched_set_fifo(ctlr->kworker->task);
1954 }
1955
1956 static int spi_init_queue(struct spi_controller *ctlr)
1957 {
1958         ctlr->running = false;
1959         ctlr->busy = false;
1960         ctlr->queue_empty = true;
1961
1962         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1963         if (IS_ERR(ctlr->kworker)) {
1964                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1965                 return PTR_ERR(ctlr->kworker);
1966         }
1967
1968         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1969
1970         /*
1971          * Controller config will indicate if this controller should run the
1972          * message pump with high (realtime) priority to reduce the transfer
1973          * latency on the bus by minimising the delay between a transfer
1974          * request and the scheduling of the message pump thread. Without this
1975          * setting the message pump thread will remain at default priority.
1976          */
1977         if (ctlr->rt)
1978                 spi_set_thread_rt(ctlr);
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * spi_get_next_queued_message() - called by driver to check for queued
1985  * messages
1986  * @ctlr: the controller to check for queued messages
1987  *
1988  * If there are more messages in the queue, the next message is returned from
1989  * this call.
1990  *
1991  * Return: the next message in the queue, else NULL if the queue is empty.
1992  */
1993 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1994 {
1995         struct spi_message *next;
1996         unsigned long flags;
1997
1998         /* Get a pointer to the next message, if any */
1999         spin_lock_irqsave(&ctlr->queue_lock, flags);
2000         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2001                                         queue);
2002         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2003
2004         return next;
2005 }
2006 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2007
2008 /**
2009  * spi_finalize_current_message() - the current message is complete
2010  * @ctlr: the controller to return the message to
2011  *
2012  * Called by the driver to notify the core that the message in the front of the
2013  * queue is complete and can be removed from the queue.
2014  */
2015 void spi_finalize_current_message(struct spi_controller *ctlr)
2016 {
2017         struct spi_transfer *xfer;
2018         struct spi_message *mesg;
2019         int ret;
2020
2021         mesg = ctlr->cur_msg;
2022
2023         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2024                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2025                         ptp_read_system_postts(xfer->ptp_sts);
2026                         xfer->ptp_sts_word_post = xfer->len;
2027                 }
2028         }
2029
2030         if (unlikely(ctlr->ptp_sts_supported))
2031                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2032                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2033
2034         spi_unmap_msg(ctlr, mesg);
2035
2036         /*
2037          * In the prepare_messages callback the SPI bus has the opportunity
2038          * to split a transfer to smaller chunks.
2039          *
2040          * Release the split transfers here since spi_map_msg() is done on
2041          * the split transfers.
2042          */
2043         spi_res_release(ctlr, mesg);
2044
2045         if (mesg->prepared && ctlr->unprepare_message) {
2046                 ret = ctlr->unprepare_message(ctlr, mesg);
2047                 if (ret) {
2048                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2049                                 ret);
2050                 }
2051         }
2052
2053         mesg->prepared = false;
2054
2055         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2056         smp_mb(); /* See __spi_pump_transfer_message()... */
2057         if (READ_ONCE(ctlr->cur_msg_need_completion))
2058                 complete(&ctlr->cur_msg_completion);
2059
2060         trace_spi_message_done(mesg);
2061
2062         mesg->state = NULL;
2063         if (mesg->complete)
2064                 mesg->complete(mesg->context);
2065 }
2066 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2067
2068 static int spi_start_queue(struct spi_controller *ctlr)
2069 {
2070         unsigned long flags;
2071
2072         spin_lock_irqsave(&ctlr->queue_lock, flags);
2073
2074         if (ctlr->running || ctlr->busy) {
2075                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076                 return -EBUSY;
2077         }
2078
2079         ctlr->running = true;
2080         ctlr->cur_msg = NULL;
2081         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2082
2083         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2084
2085         return 0;
2086 }
2087
2088 static int spi_stop_queue(struct spi_controller *ctlr)
2089 {
2090         unsigned long flags;
2091         unsigned limit = 500;
2092         int ret = 0;
2093
2094         spin_lock_irqsave(&ctlr->queue_lock, flags);
2095
2096         /*
2097          * This is a bit lame, but is optimized for the common execution path.
2098          * A wait_queue on the ctlr->busy could be used, but then the common
2099          * execution path (pump_messages) would be required to call wake_up or
2100          * friends on every SPI message. Do this instead.
2101          */
2102         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2103                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104                 usleep_range(10000, 11000);
2105                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2106         }
2107
2108         if (!list_empty(&ctlr->queue) || ctlr->busy)
2109                 ret = -EBUSY;
2110         else
2111                 ctlr->running = false;
2112
2113         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2114
2115         if (ret) {
2116                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2117                 return ret;
2118         }
2119         return ret;
2120 }
2121
2122 static int spi_destroy_queue(struct spi_controller *ctlr)
2123 {
2124         int ret;
2125
2126         ret = spi_stop_queue(ctlr);
2127
2128         /*
2129          * kthread_flush_worker will block until all work is done.
2130          * If the reason that stop_queue timed out is that the work will never
2131          * finish, then it does no good to call flush/stop thread, so
2132          * return anyway.
2133          */
2134         if (ret) {
2135                 dev_err(&ctlr->dev, "problem destroying queue\n");
2136                 return ret;
2137         }
2138
2139         kthread_destroy_worker(ctlr->kworker);
2140
2141         return 0;
2142 }
2143
2144 static int __spi_queued_transfer(struct spi_device *spi,
2145                                  struct spi_message *msg,
2146                                  bool need_pump)
2147 {
2148         struct spi_controller *ctlr = spi->controller;
2149         unsigned long flags;
2150
2151         spin_lock_irqsave(&ctlr->queue_lock, flags);
2152
2153         if (!ctlr->running) {
2154                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2155                 return -ESHUTDOWN;
2156         }
2157         msg->actual_length = 0;
2158         msg->status = -EINPROGRESS;
2159
2160         list_add_tail(&msg->queue, &ctlr->queue);
2161         ctlr->queue_empty = false;
2162         if (!ctlr->busy && need_pump)
2163                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2164
2165         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2166         return 0;
2167 }
2168
2169 /**
2170  * spi_queued_transfer - transfer function for queued transfers
2171  * @spi: spi device which is requesting transfer
2172  * @msg: spi message which is to handled is queued to driver queue
2173  *
2174  * Return: zero on success, else a negative error code.
2175  */
2176 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2177 {
2178         return __spi_queued_transfer(spi, msg, true);
2179 }
2180
2181 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2182 {
2183         int ret;
2184
2185         ctlr->transfer = spi_queued_transfer;
2186         if (!ctlr->transfer_one_message)
2187                 ctlr->transfer_one_message = spi_transfer_one_message;
2188
2189         /* Initialize and start queue */
2190         ret = spi_init_queue(ctlr);
2191         if (ret) {
2192                 dev_err(&ctlr->dev, "problem initializing queue\n");
2193                 goto err_init_queue;
2194         }
2195         ctlr->queued = true;
2196         ret = spi_start_queue(ctlr);
2197         if (ret) {
2198                 dev_err(&ctlr->dev, "problem starting queue\n");
2199                 goto err_start_queue;
2200         }
2201
2202         return 0;
2203
2204 err_start_queue:
2205         spi_destroy_queue(ctlr);
2206 err_init_queue:
2207         return ret;
2208 }
2209
2210 /**
2211  * spi_flush_queue - Send all pending messages in the queue from the callers'
2212  *                   context
2213  * @ctlr: controller to process queue for
2214  *
2215  * This should be used when one wants to ensure all pending messages have been
2216  * sent before doing something. Is used by the spi-mem code to make sure SPI
2217  * memory operations do not preempt regular SPI transfers that have been queued
2218  * before the spi-mem operation.
2219  */
2220 void spi_flush_queue(struct spi_controller *ctlr)
2221 {
2222         if (ctlr->transfer == spi_queued_transfer)
2223                 __spi_pump_messages(ctlr, false);
2224 }
2225
2226 /*-------------------------------------------------------------------------*/
2227
2228 #if defined(CONFIG_OF)
2229 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2230                                      struct spi_delay *delay, const char *prop)
2231 {
2232         u32 value;
2233
2234         if (!of_property_read_u32(nc, prop, &value)) {
2235                 if (value > U16_MAX) {
2236                         delay->value = DIV_ROUND_UP(value, 1000);
2237                         delay->unit = SPI_DELAY_UNIT_USECS;
2238                 } else {
2239                         delay->value = value;
2240                         delay->unit = SPI_DELAY_UNIT_NSECS;
2241                 }
2242         }
2243 }
2244
2245 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2246                            struct device_node *nc)
2247 {
2248         u32 value;
2249         int rc;
2250
2251         /* Mode (clock phase/polarity/etc.) */
2252         if (of_property_read_bool(nc, "spi-cpha"))
2253                 spi->mode |= SPI_CPHA;
2254         if (of_property_read_bool(nc, "spi-cpol"))
2255                 spi->mode |= SPI_CPOL;
2256         if (of_property_read_bool(nc, "spi-3wire"))
2257                 spi->mode |= SPI_3WIRE;
2258         if (of_property_read_bool(nc, "spi-lsb-first"))
2259                 spi->mode |= SPI_LSB_FIRST;
2260         if (of_property_read_bool(nc, "spi-cs-high"))
2261                 spi->mode |= SPI_CS_HIGH;
2262
2263         /* Device DUAL/QUAD mode */
2264         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2265                 switch (value) {
2266                 case 0:
2267                         spi->mode |= SPI_NO_TX;
2268                         break;
2269                 case 1:
2270                         break;
2271                 case 2:
2272                         spi->mode |= SPI_TX_DUAL;
2273                         break;
2274                 case 4:
2275                         spi->mode |= SPI_TX_QUAD;
2276                         break;
2277                 case 8:
2278                         spi->mode |= SPI_TX_OCTAL;
2279                         break;
2280                 default:
2281                         dev_warn(&ctlr->dev,
2282                                 "spi-tx-bus-width %d not supported\n",
2283                                 value);
2284                         break;
2285                 }
2286         }
2287
2288         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2289                 switch (value) {
2290                 case 0:
2291                         spi->mode |= SPI_NO_RX;
2292                         break;
2293                 case 1:
2294                         break;
2295                 case 2:
2296                         spi->mode |= SPI_RX_DUAL;
2297                         break;
2298                 case 4:
2299                         spi->mode |= SPI_RX_QUAD;
2300                         break;
2301                 case 8:
2302                         spi->mode |= SPI_RX_OCTAL;
2303                         break;
2304                 default:
2305                         dev_warn(&ctlr->dev,
2306                                 "spi-rx-bus-width %d not supported\n",
2307                                 value);
2308                         break;
2309                 }
2310         }
2311
2312         if (spi_controller_is_slave(ctlr)) {
2313                 if (!of_node_name_eq(nc, "slave")) {
2314                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2315                                 nc);
2316                         return -EINVAL;
2317                 }
2318                 return 0;
2319         }
2320
2321         /* Device address */
2322         rc = of_property_read_u32(nc, "reg", &value);
2323         if (rc) {
2324                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2325                         nc, rc);
2326                 return rc;
2327         }
2328         spi_set_chipselect(spi, 0, value);
2329
2330         /* Device speed */
2331         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2332                 spi->max_speed_hz = value;
2333
2334         /* Device CS delays */
2335         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2336         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2337         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2338
2339         return 0;
2340 }
2341
2342 static struct spi_device *
2343 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2344 {
2345         struct spi_device *spi;
2346         int rc;
2347
2348         /* Alloc an spi_device */
2349         spi = spi_alloc_device(ctlr);
2350         if (!spi) {
2351                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2352                 rc = -ENOMEM;
2353                 goto err_out;
2354         }
2355
2356         /* Select device driver */
2357         rc = of_modalias_node(nc, spi->modalias,
2358                                 sizeof(spi->modalias));
2359         if (rc < 0) {
2360                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2361                 goto err_out;
2362         }
2363
2364         rc = of_spi_parse_dt(ctlr, spi, nc);
2365         if (rc)
2366                 goto err_out;
2367
2368         /* Store a pointer to the node in the device structure */
2369         of_node_get(nc);
2370         spi->dev.of_node = nc;
2371         spi->dev.fwnode = of_fwnode_handle(nc);
2372
2373         /* Register the new device */
2374         rc = spi_add_device(spi);
2375         if (rc) {
2376                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2377                 goto err_of_node_put;
2378         }
2379
2380         return spi;
2381
2382 err_of_node_put:
2383         of_node_put(nc);
2384 err_out:
2385         spi_dev_put(spi);
2386         return ERR_PTR(rc);
2387 }
2388
2389 /**
2390  * of_register_spi_devices() - Register child devices onto the SPI bus
2391  * @ctlr:       Pointer to spi_controller device
2392  *
2393  * Registers an spi_device for each child node of controller node which
2394  * represents a valid SPI slave.
2395  */
2396 static void of_register_spi_devices(struct spi_controller *ctlr)
2397 {
2398         struct spi_device *spi;
2399         struct device_node *nc;
2400
2401         if (!ctlr->dev.of_node)
2402                 return;
2403
2404         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2405                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2406                         continue;
2407                 spi = of_register_spi_device(ctlr, nc);
2408                 if (IS_ERR(spi)) {
2409                         dev_warn(&ctlr->dev,
2410                                  "Failed to create SPI device for %pOF\n", nc);
2411                         of_node_clear_flag(nc, OF_POPULATED);
2412                 }
2413         }
2414 }
2415 #else
2416 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2417 #endif
2418
2419 /**
2420  * spi_new_ancillary_device() - Register ancillary SPI device
2421  * @spi:         Pointer to the main SPI device registering the ancillary device
2422  * @chip_select: Chip Select of the ancillary device
2423  *
2424  * Register an ancillary SPI device; for example some chips have a chip-select
2425  * for normal device usage and another one for setup/firmware upload.
2426  *
2427  * This may only be called from main SPI device's probe routine.
2428  *
2429  * Return: 0 on success; negative errno on failure
2430  */
2431 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2432                                              u8 chip_select)
2433 {
2434         struct spi_device *ancillary;
2435         int rc = 0;
2436
2437         /* Alloc an spi_device */
2438         ancillary = spi_alloc_device(spi->controller);
2439         if (!ancillary) {
2440                 rc = -ENOMEM;
2441                 goto err_out;
2442         }
2443
2444         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2445
2446         /* Use provided chip-select for ancillary device */
2447         spi_set_chipselect(ancillary, 0, chip_select);
2448
2449         /* Take over SPI mode/speed from SPI main device */
2450         ancillary->max_speed_hz = spi->max_speed_hz;
2451         ancillary->mode = spi->mode;
2452
2453         /* Register the new device */
2454         rc = spi_add_device_locked(ancillary);
2455         if (rc) {
2456                 dev_err(&spi->dev, "failed to register ancillary device\n");
2457                 goto err_out;
2458         }
2459
2460         return ancillary;
2461
2462 err_out:
2463         spi_dev_put(ancillary);
2464         return ERR_PTR(rc);
2465 }
2466 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2467
2468 #ifdef CONFIG_ACPI
2469 struct acpi_spi_lookup {
2470         struct spi_controller   *ctlr;
2471         u32                     max_speed_hz;
2472         u32                     mode;
2473         int                     irq;
2474         u8                      bits_per_word;
2475         u8                      chip_select;
2476         int                     n;
2477         int                     index;
2478 };
2479
2480 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2481 {
2482         struct acpi_resource_spi_serialbus *sb;
2483         int *count = data;
2484
2485         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2486                 return 1;
2487
2488         sb = &ares->data.spi_serial_bus;
2489         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2490                 return 1;
2491
2492         *count = *count + 1;
2493
2494         return 1;
2495 }
2496
2497 /**
2498  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2499  * @adev:       ACPI device
2500  *
2501  * Returns the number of SpiSerialBus resources in the ACPI-device's
2502  * resource-list; or a negative error code.
2503  */
2504 int acpi_spi_count_resources(struct acpi_device *adev)
2505 {
2506         LIST_HEAD(r);
2507         int count = 0;
2508         int ret;
2509
2510         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2511         if (ret < 0)
2512                 return ret;
2513
2514         acpi_dev_free_resource_list(&r);
2515
2516         return count;
2517 }
2518 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2519
2520 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2521                                             struct acpi_spi_lookup *lookup)
2522 {
2523         const union acpi_object *obj;
2524
2525         if (!x86_apple_machine)
2526                 return;
2527
2528         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2529             && obj->buffer.length >= 4)
2530                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2531
2532         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2533             && obj->buffer.length == 8)
2534                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2535
2536         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2537             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2538                 lookup->mode |= SPI_LSB_FIRST;
2539
2540         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2541             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2542                 lookup->mode |= SPI_CPOL;
2543
2544         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2545             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2546                 lookup->mode |= SPI_CPHA;
2547 }
2548
2549 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2550
2551 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2552 {
2553         struct acpi_spi_lookup *lookup = data;
2554         struct spi_controller *ctlr = lookup->ctlr;
2555
2556         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2557                 struct acpi_resource_spi_serialbus *sb;
2558                 acpi_handle parent_handle;
2559                 acpi_status status;
2560
2561                 sb = &ares->data.spi_serial_bus;
2562                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2563
2564                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2565                                 return 1;
2566
2567                         status = acpi_get_handle(NULL,
2568                                                  sb->resource_source.string_ptr,
2569                                                  &parent_handle);
2570
2571                         if (ACPI_FAILURE(status))
2572                                 return -ENODEV;
2573
2574                         if (ctlr) {
2575                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2576                                         return -ENODEV;
2577                         } else {
2578                                 struct acpi_device *adev;
2579
2580                                 adev = acpi_fetch_acpi_dev(parent_handle);
2581                                 if (!adev)
2582                                         return -ENODEV;
2583
2584                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2585                                 if (!ctlr)
2586                                         return -EPROBE_DEFER;
2587
2588                                 lookup->ctlr = ctlr;
2589                         }
2590
2591                         /*
2592                          * ACPI DeviceSelection numbering is handled by the
2593                          * host controller driver in Windows and can vary
2594                          * from driver to driver. In Linux we always expect
2595                          * 0 .. max - 1 so we need to ask the driver to
2596                          * translate between the two schemes.
2597                          */
2598                         if (ctlr->fw_translate_cs) {
2599                                 int cs = ctlr->fw_translate_cs(ctlr,
2600                                                 sb->device_selection);
2601                                 if (cs < 0)
2602                                         return cs;
2603                                 lookup->chip_select = cs;
2604                         } else {
2605                                 lookup->chip_select = sb->device_selection;
2606                         }
2607
2608                         lookup->max_speed_hz = sb->connection_speed;
2609                         lookup->bits_per_word = sb->data_bit_length;
2610
2611                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2612                                 lookup->mode |= SPI_CPHA;
2613                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2614                                 lookup->mode |= SPI_CPOL;
2615                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2616                                 lookup->mode |= SPI_CS_HIGH;
2617                 }
2618         } else if (lookup->irq < 0) {
2619                 struct resource r;
2620
2621                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2622                         lookup->irq = r.start;
2623         }
2624
2625         /* Always tell the ACPI core to skip this resource */
2626         return 1;
2627 }
2628
2629 /**
2630  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2631  * @ctlr: controller to which the spi device belongs
2632  * @adev: ACPI Device for the spi device
2633  * @index: Index of the spi resource inside the ACPI Node
2634  *
2635  * This should be used to allocate a new spi device from and ACPI Node.
2636  * The caller is responsible for calling spi_add_device to register the spi device.
2637  *
2638  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2639  * using the resource.
2640  * If index is set to -1, index is not used.
2641  * Note: If index is -1, ctlr must be set.
2642  *
2643  * Return: a pointer to the new device, or ERR_PTR on error.
2644  */
2645 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2646                                          struct acpi_device *adev,
2647                                          int index)
2648 {
2649         acpi_handle parent_handle = NULL;
2650         struct list_head resource_list;
2651         struct acpi_spi_lookup lookup = {};
2652         struct spi_device *spi;
2653         int ret;
2654
2655         if (!ctlr && index == -1)
2656                 return ERR_PTR(-EINVAL);
2657
2658         lookup.ctlr             = ctlr;
2659         lookup.irq              = -1;
2660         lookup.index            = index;
2661         lookup.n                = 0;
2662
2663         INIT_LIST_HEAD(&resource_list);
2664         ret = acpi_dev_get_resources(adev, &resource_list,
2665                                      acpi_spi_add_resource, &lookup);
2666         acpi_dev_free_resource_list(&resource_list);
2667
2668         if (ret < 0)
2669                 /* Found SPI in _CRS but it points to another controller */
2670                 return ERR_PTR(ret);
2671
2672         if (!lookup.max_speed_hz &&
2673             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2674             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2675                 /* Apple does not use _CRS but nested devices for SPI slaves */
2676                 acpi_spi_parse_apple_properties(adev, &lookup);
2677         }
2678
2679         if (!lookup.max_speed_hz)
2680                 return ERR_PTR(-ENODEV);
2681
2682         spi = spi_alloc_device(lookup.ctlr);
2683         if (!spi) {
2684                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2685                         dev_name(&adev->dev));
2686                 return ERR_PTR(-ENOMEM);
2687         }
2688
2689         ACPI_COMPANION_SET(&spi->dev, adev);
2690         spi->max_speed_hz       = lookup.max_speed_hz;
2691         spi->mode               |= lookup.mode;
2692         spi->irq                = lookup.irq;
2693         spi->bits_per_word      = lookup.bits_per_word;
2694         spi_set_chipselect(spi, 0, lookup.chip_select);
2695
2696         return spi;
2697 }
2698 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2699
2700 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2701                                             struct acpi_device *adev)
2702 {
2703         struct spi_device *spi;
2704
2705         if (acpi_bus_get_status(adev) || !adev->status.present ||
2706             acpi_device_enumerated(adev))
2707                 return AE_OK;
2708
2709         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2710         if (IS_ERR(spi)) {
2711                 if (PTR_ERR(spi) == -ENOMEM)
2712                         return AE_NO_MEMORY;
2713                 else
2714                         return AE_OK;
2715         }
2716
2717         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2718                           sizeof(spi->modalias));
2719
2720         if (spi->irq < 0)
2721                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2722
2723         acpi_device_set_enumerated(adev);
2724
2725         adev->power.flags.ignore_parent = true;
2726         if (spi_add_device(spi)) {
2727                 adev->power.flags.ignore_parent = false;
2728                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2729                         dev_name(&adev->dev));
2730                 spi_dev_put(spi);
2731         }
2732
2733         return AE_OK;
2734 }
2735
2736 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2737                                        void *data, void **return_value)
2738 {
2739         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2740         struct spi_controller *ctlr = data;
2741
2742         if (!adev)
2743                 return AE_OK;
2744
2745         return acpi_register_spi_device(ctlr, adev);
2746 }
2747
2748 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2749
2750 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2751 {
2752         acpi_status status;
2753         acpi_handle handle;
2754
2755         handle = ACPI_HANDLE(ctlr->dev.parent);
2756         if (!handle)
2757                 return;
2758
2759         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2760                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2761                                      acpi_spi_add_device, NULL, ctlr, NULL);
2762         if (ACPI_FAILURE(status))
2763                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2764 }
2765 #else
2766 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2767 #endif /* CONFIG_ACPI */
2768
2769 static void spi_controller_release(struct device *dev)
2770 {
2771         struct spi_controller *ctlr;
2772
2773         ctlr = container_of(dev, struct spi_controller, dev);
2774         kfree(ctlr);
2775 }
2776
2777 static struct class spi_master_class = {
2778         .name           = "spi_master",
2779         .dev_release    = spi_controller_release,
2780         .dev_groups     = spi_master_groups,
2781 };
2782
2783 #ifdef CONFIG_SPI_SLAVE
2784 /**
2785  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2786  *                   controller
2787  * @spi: device used for the current transfer
2788  */
2789 int spi_slave_abort(struct spi_device *spi)
2790 {
2791         struct spi_controller *ctlr = spi->controller;
2792
2793         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2794                 return ctlr->slave_abort(ctlr);
2795
2796         return -ENOTSUPP;
2797 }
2798 EXPORT_SYMBOL_GPL(spi_slave_abort);
2799
2800 int spi_target_abort(struct spi_device *spi)
2801 {
2802         struct spi_controller *ctlr = spi->controller;
2803
2804         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2805                 return ctlr->target_abort(ctlr);
2806
2807         return -ENOTSUPP;
2808 }
2809 EXPORT_SYMBOL_GPL(spi_target_abort);
2810
2811 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2812                           char *buf)
2813 {
2814         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2815                                                    dev);
2816         struct device *child;
2817
2818         child = device_find_any_child(&ctlr->dev);
2819         return sprintf(buf, "%s\n",
2820                        child ? to_spi_device(child)->modalias : NULL);
2821 }
2822
2823 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2824                            const char *buf, size_t count)
2825 {
2826         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2827                                                    dev);
2828         struct spi_device *spi;
2829         struct device *child;
2830         char name[32];
2831         int rc;
2832
2833         rc = sscanf(buf, "%31s", name);
2834         if (rc != 1 || !name[0])
2835                 return -EINVAL;
2836
2837         child = device_find_any_child(&ctlr->dev);
2838         if (child) {
2839                 /* Remove registered slave */
2840                 device_unregister(child);
2841                 put_device(child);
2842         }
2843
2844         if (strcmp(name, "(null)")) {
2845                 /* Register new slave */
2846                 spi = spi_alloc_device(ctlr);
2847                 if (!spi)
2848                         return -ENOMEM;
2849
2850                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2851
2852                 rc = spi_add_device(spi);
2853                 if (rc) {
2854                         spi_dev_put(spi);
2855                         return rc;
2856                 }
2857         }
2858
2859         return count;
2860 }
2861
2862 static DEVICE_ATTR_RW(slave);
2863
2864 static struct attribute *spi_slave_attrs[] = {
2865         &dev_attr_slave.attr,
2866         NULL,
2867 };
2868
2869 static const struct attribute_group spi_slave_group = {
2870         .attrs = spi_slave_attrs,
2871 };
2872
2873 static const struct attribute_group *spi_slave_groups[] = {
2874         &spi_controller_statistics_group,
2875         &spi_slave_group,
2876         NULL,
2877 };
2878
2879 static struct class spi_slave_class = {
2880         .name           = "spi_slave",
2881         .dev_release    = spi_controller_release,
2882         .dev_groups     = spi_slave_groups,
2883 };
2884 #else
2885 extern struct class spi_slave_class;    /* dummy */
2886 #endif
2887
2888 /**
2889  * __spi_alloc_controller - allocate an SPI master or slave controller
2890  * @dev: the controller, possibly using the platform_bus
2891  * @size: how much zeroed driver-private data to allocate; the pointer to this
2892  *      memory is in the driver_data field of the returned device, accessible
2893  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2894  *      drivers granting DMA access to portions of their private data need to
2895  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2896  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2897  *      slave (true) controller
2898  * Context: can sleep
2899  *
2900  * This call is used only by SPI controller drivers, which are the
2901  * only ones directly touching chip registers.  It's how they allocate
2902  * an spi_controller structure, prior to calling spi_register_controller().
2903  *
2904  * This must be called from context that can sleep.
2905  *
2906  * The caller is responsible for assigning the bus number and initializing the
2907  * controller's methods before calling spi_register_controller(); and (after
2908  * errors adding the device) calling spi_controller_put() to prevent a memory
2909  * leak.
2910  *
2911  * Return: the SPI controller structure on success, else NULL.
2912  */
2913 struct spi_controller *__spi_alloc_controller(struct device *dev,
2914                                               unsigned int size, bool slave)
2915 {
2916         struct spi_controller   *ctlr;
2917         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2918
2919         if (!dev)
2920                 return NULL;
2921
2922         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2923         if (!ctlr)
2924                 return NULL;
2925
2926         device_initialize(&ctlr->dev);
2927         INIT_LIST_HEAD(&ctlr->queue);
2928         spin_lock_init(&ctlr->queue_lock);
2929         spin_lock_init(&ctlr->bus_lock_spinlock);
2930         mutex_init(&ctlr->bus_lock_mutex);
2931         mutex_init(&ctlr->io_mutex);
2932         mutex_init(&ctlr->add_lock);
2933         ctlr->bus_num = -1;
2934         ctlr->num_chipselect = 1;
2935         ctlr->slave = slave;
2936         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2937                 ctlr->dev.class = &spi_slave_class;
2938         else
2939                 ctlr->dev.class = &spi_master_class;
2940         ctlr->dev.parent = dev;
2941         pm_suspend_ignore_children(&ctlr->dev, true);
2942         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2943
2944         return ctlr;
2945 }
2946 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2947
2948 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2949 {
2950         spi_controller_put(*(struct spi_controller **)ctlr);
2951 }
2952
2953 /**
2954  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2955  * @dev: physical device of SPI controller
2956  * @size: how much zeroed driver-private data to allocate
2957  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2958  * Context: can sleep
2959  *
2960  * Allocate an SPI controller and automatically release a reference on it
2961  * when @dev is unbound from its driver.  Drivers are thus relieved from
2962  * having to call spi_controller_put().
2963  *
2964  * The arguments to this function are identical to __spi_alloc_controller().
2965  *
2966  * Return: the SPI controller structure on success, else NULL.
2967  */
2968 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2969                                                    unsigned int size,
2970                                                    bool slave)
2971 {
2972         struct spi_controller **ptr, *ctlr;
2973
2974         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2975                            GFP_KERNEL);
2976         if (!ptr)
2977                 return NULL;
2978
2979         ctlr = __spi_alloc_controller(dev, size, slave);
2980         if (ctlr) {
2981                 ctlr->devm_allocated = true;
2982                 *ptr = ctlr;
2983                 devres_add(dev, ptr);
2984         } else {
2985                 devres_free(ptr);
2986         }
2987
2988         return ctlr;
2989 }
2990 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2991
2992 /**
2993  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2994  * @ctlr: The SPI master to grab GPIO descriptors for
2995  */
2996 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2997 {
2998         int nb, i;
2999         struct gpio_desc **cs;
3000         struct device *dev = &ctlr->dev;
3001         unsigned long native_cs_mask = 0;
3002         unsigned int num_cs_gpios = 0;
3003
3004         nb = gpiod_count(dev, "cs");
3005         if (nb < 0) {
3006                 /* No GPIOs at all is fine, else return the error */
3007                 if (nb == -ENOENT)
3008                         return 0;
3009                 return nb;
3010         }
3011
3012         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3013
3014         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3015                           GFP_KERNEL);
3016         if (!cs)
3017                 return -ENOMEM;
3018         ctlr->cs_gpiods = cs;
3019
3020         for (i = 0; i < nb; i++) {
3021                 /*
3022                  * Most chipselects are active low, the inverted
3023                  * semantics are handled by special quirks in gpiolib,
3024                  * so initializing them GPIOD_OUT_LOW here means
3025                  * "unasserted", in most cases this will drive the physical
3026                  * line high.
3027                  */
3028                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3029                                                       GPIOD_OUT_LOW);
3030                 if (IS_ERR(cs[i]))
3031                         return PTR_ERR(cs[i]);
3032
3033                 if (cs[i]) {
3034                         /*
3035                          * If we find a CS GPIO, name it after the device and
3036                          * chip select line.
3037                          */
3038                         char *gpioname;
3039
3040                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3041                                                   dev_name(dev), i);
3042                         if (!gpioname)
3043                                 return -ENOMEM;
3044                         gpiod_set_consumer_name(cs[i], gpioname);
3045                         num_cs_gpios++;
3046                         continue;
3047                 }
3048
3049                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3050                         dev_err(dev, "Invalid native chip select %d\n", i);
3051                         return -EINVAL;
3052                 }
3053                 native_cs_mask |= BIT(i);
3054         }
3055
3056         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3057
3058         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3059             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3060                 dev_err(dev, "No unused native chip select available\n");
3061                 return -EINVAL;
3062         }
3063
3064         return 0;
3065 }
3066
3067 static int spi_controller_check_ops(struct spi_controller *ctlr)
3068 {
3069         /*
3070          * The controller may implement only the high-level SPI-memory like
3071          * operations if it does not support regular SPI transfers, and this is
3072          * valid use case.
3073          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3074          * one of the ->transfer_xxx() method be implemented.
3075          */
3076         if (!ctlr->mem_ops || (ctlr->mem_ops && !ctlr->mem_ops->exec_op)) {
3077                 if (!ctlr->transfer && !ctlr->transfer_one &&
3078                    !ctlr->transfer_one_message) {
3079                         return -EINVAL;
3080                 }
3081         }
3082
3083         return 0;
3084 }
3085
3086 /**
3087  * spi_register_controller - register SPI master or slave controller
3088  * @ctlr: initialized master, originally from spi_alloc_master() or
3089  *      spi_alloc_slave()
3090  * Context: can sleep
3091  *
3092  * SPI controllers connect to their drivers using some non-SPI bus,
3093  * such as the platform bus.  The final stage of probe() in that code
3094  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3095  *
3096  * SPI controllers use board specific (often SOC specific) bus numbers,
3097  * and board-specific addressing for SPI devices combines those numbers
3098  * with chip select numbers.  Since SPI does not directly support dynamic
3099  * device identification, boards need configuration tables telling which
3100  * chip is at which address.
3101  *
3102  * This must be called from context that can sleep.  It returns zero on
3103  * success, else a negative error code (dropping the controller's refcount).
3104  * After a successful return, the caller is responsible for calling
3105  * spi_unregister_controller().
3106  *
3107  * Return: zero on success, else a negative error code.
3108  */
3109 int spi_register_controller(struct spi_controller *ctlr)
3110 {
3111         struct device           *dev = ctlr->dev.parent;
3112         struct boardinfo        *bi;
3113         int                     status;
3114         int                     id, first_dynamic;
3115
3116         if (!dev)
3117                 return -ENODEV;
3118
3119         /*
3120          * Make sure all necessary hooks are implemented before registering
3121          * the SPI controller.
3122          */
3123         status = spi_controller_check_ops(ctlr);
3124         if (status)
3125                 return status;
3126
3127         if (ctlr->bus_num >= 0) {
3128                 /* Devices with a fixed bus num must check-in with the num */
3129                 mutex_lock(&board_lock);
3130                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3131                         ctlr->bus_num + 1, GFP_KERNEL);
3132                 mutex_unlock(&board_lock);
3133                 if (WARN(id < 0, "couldn't get idr"))
3134                         return id == -ENOSPC ? -EBUSY : id;
3135                 ctlr->bus_num = id;
3136         } else if (ctlr->dev.of_node) {
3137                 /* Allocate dynamic bus number using Linux idr */
3138                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3139                 if (id >= 0) {
3140                         ctlr->bus_num = id;
3141                         mutex_lock(&board_lock);
3142                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3143                                        ctlr->bus_num + 1, GFP_KERNEL);
3144                         mutex_unlock(&board_lock);
3145                         if (WARN(id < 0, "couldn't get idr"))
3146                                 return id == -ENOSPC ? -EBUSY : id;
3147                 }
3148         }
3149         if (ctlr->bus_num < 0) {
3150                 first_dynamic = of_alias_get_highest_id("spi");
3151                 if (first_dynamic < 0)
3152                         first_dynamic = 0;
3153                 else
3154                         first_dynamic++;
3155
3156                 mutex_lock(&board_lock);
3157                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3158                                0, GFP_KERNEL);
3159                 mutex_unlock(&board_lock);
3160                 if (WARN(id < 0, "couldn't get idr"))
3161                         return id;
3162                 ctlr->bus_num = id;
3163         }
3164         ctlr->bus_lock_flag = 0;
3165         init_completion(&ctlr->xfer_completion);
3166         init_completion(&ctlr->cur_msg_completion);
3167         if (!ctlr->max_dma_len)
3168                 ctlr->max_dma_len = INT_MAX;
3169
3170         /*
3171          * Register the device, then userspace will see it.
3172          * Registration fails if the bus ID is in use.
3173          */
3174         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3175
3176         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3177                 status = spi_get_gpio_descs(ctlr);
3178                 if (status)
3179                         goto free_bus_id;
3180                 /*
3181                  * A controller using GPIO descriptors always
3182                  * supports SPI_CS_HIGH if need be.
3183                  */
3184                 ctlr->mode_bits |= SPI_CS_HIGH;
3185         }
3186
3187         /*
3188          * Even if it's just one always-selected device, there must
3189          * be at least one chipselect.
3190          */
3191         if (!ctlr->num_chipselect) {
3192                 status = -EINVAL;
3193                 goto free_bus_id;
3194         }
3195
3196         /* Setting last_cs to -1 means no chip selected */
3197         ctlr->last_cs = -1;
3198
3199         status = device_add(&ctlr->dev);
3200         if (status < 0)
3201                 goto free_bus_id;
3202         dev_dbg(dev, "registered %s %s\n",
3203                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3204                         dev_name(&ctlr->dev));
3205
3206         /*
3207          * If we're using a queued driver, start the queue. Note that we don't
3208          * need the queueing logic if the driver is only supporting high-level
3209          * memory operations.
3210          */
3211         if (ctlr->transfer) {
3212                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3213         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3214                 status = spi_controller_initialize_queue(ctlr);
3215                 if (status) {
3216                         device_del(&ctlr->dev);
3217                         goto free_bus_id;
3218                 }
3219         }
3220         /* Add statistics */
3221         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3222         if (!ctlr->pcpu_statistics) {
3223                 dev_err(dev, "Error allocating per-cpu statistics\n");
3224                 status = -ENOMEM;
3225                 goto destroy_queue;
3226         }
3227
3228         mutex_lock(&board_lock);
3229         list_add_tail(&ctlr->list, &spi_controller_list);
3230         list_for_each_entry(bi, &board_list, list)
3231                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3232         mutex_unlock(&board_lock);
3233
3234         /* Register devices from the device tree and ACPI */
3235         of_register_spi_devices(ctlr);
3236         acpi_register_spi_devices(ctlr);
3237         return status;
3238
3239 destroy_queue:
3240         spi_destroy_queue(ctlr);
3241 free_bus_id:
3242         mutex_lock(&board_lock);
3243         idr_remove(&spi_master_idr, ctlr->bus_num);
3244         mutex_unlock(&board_lock);
3245         return status;
3246 }
3247 EXPORT_SYMBOL_GPL(spi_register_controller);
3248
3249 static void devm_spi_unregister(struct device *dev, void *res)
3250 {
3251         spi_unregister_controller(*(struct spi_controller **)res);
3252 }
3253
3254 /**
3255  * devm_spi_register_controller - register managed SPI master or slave
3256  *      controller
3257  * @dev:    device managing SPI controller
3258  * @ctlr: initialized controller, originally from spi_alloc_master() or
3259  *      spi_alloc_slave()
3260  * Context: can sleep
3261  *
3262  * Register a SPI device as with spi_register_controller() which will
3263  * automatically be unregistered and freed.
3264  *
3265  * Return: zero on success, else a negative error code.
3266  */
3267 int devm_spi_register_controller(struct device *dev,
3268                                  struct spi_controller *ctlr)
3269 {
3270         struct spi_controller **ptr;
3271         int ret;
3272
3273         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3274         if (!ptr)
3275                 return -ENOMEM;
3276
3277         ret = spi_register_controller(ctlr);
3278         if (!ret) {
3279                 *ptr = ctlr;
3280                 devres_add(dev, ptr);
3281         } else {
3282                 devres_free(ptr);
3283         }
3284
3285         return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3288
3289 static int __unregister(struct device *dev, void *null)
3290 {
3291         spi_unregister_device(to_spi_device(dev));
3292         return 0;
3293 }
3294
3295 /**
3296  * spi_unregister_controller - unregister SPI master or slave controller
3297  * @ctlr: the controller being unregistered
3298  * Context: can sleep
3299  *
3300  * This call is used only by SPI controller drivers, which are the
3301  * only ones directly touching chip registers.
3302  *
3303  * This must be called from context that can sleep.
3304  *
3305  * Note that this function also drops a reference to the controller.
3306  */
3307 void spi_unregister_controller(struct spi_controller *ctlr)
3308 {
3309         struct spi_controller *found;
3310         int id = ctlr->bus_num;
3311
3312         /* Prevent addition of new devices, unregister existing ones */
3313         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3314                 mutex_lock(&ctlr->add_lock);
3315
3316         device_for_each_child(&ctlr->dev, NULL, __unregister);
3317
3318         /* First make sure that this controller was ever added */
3319         mutex_lock(&board_lock);
3320         found = idr_find(&spi_master_idr, id);
3321         mutex_unlock(&board_lock);
3322         if (ctlr->queued) {
3323                 if (spi_destroy_queue(ctlr))
3324                         dev_err(&ctlr->dev, "queue remove failed\n");
3325         }
3326         mutex_lock(&board_lock);
3327         list_del(&ctlr->list);
3328         mutex_unlock(&board_lock);
3329
3330         device_del(&ctlr->dev);
3331
3332         /* Free bus id */
3333         mutex_lock(&board_lock);
3334         if (found == ctlr)
3335                 idr_remove(&spi_master_idr, id);
3336         mutex_unlock(&board_lock);
3337
3338         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3339                 mutex_unlock(&ctlr->add_lock);
3340
3341         /* Release the last reference on the controller if its driver
3342          * has not yet been converted to devm_spi_alloc_master/slave().
3343          */
3344         if (!ctlr->devm_allocated)
3345                 put_device(&ctlr->dev);
3346 }
3347 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3348
3349 int spi_controller_suspend(struct spi_controller *ctlr)
3350 {
3351         int ret;
3352
3353         /* Basically no-ops for non-queued controllers */
3354         if (!ctlr->queued)
3355                 return 0;
3356
3357         ret = spi_stop_queue(ctlr);
3358         if (ret)
3359                 dev_err(&ctlr->dev, "queue stop failed\n");
3360
3361         return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3364
3365 int spi_controller_resume(struct spi_controller *ctlr)
3366 {
3367         int ret;
3368
3369         if (!ctlr->queued)
3370                 return 0;
3371
3372         ret = spi_start_queue(ctlr);
3373         if (ret)
3374                 dev_err(&ctlr->dev, "queue restart failed\n");
3375
3376         return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(spi_controller_resume);
3379
3380 /*-------------------------------------------------------------------------*/
3381
3382 /* Core methods for spi_message alterations */
3383
3384 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3385                                             struct spi_message *msg,
3386                                             void *res)
3387 {
3388         struct spi_replaced_transfers *rxfer = res;
3389         size_t i;
3390
3391         /* Call extra callback if requested */
3392         if (rxfer->release)
3393                 rxfer->release(ctlr, msg, res);
3394
3395         /* Insert replaced transfers back into the message */
3396         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3397
3398         /* Remove the formerly inserted entries */
3399         for (i = 0; i < rxfer->inserted; i++)
3400                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3401 }
3402
3403 /**
3404  * spi_replace_transfers - replace transfers with several transfers
3405  *                         and register change with spi_message.resources
3406  * @msg:           the spi_message we work upon
3407  * @xfer_first:    the first spi_transfer we want to replace
3408  * @remove:        number of transfers to remove
3409  * @insert:        the number of transfers we want to insert instead
3410  * @release:       extra release code necessary in some circumstances
3411  * @extradatasize: extra data to allocate (with alignment guarantees
3412  *                 of struct @spi_transfer)
3413  * @gfp:           gfp flags
3414  *
3415  * Returns: pointer to @spi_replaced_transfers,
3416  *          PTR_ERR(...) in case of errors.
3417  */
3418 static struct spi_replaced_transfers *spi_replace_transfers(
3419         struct spi_message *msg,
3420         struct spi_transfer *xfer_first,
3421         size_t remove,
3422         size_t insert,
3423         spi_replaced_release_t release,
3424         size_t extradatasize,
3425         gfp_t gfp)
3426 {
3427         struct spi_replaced_transfers *rxfer;
3428         struct spi_transfer *xfer;
3429         size_t i;
3430
3431         /* Allocate the structure using spi_res */
3432         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3433                               struct_size(rxfer, inserted_transfers, insert)
3434                               + extradatasize,
3435                               gfp);
3436         if (!rxfer)
3437                 return ERR_PTR(-ENOMEM);
3438
3439         /* The release code to invoke before running the generic release */
3440         rxfer->release = release;
3441
3442         /* Assign extradata */
3443         if (extradatasize)
3444                 rxfer->extradata =
3445                         &rxfer->inserted_transfers[insert];
3446
3447         /* Init the replaced_transfers list */
3448         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3449
3450         /*
3451          * Assign the list_entry after which we should reinsert
3452          * the @replaced_transfers - it may be spi_message.messages!
3453          */
3454         rxfer->replaced_after = xfer_first->transfer_list.prev;
3455
3456         /* Remove the requested number of transfers */
3457         for (i = 0; i < remove; i++) {
3458                 /*
3459                  * If the entry after replaced_after it is msg->transfers
3460                  * then we have been requested to remove more transfers
3461                  * than are in the list.
3462                  */
3463                 if (rxfer->replaced_after->next == &msg->transfers) {
3464                         dev_err(&msg->spi->dev,
3465                                 "requested to remove more spi_transfers than are available\n");
3466                         /* Insert replaced transfers back into the message */
3467                         list_splice(&rxfer->replaced_transfers,
3468                                     rxfer->replaced_after);
3469
3470                         /* Free the spi_replace_transfer structure... */
3471                         spi_res_free(rxfer);
3472
3473                         /* ...and return with an error */
3474                         return ERR_PTR(-EINVAL);
3475                 }
3476
3477                 /*
3478                  * Remove the entry after replaced_after from list of
3479                  * transfers and add it to list of replaced_transfers.
3480                  */
3481                 list_move_tail(rxfer->replaced_after->next,
3482                                &rxfer->replaced_transfers);
3483         }
3484
3485         /*
3486          * Create copy of the given xfer with identical settings
3487          * based on the first transfer to get removed.
3488          */
3489         for (i = 0; i < insert; i++) {
3490                 /* We need to run in reverse order */
3491                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3492
3493                 /* Copy all spi_transfer data */
3494                 memcpy(xfer, xfer_first, sizeof(*xfer));
3495
3496                 /* Add to list */
3497                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3498
3499                 /* Clear cs_change and delay for all but the last */
3500                 if (i) {
3501                         xfer->cs_change = false;
3502                         xfer->delay.value = 0;
3503                 }
3504         }
3505
3506         /* Set up inserted... */
3507         rxfer->inserted = insert;
3508
3509         /* ...and register it with spi_res/spi_message */
3510         spi_res_add(msg, rxfer);
3511
3512         return rxfer;
3513 }
3514
3515 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3516                                         struct spi_message *msg,
3517                                         struct spi_transfer **xferp,
3518                                         size_t maxsize,
3519                                         gfp_t gfp)
3520 {
3521         struct spi_transfer *xfer = *xferp, *xfers;
3522         struct spi_replaced_transfers *srt;
3523         size_t offset;
3524         size_t count, i;
3525
3526         /* Calculate how many we have to replace */
3527         count = DIV_ROUND_UP(xfer->len, maxsize);
3528
3529         /* Create replacement */
3530         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3531         if (IS_ERR(srt))
3532                 return PTR_ERR(srt);
3533         xfers = srt->inserted_transfers;
3534
3535         /*
3536          * Now handle each of those newly inserted spi_transfers.
3537          * Note that the replacements spi_transfers all are preset
3538          * to the same values as *xferp, so tx_buf, rx_buf and len
3539          * are all identical (as well as most others)
3540          * so we just have to fix up len and the pointers.
3541          *
3542          * This also includes support for the depreciated
3543          * spi_message.is_dma_mapped interface.
3544          */
3545
3546         /*
3547          * The first transfer just needs the length modified, so we
3548          * run it outside the loop.
3549          */
3550         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3551
3552         /* All the others need rx_buf/tx_buf also set */
3553         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3554                 /* Update rx_buf, tx_buf and dma */
3555                 if (xfers[i].rx_buf)
3556                         xfers[i].rx_buf += offset;
3557                 if (xfers[i].rx_dma)
3558                         xfers[i].rx_dma += offset;
3559                 if (xfers[i].tx_buf)
3560                         xfers[i].tx_buf += offset;
3561                 if (xfers[i].tx_dma)
3562                         xfers[i].tx_dma += offset;
3563
3564                 /* Update length */
3565                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3566         }
3567
3568         /*
3569          * We set up xferp to the last entry we have inserted,
3570          * so that we skip those already split transfers.
3571          */
3572         *xferp = &xfers[count - 1];
3573
3574         /* Increment statistics counters */
3575         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3576                                        transfers_split_maxsize);
3577         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3578                                        transfers_split_maxsize);
3579
3580         return 0;
3581 }
3582
3583 /**
3584  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3585  *                               when an individual transfer exceeds a
3586  *                               certain size
3587  * @ctlr:    the @spi_controller for this transfer
3588  * @msg:   the @spi_message to transform
3589  * @maxsize:  the maximum when to apply this
3590  * @gfp: GFP allocation flags
3591  *
3592  * Return: status of transformation
3593  */
3594 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3595                                 struct spi_message *msg,
3596                                 size_t maxsize,
3597                                 gfp_t gfp)
3598 {
3599         struct spi_transfer *xfer;
3600         int ret;
3601
3602         /*
3603          * Iterate over the transfer_list,
3604          * but note that xfer is advanced to the last transfer inserted
3605          * to avoid checking sizes again unnecessarily (also xfer does
3606          * potentially belong to a different list by the time the
3607          * replacement has happened).
3608          */
3609         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3610                 if (xfer->len > maxsize) {
3611                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3612                                                            maxsize, gfp);
3613                         if (ret)
3614                                 return ret;
3615                 }
3616         }
3617
3618         return 0;
3619 }
3620 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3621
3622 /*-------------------------------------------------------------------------*/
3623
3624 /* Core methods for SPI controller protocol drivers.  Some of the
3625  * other core methods are currently defined as inline functions.
3626  */
3627
3628 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3629                                         u8 bits_per_word)
3630 {
3631         if (ctlr->bits_per_word_mask) {
3632                 /* Only 32 bits fit in the mask */
3633                 if (bits_per_word > 32)
3634                         return -EINVAL;
3635                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3636                         return -EINVAL;
3637         }
3638
3639         return 0;
3640 }
3641
3642 /**
3643  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3644  * @spi: the device that requires specific CS timing configuration
3645  *
3646  * Return: zero on success, else a negative error code.
3647  */
3648 static int spi_set_cs_timing(struct spi_device *spi)
3649 {
3650         struct device *parent = spi->controller->dev.parent;
3651         int status = 0;
3652
3653         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3654                 if (spi->controller->auto_runtime_pm) {
3655                         status = pm_runtime_get_sync(parent);
3656                         if (status < 0) {
3657                                 pm_runtime_put_noidle(parent);
3658                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3659                                         status);
3660                                 return status;
3661                         }
3662
3663                         status = spi->controller->set_cs_timing(spi);
3664                         pm_runtime_mark_last_busy(parent);
3665                         pm_runtime_put_autosuspend(parent);
3666                 } else {
3667                         status = spi->controller->set_cs_timing(spi);
3668                 }
3669         }
3670         return status;
3671 }
3672
3673 /**
3674  * spi_setup - setup SPI mode and clock rate
3675  * @spi: the device whose settings are being modified
3676  * Context: can sleep, and no requests are queued to the device
3677  *
3678  * SPI protocol drivers may need to update the transfer mode if the
3679  * device doesn't work with its default.  They may likewise need
3680  * to update clock rates or word sizes from initial values.  This function
3681  * changes those settings, and must be called from a context that can sleep.
3682  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3683  * effect the next time the device is selected and data is transferred to
3684  * or from it.  When this function returns, the spi device is deselected.
3685  *
3686  * Note that this call will fail if the protocol driver specifies an option
3687  * that the underlying controller or its driver does not support.  For
3688  * example, not all hardware supports wire transfers using nine bit words,
3689  * LSB-first wire encoding, or active-high chipselects.
3690  *
3691  * Return: zero on success, else a negative error code.
3692  */
3693 int spi_setup(struct spi_device *spi)
3694 {
3695         unsigned        bad_bits, ugly_bits;
3696         int             status = 0;
3697
3698         /*
3699          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3700          * are set at the same time.
3701          */
3702         if ((hweight_long(spi->mode &
3703                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3704             (hweight_long(spi->mode &
3705                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3706                 dev_err(&spi->dev,
3707                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3708                 return -EINVAL;
3709         }
3710         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3711         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3712                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3713                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3714                 return -EINVAL;
3715         /*
3716          * Help drivers fail *cleanly* when they need options
3717          * that aren't supported with their current controller.
3718          * SPI_CS_WORD has a fallback software implementation,
3719          * so it is ignored here.
3720          */
3721         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3722                                  SPI_NO_TX | SPI_NO_RX);
3723         ugly_bits = bad_bits &
3724                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3725                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3726         if (ugly_bits) {
3727                 dev_warn(&spi->dev,
3728                          "setup: ignoring unsupported mode bits %x\n",
3729                          ugly_bits);
3730                 spi->mode &= ~ugly_bits;
3731                 bad_bits &= ~ugly_bits;
3732         }
3733         if (bad_bits) {
3734                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3735                         bad_bits);
3736                 return -EINVAL;
3737         }
3738
3739         if (!spi->bits_per_word) {
3740                 spi->bits_per_word = 8;
3741         } else {
3742                 /*
3743                  * Some controllers may not support the default 8 bits-per-word
3744                  * so only perform the check when this is explicitly provided.
3745                  */
3746                 status = __spi_validate_bits_per_word(spi->controller,
3747                                                       spi->bits_per_word);
3748                 if (status)
3749                         return status;
3750         }
3751
3752         if (spi->controller->max_speed_hz &&
3753             (!spi->max_speed_hz ||
3754              spi->max_speed_hz > spi->controller->max_speed_hz))
3755                 spi->max_speed_hz = spi->controller->max_speed_hz;
3756
3757         mutex_lock(&spi->controller->io_mutex);
3758
3759         if (spi->controller->setup) {
3760                 status = spi->controller->setup(spi);
3761                 if (status) {
3762                         mutex_unlock(&spi->controller->io_mutex);
3763                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3764                                 status);
3765                         return status;
3766                 }
3767         }
3768
3769         status = spi_set_cs_timing(spi);
3770         if (status) {
3771                 mutex_unlock(&spi->controller->io_mutex);
3772                 return status;
3773         }
3774
3775         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3776                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3777                 if (status < 0) {
3778                         mutex_unlock(&spi->controller->io_mutex);
3779                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3780                                 status);
3781                         return status;
3782                 }
3783
3784                 /*
3785                  * We do not want to return positive value from pm_runtime_get,
3786                  * there are many instances of devices calling spi_setup() and
3787                  * checking for a non-zero return value instead of a negative
3788                  * return value.
3789                  */
3790                 status = 0;
3791
3792                 spi_set_cs(spi, false, true);
3793                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3794                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3795         } else {
3796                 spi_set_cs(spi, false, true);
3797         }
3798
3799         mutex_unlock(&spi->controller->io_mutex);
3800
3801         if (spi->rt && !spi->controller->rt) {
3802                 spi->controller->rt = true;
3803                 spi_set_thread_rt(spi->controller);
3804         }
3805
3806         trace_spi_setup(spi, status);
3807
3808         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3809                         spi->mode & SPI_MODE_X_MASK,
3810                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3811                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3812                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3813                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3814                         spi->bits_per_word, spi->max_speed_hz,
3815                         status);
3816
3817         return status;
3818 }
3819 EXPORT_SYMBOL_GPL(spi_setup);
3820
3821 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3822                                        struct spi_device *spi)
3823 {
3824         int delay1, delay2;
3825
3826         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3827         if (delay1 < 0)
3828                 return delay1;
3829
3830         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3831         if (delay2 < 0)
3832                 return delay2;
3833
3834         if (delay1 < delay2)
3835                 memcpy(&xfer->word_delay, &spi->word_delay,
3836                        sizeof(xfer->word_delay));
3837
3838         return 0;
3839 }
3840
3841 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3842 {
3843         struct spi_controller *ctlr = spi->controller;
3844         struct spi_transfer *xfer;
3845         int w_size;
3846
3847         if (list_empty(&message->transfers))
3848                 return -EINVAL;
3849
3850         /*
3851          * If an SPI controller does not support toggling the CS line on each
3852          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3853          * for the CS line, we can emulate the CS-per-word hardware function by
3854          * splitting transfers into one-word transfers and ensuring that
3855          * cs_change is set for each transfer.
3856          */
3857         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3858                                           spi_get_csgpiod(spi, 0))) {
3859                 size_t maxsize;
3860                 int ret;
3861
3862                 maxsize = (spi->bits_per_word + 7) / 8;
3863
3864                 /* spi_split_transfers_maxsize() requires message->spi */
3865                 message->spi = spi;
3866
3867                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3868                                                   GFP_KERNEL);
3869                 if (ret)
3870                         return ret;
3871
3872                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3873                         /* Don't change cs_change on the last entry in the list */
3874                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3875                                 break;
3876                         xfer->cs_change = 1;
3877                 }
3878         }
3879
3880         /*
3881          * Half-duplex links include original MicroWire, and ones with
3882          * only one data pin like SPI_3WIRE (switches direction) or where
3883          * either MOSI or MISO is missing.  They can also be caused by
3884          * software limitations.
3885          */
3886         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3887             (spi->mode & SPI_3WIRE)) {
3888                 unsigned flags = ctlr->flags;
3889
3890                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3891                         if (xfer->rx_buf && xfer->tx_buf)
3892                                 return -EINVAL;
3893                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3894                                 return -EINVAL;
3895                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3896                                 return -EINVAL;
3897                 }
3898         }
3899
3900         /*
3901          * Set transfer bits_per_word and max speed as spi device default if
3902          * it is not set for this transfer.
3903          * Set transfer tx_nbits and rx_nbits as single transfer default
3904          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3905          * Ensure transfer word_delay is at least as long as that required by
3906          * device itself.
3907          */
3908         message->frame_length = 0;
3909         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3910                 xfer->effective_speed_hz = 0;
3911                 message->frame_length += xfer->len;
3912                 if (!xfer->bits_per_word)
3913                         xfer->bits_per_word = spi->bits_per_word;
3914
3915                 if (!xfer->speed_hz)
3916                         xfer->speed_hz = spi->max_speed_hz;
3917
3918                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3919                         xfer->speed_hz = ctlr->max_speed_hz;
3920
3921                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3922                         return -EINVAL;
3923
3924                 /*
3925                  * SPI transfer length should be multiple of SPI word size
3926                  * where SPI word size should be power-of-two multiple.
3927                  */
3928                 if (xfer->bits_per_word <= 8)
3929                         w_size = 1;
3930                 else if (xfer->bits_per_word <= 16)
3931                         w_size = 2;
3932                 else
3933                         w_size = 4;
3934
3935                 /* No partial transfers accepted */
3936                 if (xfer->len % w_size)
3937                         return -EINVAL;
3938
3939                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3940                     xfer->speed_hz < ctlr->min_speed_hz)
3941                         return -EINVAL;
3942
3943                 if (xfer->tx_buf && !xfer->tx_nbits)
3944                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3945                 if (xfer->rx_buf && !xfer->rx_nbits)
3946                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3947                 /*
3948                  * Check transfer tx/rx_nbits:
3949                  * 1. check the value matches one of single, dual and quad
3950                  * 2. check tx/rx_nbits match the mode in spi_device
3951                  */
3952                 if (xfer->tx_buf) {
3953                         if (spi->mode & SPI_NO_TX)
3954                                 return -EINVAL;
3955                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3956                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3957                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3958                                 return -EINVAL;
3959                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3960                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3961                                 return -EINVAL;
3962                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3963                                 !(spi->mode & SPI_TX_QUAD))
3964                                 return -EINVAL;
3965                 }
3966                 /* Check transfer rx_nbits */
3967                 if (xfer->rx_buf) {
3968                         if (spi->mode & SPI_NO_RX)
3969                                 return -EINVAL;
3970                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3971                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3972                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3973                                 return -EINVAL;
3974                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3975                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3976                                 return -EINVAL;
3977                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3978                                 !(spi->mode & SPI_RX_QUAD))
3979                                 return -EINVAL;
3980                 }
3981
3982                 if (_spi_xfer_word_delay_update(xfer, spi))
3983                         return -EINVAL;
3984         }
3985
3986         message->status = -EINPROGRESS;
3987
3988         return 0;
3989 }
3990
3991 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3992 {
3993         struct spi_controller *ctlr = spi->controller;
3994         struct spi_transfer *xfer;
3995
3996         /*
3997          * Some controllers do not support doing regular SPI transfers. Return
3998          * ENOTSUPP when this is the case.
3999          */
4000         if (!ctlr->transfer)
4001                 return -ENOTSUPP;
4002
4003         message->spi = spi;
4004
4005         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4006         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4007
4008         trace_spi_message_submit(message);
4009
4010         if (!ctlr->ptp_sts_supported) {
4011                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4012                         xfer->ptp_sts_word_pre = 0;
4013                         ptp_read_system_prets(xfer->ptp_sts);
4014                 }
4015         }
4016
4017         return ctlr->transfer(spi, message);
4018 }
4019
4020 /**
4021  * spi_async - asynchronous SPI transfer
4022  * @spi: device with which data will be exchanged
4023  * @message: describes the data transfers, including completion callback
4024  * Context: any (irqs may be blocked, etc)
4025  *
4026  * This call may be used in_irq and other contexts which can't sleep,
4027  * as well as from task contexts which can sleep.
4028  *
4029  * The completion callback is invoked in a context which can't sleep.
4030  * Before that invocation, the value of message->status is undefined.
4031  * When the callback is issued, message->status holds either zero (to
4032  * indicate complete success) or a negative error code.  After that
4033  * callback returns, the driver which issued the transfer request may
4034  * deallocate the associated memory; it's no longer in use by any SPI
4035  * core or controller driver code.
4036  *
4037  * Note that although all messages to a spi_device are handled in
4038  * FIFO order, messages may go to different devices in other orders.
4039  * Some device might be higher priority, or have various "hard" access
4040  * time requirements, for example.
4041  *
4042  * On detection of any fault during the transfer, processing of
4043  * the entire message is aborted, and the device is deselected.
4044  * Until returning from the associated message completion callback,
4045  * no other spi_message queued to that device will be processed.
4046  * (This rule applies equally to all the synchronous transfer calls,
4047  * which are wrappers around this core asynchronous primitive.)
4048  *
4049  * Return: zero on success, else a negative error code.
4050  */
4051 int spi_async(struct spi_device *spi, struct spi_message *message)
4052 {
4053         struct spi_controller *ctlr = spi->controller;
4054         int ret;
4055         unsigned long flags;
4056
4057         ret = __spi_validate(spi, message);
4058         if (ret != 0)
4059                 return ret;
4060
4061         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4062
4063         if (ctlr->bus_lock_flag)
4064                 ret = -EBUSY;
4065         else
4066                 ret = __spi_async(spi, message);
4067
4068         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4069
4070         return ret;
4071 }
4072 EXPORT_SYMBOL_GPL(spi_async);
4073
4074 /**
4075  * spi_async_locked - version of spi_async with exclusive bus usage
4076  * @spi: device with which data will be exchanged
4077  * @message: describes the data transfers, including completion callback
4078  * Context: any (irqs may be blocked, etc)
4079  *
4080  * This call may be used in_irq and other contexts which can't sleep,
4081  * as well as from task contexts which can sleep.
4082  *
4083  * The completion callback is invoked in a context which can't sleep.
4084  * Before that invocation, the value of message->status is undefined.
4085  * When the callback is issued, message->status holds either zero (to
4086  * indicate complete success) or a negative error code.  After that
4087  * callback returns, the driver which issued the transfer request may
4088  * deallocate the associated memory; it's no longer in use by any SPI
4089  * core or controller driver code.
4090  *
4091  * Note that although all messages to a spi_device are handled in
4092  * FIFO order, messages may go to different devices in other orders.
4093  * Some device might be higher priority, or have various "hard" access
4094  * time requirements, for example.
4095  *
4096  * On detection of any fault during the transfer, processing of
4097  * the entire message is aborted, and the device is deselected.
4098  * Until returning from the associated message completion callback,
4099  * no other spi_message queued to that device will be processed.
4100  * (This rule applies equally to all the synchronous transfer calls,
4101  * which are wrappers around this core asynchronous primitive.)
4102  *
4103  * Return: zero on success, else a negative error code.
4104  */
4105 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4106 {
4107         struct spi_controller *ctlr = spi->controller;
4108         int ret;
4109         unsigned long flags;
4110
4111         ret = __spi_validate(spi, message);
4112         if (ret != 0)
4113                 return ret;
4114
4115         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4116
4117         ret = __spi_async(spi, message);
4118
4119         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4120
4121         return ret;
4122
4123 }
4124
4125 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4126 {
4127         bool was_busy;
4128         int ret;
4129
4130         mutex_lock(&ctlr->io_mutex);
4131
4132         was_busy = ctlr->busy;
4133
4134         ctlr->cur_msg = msg;
4135         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4136         if (ret)
4137                 goto out;
4138
4139         ctlr->cur_msg = NULL;
4140         ctlr->fallback = false;
4141
4142         if (!was_busy) {
4143                 kfree(ctlr->dummy_rx);
4144                 ctlr->dummy_rx = NULL;
4145                 kfree(ctlr->dummy_tx);
4146                 ctlr->dummy_tx = NULL;
4147                 if (ctlr->unprepare_transfer_hardware &&
4148                     ctlr->unprepare_transfer_hardware(ctlr))
4149                         dev_err(&ctlr->dev,
4150                                 "failed to unprepare transfer hardware\n");
4151                 spi_idle_runtime_pm(ctlr);
4152         }
4153
4154 out:
4155         mutex_unlock(&ctlr->io_mutex);
4156 }
4157
4158 /*-------------------------------------------------------------------------*/
4159
4160 /*
4161  * Utility methods for SPI protocol drivers, layered on
4162  * top of the core.  Some other utility methods are defined as
4163  * inline functions.
4164  */
4165
4166 static void spi_complete(void *arg)
4167 {
4168         complete(arg);
4169 }
4170
4171 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4172 {
4173         DECLARE_COMPLETION_ONSTACK(done);
4174         int status;
4175         struct spi_controller *ctlr = spi->controller;
4176
4177         status = __spi_validate(spi, message);
4178         if (status != 0)
4179                 return status;
4180
4181         message->spi = spi;
4182
4183         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4184         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4185
4186         /*
4187          * Checking queue_empty here only guarantees async/sync message
4188          * ordering when coming from the same context. It does not need to
4189          * guard against reentrancy from a different context. The io_mutex
4190          * will catch those cases.
4191          */
4192         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4193                 message->actual_length = 0;
4194                 message->status = -EINPROGRESS;
4195
4196                 trace_spi_message_submit(message);
4197
4198                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4199                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4200
4201                 __spi_transfer_message_noqueue(ctlr, message);
4202
4203                 return message->status;
4204         }
4205
4206         /*
4207          * There are messages in the async queue that could have originated
4208          * from the same context, so we need to preserve ordering.
4209          * Therefor we send the message to the async queue and wait until they
4210          * are completed.
4211          */
4212         message->complete = spi_complete;
4213         message->context = &done;
4214         status = spi_async_locked(spi, message);
4215         if (status == 0) {
4216                 wait_for_completion(&done);
4217                 status = message->status;
4218         }
4219         message->context = NULL;
4220
4221         return status;
4222 }
4223
4224 /**
4225  * spi_sync - blocking/synchronous SPI data transfers
4226  * @spi: device with which data will be exchanged
4227  * @message: describes the data transfers
4228  * Context: can sleep
4229  *
4230  * This call may only be used from a context that may sleep.  The sleep
4231  * is non-interruptible, and has no timeout.  Low-overhead controller
4232  * drivers may DMA directly into and out of the message buffers.
4233  *
4234  * Note that the SPI device's chip select is active during the message,
4235  * and then is normally disabled between messages.  Drivers for some
4236  * frequently-used devices may want to minimize costs of selecting a chip,
4237  * by leaving it selected in anticipation that the next message will go
4238  * to the same chip.  (That may increase power usage.)
4239  *
4240  * Also, the caller is guaranteeing that the memory associated with the
4241  * message will not be freed before this call returns.
4242  *
4243  * Return: zero on success, else a negative error code.
4244  */
4245 int spi_sync(struct spi_device *spi, struct spi_message *message)
4246 {
4247         int ret;
4248
4249         mutex_lock(&spi->controller->bus_lock_mutex);
4250         ret = __spi_sync(spi, message);
4251         mutex_unlock(&spi->controller->bus_lock_mutex);
4252
4253         return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(spi_sync);
4256
4257 /**
4258  * spi_sync_locked - version of spi_sync with exclusive bus usage
4259  * @spi: device with which data will be exchanged
4260  * @message: describes the data transfers
4261  * Context: can sleep
4262  *
4263  * This call may only be used from a context that may sleep.  The sleep
4264  * is non-interruptible, and has no timeout.  Low-overhead controller
4265  * drivers may DMA directly into and out of the message buffers.
4266  *
4267  * This call should be used by drivers that require exclusive access to the
4268  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4269  * be released by a spi_bus_unlock call when the exclusive access is over.
4270  *
4271  * Return: zero on success, else a negative error code.
4272  */
4273 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4274 {
4275         return __spi_sync(spi, message);
4276 }
4277 EXPORT_SYMBOL_GPL(spi_sync_locked);
4278
4279 /**
4280  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4281  * @ctlr: SPI bus master that should be locked for exclusive bus access
4282  * Context: can sleep
4283  *
4284  * This call may only be used from a context that may sleep.  The sleep
4285  * is non-interruptible, and has no timeout.
4286  *
4287  * This call should be used by drivers that require exclusive access to the
4288  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4289  * exclusive access is over. Data transfer must be done by spi_sync_locked
4290  * and spi_async_locked calls when the SPI bus lock is held.
4291  *
4292  * Return: always zero.
4293  */
4294 int spi_bus_lock(struct spi_controller *ctlr)
4295 {
4296         unsigned long flags;
4297
4298         mutex_lock(&ctlr->bus_lock_mutex);
4299
4300         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4301         ctlr->bus_lock_flag = 1;
4302         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4303
4304         /* Mutex remains locked until spi_bus_unlock() is called */
4305
4306         return 0;
4307 }
4308 EXPORT_SYMBOL_GPL(spi_bus_lock);
4309
4310 /**
4311  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4312  * @ctlr: SPI bus master that was locked for exclusive bus access
4313  * Context: can sleep
4314  *
4315  * This call may only be used from a context that may sleep.  The sleep
4316  * is non-interruptible, and has no timeout.
4317  *
4318  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4319  * call.
4320  *
4321  * Return: always zero.
4322  */
4323 int spi_bus_unlock(struct spi_controller *ctlr)
4324 {
4325         ctlr->bus_lock_flag = 0;
4326
4327         mutex_unlock(&ctlr->bus_lock_mutex);
4328
4329         return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4332
4333 /* Portable code must never pass more than 32 bytes */
4334 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4335
4336 static u8       *buf;
4337
4338 /**
4339  * spi_write_then_read - SPI synchronous write followed by read
4340  * @spi: device with which data will be exchanged
4341  * @txbuf: data to be written (need not be dma-safe)
4342  * @n_tx: size of txbuf, in bytes
4343  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4344  * @n_rx: size of rxbuf, in bytes
4345  * Context: can sleep
4346  *
4347  * This performs a half duplex MicroWire style transaction with the
4348  * device, sending txbuf and then reading rxbuf.  The return value
4349  * is zero for success, else a negative errno status code.
4350  * This call may only be used from a context that may sleep.
4351  *
4352  * Parameters to this routine are always copied using a small buffer.
4353  * Performance-sensitive or bulk transfer code should instead use
4354  * spi_{async,sync}() calls with dma-safe buffers.
4355  *
4356  * Return: zero on success, else a negative error code.
4357  */
4358 int spi_write_then_read(struct spi_device *spi,
4359                 const void *txbuf, unsigned n_tx,
4360                 void *rxbuf, unsigned n_rx)
4361 {
4362         static DEFINE_MUTEX(lock);
4363
4364         int                     status;
4365         struct spi_message      message;
4366         struct spi_transfer     x[2];
4367         u8                      *local_buf;
4368
4369         /*
4370          * Use preallocated DMA-safe buffer if we can. We can't avoid
4371          * copying here, (as a pure convenience thing), but we can
4372          * keep heap costs out of the hot path unless someone else is
4373          * using the pre-allocated buffer or the transfer is too large.
4374          */
4375         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4376                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4377                                     GFP_KERNEL | GFP_DMA);
4378                 if (!local_buf)
4379                         return -ENOMEM;
4380         } else {
4381                 local_buf = buf;
4382         }
4383
4384         spi_message_init(&message);
4385         memset(x, 0, sizeof(x));
4386         if (n_tx) {
4387                 x[0].len = n_tx;
4388                 spi_message_add_tail(&x[0], &message);
4389         }
4390         if (n_rx) {
4391                 x[1].len = n_rx;
4392                 spi_message_add_tail(&x[1], &message);
4393         }
4394
4395         memcpy(local_buf, txbuf, n_tx);
4396         x[0].tx_buf = local_buf;
4397         x[1].rx_buf = local_buf + n_tx;
4398
4399         /* Do the i/o */
4400         status = spi_sync(spi, &message);
4401         if (status == 0)
4402                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4403
4404         if (x[0].tx_buf == buf)
4405                 mutex_unlock(&lock);
4406         else
4407                 kfree(local_buf);
4408
4409         return status;
4410 }
4411 EXPORT_SYMBOL_GPL(spi_write_then_read);
4412
4413 /*-------------------------------------------------------------------------*/
4414
4415 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4416 /* Must call put_device() when done with returned spi_device device */
4417 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4418 {
4419         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4420
4421         return dev ? to_spi_device(dev) : NULL;
4422 }
4423
4424 /* The spi controllers are not using spi_bus, so we find it with another way */
4425 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4426 {
4427         struct device *dev;
4428
4429         dev = class_find_device_by_of_node(&spi_master_class, node);
4430         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4431                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4432         if (!dev)
4433                 return NULL;
4434
4435         /* Reference got in class_find_device */
4436         return container_of(dev, struct spi_controller, dev);
4437 }
4438
4439 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4440                          void *arg)
4441 {
4442         struct of_reconfig_data *rd = arg;
4443         struct spi_controller *ctlr;
4444         struct spi_device *spi;
4445
4446         switch (of_reconfig_get_state_change(action, arg)) {
4447         case OF_RECONFIG_CHANGE_ADD:
4448                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4449                 if (ctlr == NULL)
4450                         return NOTIFY_OK;       /* Not for us */
4451
4452                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4453                         put_device(&ctlr->dev);
4454                         return NOTIFY_OK;
4455                 }
4456
4457                 spi = of_register_spi_device(ctlr, rd->dn);
4458                 put_device(&ctlr->dev);
4459
4460                 if (IS_ERR(spi)) {
4461                         pr_err("%s: failed to create for '%pOF'\n",
4462                                         __func__, rd->dn);
4463                         of_node_clear_flag(rd->dn, OF_POPULATED);
4464                         return notifier_from_errno(PTR_ERR(spi));
4465                 }
4466                 break;
4467
4468         case OF_RECONFIG_CHANGE_REMOVE:
4469                 /* Already depopulated? */
4470                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4471                         return NOTIFY_OK;
4472
4473                 /* Find our device by node */
4474                 spi = of_find_spi_device_by_node(rd->dn);
4475                 if (spi == NULL)
4476                         return NOTIFY_OK;       /* No? not meant for us */
4477
4478                 /* Unregister takes one ref away */
4479                 spi_unregister_device(spi);
4480
4481                 /* And put the reference of the find */
4482                 put_device(&spi->dev);
4483                 break;
4484         }
4485
4486         return NOTIFY_OK;
4487 }
4488
4489 static struct notifier_block spi_of_notifier = {
4490         .notifier_call = of_spi_notify,
4491 };
4492 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4493 extern struct notifier_block spi_of_notifier;
4494 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4495
4496 #if IS_ENABLED(CONFIG_ACPI)
4497 static int spi_acpi_controller_match(struct device *dev, const void *data)
4498 {
4499         return ACPI_COMPANION(dev->parent) == data;
4500 }
4501
4502 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4503 {
4504         struct device *dev;
4505
4506         dev = class_find_device(&spi_master_class, NULL, adev,
4507                                 spi_acpi_controller_match);
4508         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4509                 dev = class_find_device(&spi_slave_class, NULL, adev,
4510                                         spi_acpi_controller_match);
4511         if (!dev)
4512                 return NULL;
4513
4514         return container_of(dev, struct spi_controller, dev);
4515 }
4516
4517 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4518 {
4519         struct device *dev;
4520
4521         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4522         return to_spi_device(dev);
4523 }
4524
4525 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4526                            void *arg)
4527 {
4528         struct acpi_device *adev = arg;
4529         struct spi_controller *ctlr;
4530         struct spi_device *spi;
4531
4532         switch (value) {
4533         case ACPI_RECONFIG_DEVICE_ADD:
4534                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4535                 if (!ctlr)
4536                         break;
4537
4538                 acpi_register_spi_device(ctlr, adev);
4539                 put_device(&ctlr->dev);
4540                 break;
4541         case ACPI_RECONFIG_DEVICE_REMOVE:
4542                 if (!acpi_device_enumerated(adev))
4543                         break;
4544
4545                 spi = acpi_spi_find_device_by_adev(adev);
4546                 if (!spi)
4547                         break;
4548
4549                 spi_unregister_device(spi);
4550                 put_device(&spi->dev);
4551                 break;
4552         }
4553
4554         return NOTIFY_OK;
4555 }
4556
4557 static struct notifier_block spi_acpi_notifier = {
4558         .notifier_call = acpi_spi_notify,
4559 };
4560 #else
4561 extern struct notifier_block spi_acpi_notifier;
4562 #endif
4563
4564 static int __init spi_init(void)
4565 {
4566         int     status;
4567
4568         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4569         if (!buf) {
4570                 status = -ENOMEM;
4571                 goto err0;
4572         }
4573
4574         status = bus_register(&spi_bus_type);
4575         if (status < 0)
4576                 goto err1;
4577
4578         status = class_register(&spi_master_class);
4579         if (status < 0)
4580                 goto err2;
4581
4582         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4583                 status = class_register(&spi_slave_class);
4584                 if (status < 0)
4585                         goto err3;
4586         }
4587
4588         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4589                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4590         if (IS_ENABLED(CONFIG_ACPI))
4591                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4592
4593         return 0;
4594
4595 err3:
4596         class_unregister(&spi_master_class);
4597 err2:
4598         bus_unregister(&spi_bus_type);
4599 err1:
4600         kfree(buf);
4601         buf = NULL;
4602 err0:
4603         return status;
4604 }
4605
4606 /*
4607  * A board_info is normally registered in arch_initcall(),
4608  * but even essential drivers wait till later.
4609  *
4610  * REVISIT only boardinfo really needs static linking. The rest (device and
4611  * driver registration) _could_ be dynamically linked (modular) ... Costs
4612  * include needing to have boardinfo data structures be much more public.
4613  */
4614 postcore_initcall(spi_init);
This page took 0.346173 seconds and 4 git commands to generate.