1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
64 if ((word & 0xffff0000) == 0)
69 if ((word & 0xff00) == 0)
74 if ((word & 0xf0) == 0)
79 if ((word & 0xc) == 0)
84 if ((word & 0x2) == 0)
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
123 if (size <= BITS_PER_LONG)
125 size -= BITS_PER_LONG;
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
151 tmp = __reverse_ulong((unsigned char *)p);
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
160 if (size <= BITS_PER_LONG)
162 size -= BITS_PER_LONG;
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
179 if (sbi->gc_mode == GC_URGENT_HIGH)
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
190 struct f2fs_inode_info *fi = F2FS_I(inode);
192 if (!f2fs_is_atomic_file(inode))
195 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
197 fi->cow_inode = NULL;
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
205 truncate_inode_pages_final(inode->i_mapping);
206 f2fs_i_size_write(inode, fi->original_i_size);
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 block_t new_addr, block_t *old_addr, bool recover)
213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 struct dnode_of_data dn;
219 set_new_dnode(&dn, inode, NULL, NULL, 0);
220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
222 if (err == -ENOMEM) {
223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
236 /* dn.data_blkaddr is always valid */
237 if (!__is_valid_data_blkaddr(new_addr)) {
238 if (new_addr == NULL_ADDR)
239 dec_valid_block_count(sbi, inode, 1);
240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 f2fs_update_data_blkaddr(&dn, new_addr);
243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 new_addr, ni.version, true, true);
249 *old_addr = dn.data_blkaddr;
250 f2fs_truncate_data_blocks_range(&dn, 1);
251 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 inc_valid_block_count(sbi, inode, &count);
253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 ni.version, true, false);
261 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
264 struct revoke_entry *cur, *tmp;
265 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
267 list_for_each_entry_safe(cur, tmp, head, list) {
269 __replace_atomic_write_block(inode, cur->index,
270 cur->old_addr, NULL, true);
272 list_del(&cur->list);
273 kmem_cache_free(revoke_entry_slab, cur);
276 if (!revoke && truncate)
277 f2fs_do_truncate_blocks(inode, 0, false);
280 static int __f2fs_commit_atomic_write(struct inode *inode)
282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 struct f2fs_inode_info *fi = F2FS_I(inode);
284 struct inode *cow_inode = fi->cow_inode;
285 struct revoke_entry *new;
286 struct list_head revoke_list;
288 struct dnode_of_data dn;
289 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 pgoff_t off = 0, blen, index;
293 INIT_LIST_HEAD(&revoke_list);
296 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
298 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 if (ret && ret != -ENOENT) {
302 } else if (ret == -ENOENT) {
304 if (dn.max_level == 0)
309 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
312 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 blkaddr = f2fs_data_blkaddr(&dn);
315 if (!__is_valid_data_blkaddr(blkaddr)) {
317 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 DATA_GENERIC_ENHANCE)) {
321 f2fs_handle_error(sbi,
322 ERROR_INVALID_BLKADDR);
326 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
329 ret = __replace_atomic_write_block(inode, index, blkaddr,
330 &new->old_addr, false);
333 kmem_cache_free(revoke_entry_slab, new);
337 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
339 list_add_tail(&new->list, &revoke_list);
349 sbi->revoked_atomic_block += fi->atomic_write_cnt;
351 sbi->committed_atomic_block += fi->atomic_write_cnt;
352 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
355 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
360 int f2fs_commit_atomic_write(struct inode *inode)
362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 struct f2fs_inode_info *fi = F2FS_I(inode);
366 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
370 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
373 err = __f2fs_commit_atomic_write(inode);
376 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
382 * This function balances dirty node and dentry pages.
383 * In addition, it controls garbage collection.
385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
389 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
392 /* balance_fs_bg is able to be pending */
393 if (need && excess_cached_nats(sbi))
394 f2fs_balance_fs_bg(sbi, false);
396 if (!f2fs_is_checkpoint_ready(sbi))
400 * We should do GC or end up with checkpoint, if there are so many dirty
401 * dir/node pages without enough free segments.
403 if (has_not_enough_free_secs(sbi, 0, 0)) {
404 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
405 sbi->gc_thread->f2fs_gc_task) {
408 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
409 TASK_UNINTERRUPTIBLE);
410 wake_up(&sbi->gc_thread->gc_wait_queue_head);
412 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
414 struct f2fs_gc_control gc_control = {
415 .victim_segno = NULL_SEGNO,
416 .init_gc_type = BG_GC,
418 .should_migrate_blocks = false,
419 .err_gc_skipped = false,
421 f2fs_down_write(&sbi->gc_lock);
422 f2fs_gc(sbi, &gc_control);
427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
429 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
430 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
431 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
432 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
433 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
434 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
435 unsigned int threshold = sbi->blocks_per_seg * factor *
436 DEFAULT_DIRTY_THRESHOLD;
437 unsigned int global_threshold = threshold * 3 / 2;
439 if (dents >= threshold || qdata >= threshold ||
440 nodes >= threshold || meta >= threshold ||
443 return dents + qdata + nodes + meta + imeta > global_threshold;
446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
448 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
451 /* try to shrink extent cache when there is no enough memory */
452 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
453 f2fs_shrink_read_extent_tree(sbi,
454 READ_EXTENT_CACHE_SHRINK_NUMBER);
456 /* try to shrink age extent cache when there is no enough memory */
457 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
458 f2fs_shrink_age_extent_tree(sbi,
459 AGE_EXTENT_CACHE_SHRINK_NUMBER);
461 /* check the # of cached NAT entries */
462 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
463 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
465 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
466 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
468 f2fs_build_free_nids(sbi, false, false);
470 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
471 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
474 /* there is background inflight IO or foreground operation recently */
475 if (is_inflight_io(sbi, REQ_TIME) ||
476 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
479 /* exceed periodical checkpoint timeout threshold */
480 if (f2fs_time_over(sbi, CP_TIME))
483 /* checkpoint is the only way to shrink partial cached entries */
484 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
485 f2fs_available_free_memory(sbi, INO_ENTRIES))
489 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
490 struct blk_plug plug;
492 mutex_lock(&sbi->flush_lock);
494 blk_start_plug(&plug);
495 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
496 blk_finish_plug(&plug);
498 mutex_unlock(&sbi->flush_lock);
500 f2fs_sync_fs(sbi->sb, 1);
501 stat_inc_bg_cp_count(sbi->stat_info);
504 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
505 struct block_device *bdev)
507 int ret = blkdev_issue_flush(bdev);
509 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
510 test_opt(sbi, FLUSH_MERGE), ret);
514 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
519 if (!f2fs_is_multi_device(sbi))
520 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
522 for (i = 0; i < sbi->s_ndevs; i++) {
523 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
525 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
532 static int issue_flush_thread(void *data)
534 struct f2fs_sb_info *sbi = data;
535 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
536 wait_queue_head_t *q = &fcc->flush_wait_queue;
538 if (kthread_should_stop())
541 if (!llist_empty(&fcc->issue_list)) {
542 struct flush_cmd *cmd, *next;
545 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
546 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
548 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
550 ret = submit_flush_wait(sbi, cmd->ino);
551 atomic_inc(&fcc->issued_flush);
553 llist_for_each_entry_safe(cmd, next,
554 fcc->dispatch_list, llnode) {
556 complete(&cmd->wait);
558 fcc->dispatch_list = NULL;
561 wait_event_interruptible(*q,
562 kthread_should_stop() || !llist_empty(&fcc->issue_list));
566 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
568 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
569 struct flush_cmd cmd;
572 if (test_opt(sbi, NOBARRIER))
575 if (!test_opt(sbi, FLUSH_MERGE)) {
576 atomic_inc(&fcc->queued_flush);
577 ret = submit_flush_wait(sbi, ino);
578 atomic_dec(&fcc->queued_flush);
579 atomic_inc(&fcc->issued_flush);
583 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
584 f2fs_is_multi_device(sbi)) {
585 ret = submit_flush_wait(sbi, ino);
586 atomic_dec(&fcc->queued_flush);
588 atomic_inc(&fcc->issued_flush);
593 init_completion(&cmd.wait);
595 llist_add(&cmd.llnode, &fcc->issue_list);
598 * update issue_list before we wake up issue_flush thread, this
599 * smp_mb() pairs with another barrier in ___wait_event(), see
600 * more details in comments of waitqueue_active().
604 if (waitqueue_active(&fcc->flush_wait_queue))
605 wake_up(&fcc->flush_wait_queue);
607 if (fcc->f2fs_issue_flush) {
608 wait_for_completion(&cmd.wait);
609 atomic_dec(&fcc->queued_flush);
611 struct llist_node *list;
613 list = llist_del_all(&fcc->issue_list);
615 wait_for_completion(&cmd.wait);
616 atomic_dec(&fcc->queued_flush);
618 struct flush_cmd *tmp, *next;
620 ret = submit_flush_wait(sbi, ino);
622 llist_for_each_entry_safe(tmp, next, list, llnode) {
625 atomic_dec(&fcc->queued_flush);
629 complete(&tmp->wait);
637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
639 dev_t dev = sbi->sb->s_bdev->bd_dev;
640 struct flush_cmd_control *fcc;
642 if (SM_I(sbi)->fcc_info) {
643 fcc = SM_I(sbi)->fcc_info;
644 if (fcc->f2fs_issue_flush)
649 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
652 atomic_set(&fcc->issued_flush, 0);
653 atomic_set(&fcc->queued_flush, 0);
654 init_waitqueue_head(&fcc->flush_wait_queue);
655 init_llist_head(&fcc->issue_list);
656 SM_I(sbi)->fcc_info = fcc;
657 if (!test_opt(sbi, FLUSH_MERGE))
661 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
662 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
663 if (IS_ERR(fcc->f2fs_issue_flush)) {
664 int err = PTR_ERR(fcc->f2fs_issue_flush);
667 SM_I(sbi)->fcc_info = NULL;
674 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
676 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
678 if (fcc && fcc->f2fs_issue_flush) {
679 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
681 fcc->f2fs_issue_flush = NULL;
682 kthread_stop(flush_thread);
686 SM_I(sbi)->fcc_info = NULL;
690 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
694 if (!f2fs_is_multi_device(sbi))
697 if (test_opt(sbi, NOBARRIER))
700 for (i = 1; i < sbi->s_ndevs; i++) {
701 int count = DEFAULT_RETRY_IO_COUNT;
703 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
707 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
709 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
710 } while (ret && --count);
713 f2fs_stop_checkpoint(sbi, false,
714 STOP_CP_REASON_FLUSH_FAIL);
718 spin_lock(&sbi->dev_lock);
719 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 spin_unlock(&sbi->dev_lock);
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 enum dirty_type dirty_type)
729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
731 /* need not be added */
732 if (IS_CURSEG(sbi, segno))
735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 dirty_i->nr_dirty[dirty_type]++;
738 if (dirty_type == DIRTY) {
739 struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 enum dirty_type t = sentry->type;
742 if (unlikely(t >= DIRTY)) {
746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 dirty_i->nr_dirty[t]++;
749 if (__is_large_section(sbi)) {
750 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
751 block_t valid_blocks =
752 get_valid_blocks(sbi, segno, true);
754 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
755 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
757 if (!IS_CURSEC(sbi, secno))
758 set_bit(secno, dirty_i->dirty_secmap);
763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
764 enum dirty_type dirty_type)
766 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
767 block_t valid_blocks;
769 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
770 dirty_i->nr_dirty[dirty_type]--;
772 if (dirty_type == DIRTY) {
773 struct seg_entry *sentry = get_seg_entry(sbi, segno);
774 enum dirty_type t = sentry->type;
776 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
777 dirty_i->nr_dirty[t]--;
779 valid_blocks = get_valid_blocks(sbi, segno, true);
780 if (valid_blocks == 0) {
781 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
782 dirty_i->victim_secmap);
783 #ifdef CONFIG_F2FS_CHECK_FS
784 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
787 if (__is_large_section(sbi)) {
788 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
791 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
792 clear_bit(secno, dirty_i->dirty_secmap);
796 if (!IS_CURSEC(sbi, secno))
797 set_bit(secno, dirty_i->dirty_secmap);
803 * Should not occur error such as -ENOMEM.
804 * Adding dirty entry into seglist is not critical operation.
805 * If a given segment is one of current working segments, it won't be added.
807 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
810 unsigned short valid_blocks, ckpt_valid_blocks;
811 unsigned int usable_blocks;
813 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
816 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
817 mutex_lock(&dirty_i->seglist_lock);
819 valid_blocks = get_valid_blocks(sbi, segno, false);
820 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
822 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
823 ckpt_valid_blocks == usable_blocks)) {
824 __locate_dirty_segment(sbi, segno, PRE);
825 __remove_dirty_segment(sbi, segno, DIRTY);
826 } else if (valid_blocks < usable_blocks) {
827 __locate_dirty_segment(sbi, segno, DIRTY);
829 /* Recovery routine with SSR needs this */
830 __remove_dirty_segment(sbi, segno, DIRTY);
833 mutex_unlock(&dirty_i->seglist_lock);
836 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
837 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
842 mutex_lock(&dirty_i->seglist_lock);
843 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
844 if (get_valid_blocks(sbi, segno, false))
846 if (IS_CURSEG(sbi, segno))
848 __locate_dirty_segment(sbi, segno, PRE);
849 __remove_dirty_segment(sbi, segno, DIRTY);
851 mutex_unlock(&dirty_i->seglist_lock);
854 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
857 (overprovision_segments(sbi) - reserved_segments(sbi));
858 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
859 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
860 block_t holes[2] = {0, 0}; /* DATA and NODE */
862 struct seg_entry *se;
865 mutex_lock(&dirty_i->seglist_lock);
866 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867 se = get_seg_entry(sbi, segno);
868 if (IS_NODESEG(se->type))
869 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
872 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
875 mutex_unlock(&dirty_i->seglist_lock);
877 unusable = max(holes[DATA], holes[NODE]);
878 if (unusable > ovp_holes)
879 return unusable - ovp_holes;
883 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
886 (overprovision_segments(sbi) - reserved_segments(sbi));
887 if (unusable > F2FS_OPTION(sbi).unusable_cap)
889 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
890 dirty_segments(sbi) > ovp_hole_segs)
895 /* This is only used by SBI_CP_DISABLED */
896 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
898 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
899 unsigned int segno = 0;
901 mutex_lock(&dirty_i->seglist_lock);
902 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
903 if (get_valid_blocks(sbi, segno, false))
905 if (get_ckpt_valid_blocks(sbi, segno, false))
907 mutex_unlock(&dirty_i->seglist_lock);
910 mutex_unlock(&dirty_i->seglist_lock);
914 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
915 struct block_device *bdev, block_t lstart,
916 block_t start, block_t len)
918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
919 struct list_head *pend_list;
920 struct discard_cmd *dc;
922 f2fs_bug_on(sbi, !len);
924 pend_list = &dcc->pend_list[plist_idx(len)];
926 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
927 INIT_LIST_HEAD(&dc->list);
936 init_completion(&dc->wait);
937 list_add_tail(&dc->list, pend_list);
938 spin_lock_init(&dc->lock);
940 atomic_inc(&dcc->discard_cmd_cnt);
941 dcc->undiscard_blks += len;
946 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
947 struct block_device *bdev, block_t lstart,
948 block_t start, block_t len,
949 struct rb_node *parent, struct rb_node **p,
952 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
953 struct discard_cmd *dc;
955 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
957 rb_link_node(&dc->rb_node, parent, p);
958 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
963 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
964 struct discard_cmd *dc)
966 if (dc->state == D_DONE)
967 atomic_sub(dc->queued, &dcc->queued_discard);
970 rb_erase_cached(&dc->rb_node, &dcc->root);
971 dcc->undiscard_blks -= dc->len;
973 kmem_cache_free(discard_cmd_slab, dc);
975 atomic_dec(&dcc->discard_cmd_cnt);
978 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
979 struct discard_cmd *dc)
981 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
984 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
986 spin_lock_irqsave(&dc->lock, flags);
988 spin_unlock_irqrestore(&dc->lock, flags);
991 spin_unlock_irqrestore(&dc->lock, flags);
993 f2fs_bug_on(sbi, dc->ref);
995 if (dc->error == -EOPNOTSUPP)
1000 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1001 KERN_INFO, sbi->sb->s_id,
1002 dc->lstart, dc->start, dc->len, dc->error);
1003 __detach_discard_cmd(dcc, dc);
1006 static void f2fs_submit_discard_endio(struct bio *bio)
1008 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1009 unsigned long flags;
1011 spin_lock_irqsave(&dc->lock, flags);
1013 dc->error = blk_status_to_errno(bio->bi_status);
1015 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1017 complete_all(&dc->wait);
1019 spin_unlock_irqrestore(&dc->lock, flags);
1023 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1024 block_t start, block_t end)
1026 #ifdef CONFIG_F2FS_CHECK_FS
1027 struct seg_entry *sentry;
1029 block_t blk = start;
1030 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1034 segno = GET_SEGNO(sbi, blk);
1035 sentry = get_seg_entry(sbi, segno);
1036 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1038 if (end < START_BLOCK(sbi, segno + 1))
1039 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1042 map = (unsigned long *)(sentry->cur_valid_map);
1043 offset = __find_rev_next_bit(map, size, offset);
1044 f2fs_bug_on(sbi, offset != size);
1045 blk = START_BLOCK(sbi, segno + 1);
1050 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1051 struct discard_policy *dpolicy,
1052 int discard_type, unsigned int granularity)
1054 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1057 dpolicy->type = discard_type;
1058 dpolicy->sync = true;
1059 dpolicy->ordered = false;
1060 dpolicy->granularity = granularity;
1062 dpolicy->max_requests = dcc->max_discard_request;
1063 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1064 dpolicy->timeout = false;
1066 if (discard_type == DPOLICY_BG) {
1067 dpolicy->min_interval = dcc->min_discard_issue_time;
1068 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1069 dpolicy->max_interval = dcc->max_discard_issue_time;
1070 dpolicy->io_aware = true;
1071 dpolicy->sync = false;
1072 dpolicy->ordered = true;
1073 if (utilization(sbi) > dcc->discard_urgent_util) {
1074 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1075 if (atomic_read(&dcc->discard_cmd_cnt))
1076 dpolicy->max_interval =
1077 dcc->min_discard_issue_time;
1079 } else if (discard_type == DPOLICY_FORCE) {
1080 dpolicy->min_interval = dcc->min_discard_issue_time;
1081 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1082 dpolicy->max_interval = dcc->max_discard_issue_time;
1083 dpolicy->io_aware = false;
1084 } else if (discard_type == DPOLICY_FSTRIM) {
1085 dpolicy->io_aware = false;
1086 } else if (discard_type == DPOLICY_UMOUNT) {
1087 dpolicy->io_aware = false;
1088 /* we need to issue all to keep CP_TRIMMED_FLAG */
1089 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1090 dpolicy->timeout = true;
1094 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1095 struct block_device *bdev, block_t lstart,
1096 block_t start, block_t len);
1097 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1098 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1099 struct discard_policy *dpolicy,
1100 struct discard_cmd *dc,
1101 unsigned int *issued)
1103 struct block_device *bdev = dc->bdev;
1104 unsigned int max_discard_blocks =
1105 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1106 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1107 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1108 &(dcc->fstrim_list) : &(dcc->wait_list);
1109 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1110 block_t lstart, start, len, total_len;
1113 if (dc->state != D_PREP)
1116 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1119 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1121 lstart = dc->lstart;
1128 while (total_len && *issued < dpolicy->max_requests && !err) {
1129 struct bio *bio = NULL;
1130 unsigned long flags;
1133 if (len > max_discard_blocks) {
1134 len = max_discard_blocks;
1139 if (*issued == dpolicy->max_requests)
1144 if (time_to_inject(sbi, FAULT_DISCARD)) {
1145 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1148 err = __blkdev_issue_discard(bdev,
1149 SECTOR_FROM_BLOCK(start),
1150 SECTOR_FROM_BLOCK(len),
1154 spin_lock_irqsave(&dc->lock, flags);
1155 if (dc->state == D_PARTIAL)
1156 dc->state = D_SUBMIT;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1162 f2fs_bug_on(sbi, !bio);
1165 * should keep before submission to avoid D_DONE
1168 spin_lock_irqsave(&dc->lock, flags);
1170 dc->state = D_SUBMIT;
1172 dc->state = D_PARTIAL;
1174 spin_unlock_irqrestore(&dc->lock, flags);
1176 atomic_inc(&dcc->queued_discard);
1178 list_move_tail(&dc->list, wait_list);
1180 /* sanity check on discard range */
1181 __check_sit_bitmap(sbi, lstart, lstart + len);
1183 bio->bi_private = dc;
1184 bio->bi_end_io = f2fs_submit_discard_endio;
1185 bio->bi_opf |= flag;
1188 atomic_inc(&dcc->issued_discard);
1190 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1199 dcc->undiscard_blks -= len;
1200 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1205 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1206 struct block_device *bdev, block_t lstart,
1207 block_t start, block_t len,
1208 struct rb_node **insert_p,
1209 struct rb_node *insert_parent)
1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213 struct rb_node *parent = NULL;
1214 bool leftmost = true;
1216 if (insert_p && insert_parent) {
1217 parent = insert_parent;
1222 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1225 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1229 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1230 struct discard_cmd *dc)
1232 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1235 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1236 struct discard_cmd *dc, block_t blkaddr)
1238 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1239 struct discard_info di = dc->di;
1240 bool modified = false;
1242 if (dc->state == D_DONE || dc->len == 1) {
1243 __remove_discard_cmd(sbi, dc);
1247 dcc->undiscard_blks -= di.len;
1249 if (blkaddr > di.lstart) {
1250 dc->len = blkaddr - dc->lstart;
1251 dcc->undiscard_blks += dc->len;
1252 __relocate_discard_cmd(dcc, dc);
1256 if (blkaddr < di.lstart + di.len - 1) {
1258 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1259 di.start + blkaddr + 1 - di.lstart,
1260 di.lstart + di.len - 1 - blkaddr,
1266 dcc->undiscard_blks += dc->len;
1267 __relocate_discard_cmd(dcc, dc);
1272 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1273 struct block_device *bdev, block_t lstart,
1274 block_t start, block_t len)
1276 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1277 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1278 struct discard_cmd *dc;
1279 struct discard_info di = {0};
1280 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1281 unsigned int max_discard_blocks =
1282 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1283 block_t end = lstart + len;
1285 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1287 (struct rb_entry **)&prev_dc,
1288 (struct rb_entry **)&next_dc,
1289 &insert_p, &insert_parent, true, NULL);
1295 di.len = next_dc ? next_dc->lstart - lstart : len;
1296 di.len = min(di.len, len);
1301 struct rb_node *node;
1302 bool merged = false;
1303 struct discard_cmd *tdc = NULL;
1306 di.lstart = prev_dc->lstart + prev_dc->len;
1307 if (di.lstart < lstart)
1309 if (di.lstart >= end)
1312 if (!next_dc || next_dc->lstart > end)
1313 di.len = end - di.lstart;
1315 di.len = next_dc->lstart - di.lstart;
1316 di.start = start + di.lstart - lstart;
1322 if (prev_dc && prev_dc->state == D_PREP &&
1323 prev_dc->bdev == bdev &&
1324 __is_discard_back_mergeable(&di, &prev_dc->di,
1325 max_discard_blocks)) {
1326 prev_dc->di.len += di.len;
1327 dcc->undiscard_blks += di.len;
1328 __relocate_discard_cmd(dcc, prev_dc);
1334 if (next_dc && next_dc->state == D_PREP &&
1335 next_dc->bdev == bdev &&
1336 __is_discard_front_mergeable(&di, &next_dc->di,
1337 max_discard_blocks)) {
1338 next_dc->di.lstart = di.lstart;
1339 next_dc->di.len += di.len;
1340 next_dc->di.start = di.start;
1341 dcc->undiscard_blks += di.len;
1342 __relocate_discard_cmd(dcc, next_dc);
1344 __remove_discard_cmd(sbi, tdc);
1349 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1350 di.len, NULL, NULL);
1357 node = rb_next(&prev_dc->rb_node);
1358 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1362 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1363 struct block_device *bdev, block_t blkstart, block_t blklen)
1365 block_t lblkstart = blkstart;
1367 if (!f2fs_bdev_support_discard(bdev))
1370 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1372 if (f2fs_is_multi_device(sbi)) {
1373 int devi = f2fs_target_device_index(sbi, blkstart);
1375 blkstart -= FDEV(devi).start_blk;
1377 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1378 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1379 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1382 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1383 struct discard_policy *dpolicy)
1385 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1386 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1387 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1388 struct discard_cmd *dc;
1389 struct blk_plug plug;
1390 unsigned int pos = dcc->next_pos;
1391 unsigned int issued = 0;
1392 bool io_interrupted = false;
1394 mutex_lock(&dcc->cmd_lock);
1395 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1397 (struct rb_entry **)&prev_dc,
1398 (struct rb_entry **)&next_dc,
1399 &insert_p, &insert_parent, true, NULL);
1403 blk_start_plug(&plug);
1406 struct rb_node *node;
1409 if (dc->state != D_PREP)
1412 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1413 io_interrupted = true;
1417 dcc->next_pos = dc->lstart + dc->len;
1418 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1420 if (issued >= dpolicy->max_requests)
1423 node = rb_next(&dc->rb_node);
1425 __remove_discard_cmd(sbi, dc);
1426 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 blk_finish_plug(&plug);
1434 mutex_unlock(&dcc->cmd_lock);
1436 if (!issued && io_interrupted)
1441 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1442 struct discard_policy *dpolicy);
1444 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1445 struct discard_policy *dpolicy)
1447 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1448 struct list_head *pend_list;
1449 struct discard_cmd *dc, *tmp;
1450 struct blk_plug plug;
1452 bool io_interrupted = false;
1454 if (dpolicy->timeout)
1455 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1459 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1460 if (dpolicy->timeout &&
1461 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1464 if (i + 1 < dpolicy->granularity)
1467 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1468 return __issue_discard_cmd_orderly(sbi, dpolicy);
1470 pend_list = &dcc->pend_list[i];
1472 mutex_lock(&dcc->cmd_lock);
1473 if (list_empty(pend_list))
1475 if (unlikely(dcc->rbtree_check))
1476 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1477 &dcc->root, false));
1478 blk_start_plug(&plug);
1479 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1480 f2fs_bug_on(sbi, dc->state != D_PREP);
1482 if (dpolicy->timeout &&
1483 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1486 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1487 !is_idle(sbi, DISCARD_TIME)) {
1488 io_interrupted = true;
1492 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1494 if (issued >= dpolicy->max_requests)
1497 blk_finish_plug(&plug);
1499 mutex_unlock(&dcc->cmd_lock);
1501 if (issued >= dpolicy->max_requests || io_interrupted)
1505 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1506 __wait_all_discard_cmd(sbi, dpolicy);
1510 if (!issued && io_interrupted)
1516 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 struct list_head *pend_list;
1520 struct discard_cmd *dc, *tmp;
1522 bool dropped = false;
1524 mutex_lock(&dcc->cmd_lock);
1525 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1526 pend_list = &dcc->pend_list[i];
1527 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1528 f2fs_bug_on(sbi, dc->state != D_PREP);
1529 __remove_discard_cmd(sbi, dc);
1533 mutex_unlock(&dcc->cmd_lock);
1538 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1540 __drop_discard_cmd(sbi);
1543 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1544 struct discard_cmd *dc)
1546 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547 unsigned int len = 0;
1549 wait_for_completion_io(&dc->wait);
1550 mutex_lock(&dcc->cmd_lock);
1551 f2fs_bug_on(sbi, dc->state != D_DONE);
1556 __remove_discard_cmd(sbi, dc);
1558 mutex_unlock(&dcc->cmd_lock);
1563 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1564 struct discard_policy *dpolicy,
1565 block_t start, block_t end)
1567 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1568 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1569 &(dcc->fstrim_list) : &(dcc->wait_list);
1570 struct discard_cmd *dc = NULL, *iter, *tmp;
1571 unsigned int trimmed = 0;
1576 mutex_lock(&dcc->cmd_lock);
1577 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1578 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1580 if (iter->len < dpolicy->granularity)
1582 if (iter->state == D_DONE && !iter->ref) {
1583 wait_for_completion_io(&iter->wait);
1585 trimmed += iter->len;
1586 __remove_discard_cmd(sbi, iter);
1593 mutex_unlock(&dcc->cmd_lock);
1596 trimmed += __wait_one_discard_bio(sbi, dc);
1603 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1604 struct discard_policy *dpolicy)
1606 struct discard_policy dp;
1607 unsigned int discard_blks;
1610 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1613 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1614 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1615 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1616 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1618 return discard_blks;
1621 /* This should be covered by global mutex, &sit_i->sentry_lock */
1622 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1624 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1625 struct discard_cmd *dc;
1626 bool need_wait = false;
1628 mutex_lock(&dcc->cmd_lock);
1629 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1632 if (dc->state == D_PREP) {
1633 __punch_discard_cmd(sbi, dc, blkaddr);
1639 mutex_unlock(&dcc->cmd_lock);
1642 __wait_one_discard_bio(sbi, dc);
1645 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1649 if (dcc && dcc->f2fs_issue_discard) {
1650 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1652 dcc->f2fs_issue_discard = NULL;
1653 kthread_stop(discard_thread);
1657 /* This comes from f2fs_put_super */
1658 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1660 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1661 struct discard_policy dpolicy;
1664 if (!atomic_read(&dcc->discard_cmd_cnt))
1667 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1668 dcc->discard_granularity);
1669 __issue_discard_cmd(sbi, &dpolicy);
1670 dropped = __drop_discard_cmd(sbi);
1672 /* just to make sure there is no pending discard commands */
1673 __wait_all_discard_cmd(sbi, NULL);
1675 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679 static int issue_discard_thread(void *data)
1681 struct f2fs_sb_info *sbi = data;
1682 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1683 wait_queue_head_t *q = &dcc->discard_wait_queue;
1684 struct discard_policy dpolicy;
1685 unsigned int wait_ms = dcc->min_discard_issue_time;
1691 wait_event_interruptible_timeout(*q,
1692 kthread_should_stop() || freezing(current) ||
1694 msecs_to_jiffies(wait_ms));
1696 if (sbi->gc_mode == GC_URGENT_HIGH ||
1697 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1698 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1700 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1701 dcc->discard_granularity);
1703 if (dcc->discard_wake)
1704 dcc->discard_wake = 0;
1706 /* clean up pending candidates before going to sleep */
1707 if (atomic_read(&dcc->queued_discard))
1708 __wait_all_discard_cmd(sbi, NULL);
1710 if (try_to_freeze())
1712 if (f2fs_readonly(sbi->sb))
1714 if (kthread_should_stop())
1716 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1717 !atomic_read(&dcc->discard_cmd_cnt)) {
1718 wait_ms = dpolicy.max_interval;
1722 sb_start_intwrite(sbi->sb);
1724 issued = __issue_discard_cmd(sbi, &dpolicy);
1726 __wait_all_discard_cmd(sbi, &dpolicy);
1727 wait_ms = dpolicy.min_interval;
1728 } else if (issued == -1) {
1729 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731 wait_ms = dpolicy.mid_interval;
1733 wait_ms = dpolicy.max_interval;
1735 if (!atomic_read(&dcc->discard_cmd_cnt))
1736 wait_ms = dpolicy.max_interval;
1738 sb_end_intwrite(sbi->sb);
1740 } while (!kthread_should_stop());
1744 #ifdef CONFIG_BLK_DEV_ZONED
1745 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1746 struct block_device *bdev, block_t blkstart, block_t blklen)
1748 sector_t sector, nr_sects;
1749 block_t lblkstart = blkstart;
1752 if (f2fs_is_multi_device(sbi)) {
1753 devi = f2fs_target_device_index(sbi, blkstart);
1754 if (blkstart < FDEV(devi).start_blk ||
1755 blkstart > FDEV(devi).end_blk) {
1756 f2fs_err(sbi, "Invalid block %x", blkstart);
1759 blkstart -= FDEV(devi).start_blk;
1762 /* For sequential zones, reset the zone write pointer */
1763 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1764 sector = SECTOR_FROM_BLOCK(blkstart);
1765 nr_sects = SECTOR_FROM_BLOCK(blklen);
1767 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1768 nr_sects != bdev_zone_sectors(bdev)) {
1769 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1770 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1774 trace_f2fs_issue_reset_zone(bdev, blkstart);
1775 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1776 sector, nr_sects, GFP_NOFS);
1779 /* For conventional zones, use regular discard if supported */
1780 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1785 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1786 struct block_device *bdev, block_t blkstart, block_t blklen)
1788 #ifdef CONFIG_BLK_DEV_ZONED
1789 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1790 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1792 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1796 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1797 block_t blkstart, block_t blklen)
1799 sector_t start = blkstart, len = 0;
1800 struct block_device *bdev;
1801 struct seg_entry *se;
1802 unsigned int offset;
1806 bdev = f2fs_target_device(sbi, blkstart, NULL);
1808 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1810 struct block_device *bdev2 =
1811 f2fs_target_device(sbi, i, NULL);
1813 if (bdev2 != bdev) {
1814 err = __issue_discard_async(sbi, bdev,
1824 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1825 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1827 if (f2fs_block_unit_discard(sbi) &&
1828 !f2fs_test_and_set_bit(offset, se->discard_map))
1829 sbi->discard_blks--;
1833 err = __issue_discard_async(sbi, bdev, start, len);
1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1840 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1841 int max_blocks = sbi->blocks_per_seg;
1842 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1843 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1844 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1845 unsigned long *discard_map = (unsigned long *)se->discard_map;
1846 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1847 unsigned int start = 0, end = -1;
1848 bool force = (cpc->reason & CP_DISCARD);
1849 struct discard_entry *de = NULL;
1850 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1853 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1854 !f2fs_block_unit_discard(sbi))
1858 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1859 SM_I(sbi)->dcc_info->nr_discards >=
1860 SM_I(sbi)->dcc_info->max_discards)
1864 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1865 for (i = 0; i < entries; i++)
1866 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1867 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1869 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1870 SM_I(sbi)->dcc_info->max_discards) {
1871 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1872 if (start >= max_blocks)
1875 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1876 if (force && start && end != max_blocks
1877 && (end - start) < cpc->trim_minlen)
1884 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1885 GFP_F2FS_ZERO, true, NULL);
1886 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1887 list_add_tail(&de->list, head);
1890 for (i = start; i < end; i++)
1891 __set_bit_le(i, (void *)de->discard_map);
1893 SM_I(sbi)->dcc_info->nr_discards += end - start;
1898 static void release_discard_addr(struct discard_entry *entry)
1900 list_del(&entry->list);
1901 kmem_cache_free(discard_entry_slab, entry);
1904 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1906 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1907 struct discard_entry *entry, *this;
1910 list_for_each_entry_safe(entry, this, head, list)
1911 release_discard_addr(entry);
1915 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1917 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1919 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1922 mutex_lock(&dirty_i->seglist_lock);
1923 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1924 __set_test_and_free(sbi, segno, false);
1925 mutex_unlock(&dirty_i->seglist_lock);
1928 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1929 struct cp_control *cpc)
1931 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1932 struct list_head *head = &dcc->entry_list;
1933 struct discard_entry *entry, *this;
1934 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1935 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1936 unsigned int start = 0, end = -1;
1937 unsigned int secno, start_segno;
1938 bool force = (cpc->reason & CP_DISCARD);
1939 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1940 DISCARD_UNIT_SECTION;
1942 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1943 section_alignment = true;
1945 mutex_lock(&dirty_i->seglist_lock);
1950 if (section_alignment && end != -1)
1952 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1953 if (start >= MAIN_SEGS(sbi))
1955 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1958 if (section_alignment) {
1959 start = rounddown(start, sbi->segs_per_sec);
1960 end = roundup(end, sbi->segs_per_sec);
1963 for (i = start; i < end; i++) {
1964 if (test_and_clear_bit(i, prefree_map))
1965 dirty_i->nr_dirty[PRE]--;
1968 if (!f2fs_realtime_discard_enable(sbi))
1971 if (force && start >= cpc->trim_start &&
1972 (end - 1) <= cpc->trim_end)
1975 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1977 (end - start) << sbi->log_blocks_per_seg);
1981 secno = GET_SEC_FROM_SEG(sbi, start);
1982 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1983 if (!IS_CURSEC(sbi, secno) &&
1984 !get_valid_blocks(sbi, start, true))
1985 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1986 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1988 start = start_segno + sbi->segs_per_sec;
1994 mutex_unlock(&dirty_i->seglist_lock);
1996 if (!f2fs_block_unit_discard(sbi))
1999 /* send small discards */
2000 list_for_each_entry_safe(entry, this, head, list) {
2001 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2002 bool is_valid = test_bit_le(0, entry->discard_map);
2006 next_pos = find_next_zero_bit_le(entry->discard_map,
2007 sbi->blocks_per_seg, cur_pos);
2008 len = next_pos - cur_pos;
2010 if (f2fs_sb_has_blkzoned(sbi) ||
2011 (force && len < cpc->trim_minlen))
2014 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2018 next_pos = find_next_bit_le(entry->discard_map,
2019 sbi->blocks_per_seg, cur_pos);
2023 is_valid = !is_valid;
2025 if (cur_pos < sbi->blocks_per_seg)
2028 release_discard_addr(entry);
2029 dcc->nr_discards -= total_len;
2033 wake_up_discard_thread(sbi, false);
2036 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2038 dev_t dev = sbi->sb->s_bdev->bd_dev;
2039 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2042 if (!f2fs_realtime_discard_enable(sbi))
2045 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2046 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2047 if (IS_ERR(dcc->f2fs_issue_discard)) {
2048 err = PTR_ERR(dcc->f2fs_issue_discard);
2049 dcc->f2fs_issue_discard = NULL;
2055 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2057 struct discard_cmd_control *dcc;
2060 if (SM_I(sbi)->dcc_info) {
2061 dcc = SM_I(sbi)->dcc_info;
2065 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2069 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2070 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2071 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2072 dcc->discard_granularity = sbi->blocks_per_seg;
2073 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2074 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2076 INIT_LIST_HEAD(&dcc->entry_list);
2077 for (i = 0; i < MAX_PLIST_NUM; i++)
2078 INIT_LIST_HEAD(&dcc->pend_list[i]);
2079 INIT_LIST_HEAD(&dcc->wait_list);
2080 INIT_LIST_HEAD(&dcc->fstrim_list);
2081 mutex_init(&dcc->cmd_lock);
2082 atomic_set(&dcc->issued_discard, 0);
2083 atomic_set(&dcc->queued_discard, 0);
2084 atomic_set(&dcc->discard_cmd_cnt, 0);
2085 dcc->nr_discards = 0;
2086 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2087 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2088 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2089 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2090 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2091 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2092 dcc->undiscard_blks = 0;
2094 dcc->root = RB_ROOT_CACHED;
2095 dcc->rbtree_check = false;
2097 init_waitqueue_head(&dcc->discard_wait_queue);
2098 SM_I(sbi)->dcc_info = dcc;
2100 err = f2fs_start_discard_thread(sbi);
2103 SM_I(sbi)->dcc_info = NULL;
2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2111 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2116 f2fs_stop_discard_thread(sbi);
2119 * Recovery can cache discard commands, so in error path of
2120 * fill_super(), it needs to give a chance to handle them.
2122 f2fs_issue_discard_timeout(sbi);
2125 SM_I(sbi)->dcc_info = NULL;
2128 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2130 struct sit_info *sit_i = SIT_I(sbi);
2132 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2133 sit_i->dirty_sentries++;
2140 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2141 unsigned int segno, int modified)
2143 struct seg_entry *se = get_seg_entry(sbi, segno);
2147 __mark_sit_entry_dirty(sbi, segno);
2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2153 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2155 if (segno == NULL_SEGNO)
2157 return get_seg_entry(sbi, segno)->mtime;
2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2161 unsigned long long old_mtime)
2163 struct seg_entry *se;
2164 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2165 unsigned long long ctime = get_mtime(sbi, false);
2166 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2168 if (segno == NULL_SEGNO)
2171 se = get_seg_entry(sbi, segno);
2176 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2177 se->valid_blocks + 1);
2179 if (ctime > SIT_I(sbi)->max_mtime)
2180 SIT_I(sbi)->max_mtime = ctime;
2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2185 struct seg_entry *se;
2186 unsigned int segno, offset;
2187 long int new_vblocks;
2189 #ifdef CONFIG_F2FS_CHECK_FS
2193 segno = GET_SEGNO(sbi, blkaddr);
2195 se = get_seg_entry(sbi, segno);
2196 new_vblocks = se->valid_blocks + del;
2197 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2199 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2200 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2202 se->valid_blocks = new_vblocks;
2204 /* Update valid block bitmap */
2206 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2207 #ifdef CONFIG_F2FS_CHECK_FS
2208 mir_exist = f2fs_test_and_set_bit(offset,
2209 se->cur_valid_map_mir);
2210 if (unlikely(exist != mir_exist)) {
2211 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2213 f2fs_bug_on(sbi, 1);
2216 if (unlikely(exist)) {
2217 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2219 f2fs_bug_on(sbi, 1);
2224 if (f2fs_block_unit_discard(sbi) &&
2225 !f2fs_test_and_set_bit(offset, se->discard_map))
2226 sbi->discard_blks--;
2229 * SSR should never reuse block which is checkpointed
2230 * or newly invalidated.
2232 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2233 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2234 se->ckpt_valid_blocks++;
2237 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2238 #ifdef CONFIG_F2FS_CHECK_FS
2239 mir_exist = f2fs_test_and_clear_bit(offset,
2240 se->cur_valid_map_mir);
2241 if (unlikely(exist != mir_exist)) {
2242 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2244 f2fs_bug_on(sbi, 1);
2247 if (unlikely(!exist)) {
2248 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2250 f2fs_bug_on(sbi, 1);
2253 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2255 * If checkpoints are off, we must not reuse data that
2256 * was used in the previous checkpoint. If it was used
2257 * before, we must track that to know how much space we
2260 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2261 spin_lock(&sbi->stat_lock);
2262 sbi->unusable_block_count++;
2263 spin_unlock(&sbi->stat_lock);
2267 if (f2fs_block_unit_discard(sbi) &&
2268 f2fs_test_and_clear_bit(offset, se->discard_map))
2269 sbi->discard_blks++;
2271 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2272 se->ckpt_valid_blocks += del;
2274 __mark_sit_entry_dirty(sbi, segno);
2276 /* update total number of valid blocks to be written in ckpt area */
2277 SIT_I(sbi)->written_valid_blocks += del;
2279 if (__is_large_section(sbi))
2280 get_sec_entry(sbi, segno)->valid_blocks += del;
2283 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2285 unsigned int segno = GET_SEGNO(sbi, addr);
2286 struct sit_info *sit_i = SIT_I(sbi);
2288 f2fs_bug_on(sbi, addr == NULL_ADDR);
2289 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2292 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2293 f2fs_invalidate_compress_page(sbi, addr);
2295 /* add it into sit main buffer */
2296 down_write(&sit_i->sentry_lock);
2298 update_segment_mtime(sbi, addr, 0);
2299 update_sit_entry(sbi, addr, -1);
2301 /* add it into dirty seglist */
2302 locate_dirty_segment(sbi, segno);
2304 up_write(&sit_i->sentry_lock);
2307 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2309 struct sit_info *sit_i = SIT_I(sbi);
2310 unsigned int segno, offset;
2311 struct seg_entry *se;
2314 if (!__is_valid_data_blkaddr(blkaddr))
2317 down_read(&sit_i->sentry_lock);
2319 segno = GET_SEGNO(sbi, blkaddr);
2320 se = get_seg_entry(sbi, segno);
2321 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2323 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2326 up_read(&sit_i->sentry_lock);
2332 * This function should be resided under the curseg_mutex lock
2334 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2335 struct f2fs_summary *sum)
2337 struct curseg_info *curseg = CURSEG_I(sbi, type);
2338 void *addr = curseg->sum_blk;
2340 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2341 memcpy(addr, sum, sizeof(struct f2fs_summary));
2345 * Calculate the number of current summary pages for writing
2347 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2349 int valid_sum_count = 0;
2352 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2353 if (sbi->ckpt->alloc_type[i] == SSR)
2354 valid_sum_count += sbi->blocks_per_seg;
2357 valid_sum_count += le16_to_cpu(
2358 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2360 valid_sum_count += curseg_blkoff(sbi, i);
2364 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2365 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2366 if (valid_sum_count <= sum_in_page)
2368 else if ((valid_sum_count - sum_in_page) <=
2369 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2375 * Caller should put this summary page
2377 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2379 if (unlikely(f2fs_cp_error(sbi)))
2380 return ERR_PTR(-EIO);
2381 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2384 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2385 void *src, block_t blk_addr)
2387 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2389 memcpy(page_address(page), src, PAGE_SIZE);
2390 set_page_dirty(page);
2391 f2fs_put_page(page, 1);
2394 static void write_sum_page(struct f2fs_sb_info *sbi,
2395 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2397 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2400 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2401 int type, block_t blk_addr)
2403 struct curseg_info *curseg = CURSEG_I(sbi, type);
2404 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2405 struct f2fs_summary_block *src = curseg->sum_blk;
2406 struct f2fs_summary_block *dst;
2408 dst = (struct f2fs_summary_block *)page_address(page);
2409 memset(dst, 0, PAGE_SIZE);
2411 mutex_lock(&curseg->curseg_mutex);
2413 down_read(&curseg->journal_rwsem);
2414 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2415 up_read(&curseg->journal_rwsem);
2417 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2418 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2420 mutex_unlock(&curseg->curseg_mutex);
2422 set_page_dirty(page);
2423 f2fs_put_page(page, 1);
2426 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2427 struct curseg_info *curseg, int type)
2429 unsigned int segno = curseg->segno + 1;
2430 struct free_segmap_info *free_i = FREE_I(sbi);
2432 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2433 return !test_bit(segno, free_i->free_segmap);
2438 * Find a new segment from the free segments bitmap to right order
2439 * This function should be returned with success, otherwise BUG
2441 static void get_new_segment(struct f2fs_sb_info *sbi,
2442 unsigned int *newseg, bool new_sec, int dir)
2444 struct free_segmap_info *free_i = FREE_I(sbi);
2445 unsigned int segno, secno, zoneno;
2446 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2447 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2448 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2449 unsigned int left_start = hint;
2454 spin_lock(&free_i->segmap_lock);
2456 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2457 segno = find_next_zero_bit(free_i->free_segmap,
2458 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2459 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2463 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2464 if (secno >= MAIN_SECS(sbi)) {
2465 if (dir == ALLOC_RIGHT) {
2466 secno = find_first_zero_bit(free_i->free_secmap,
2468 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2471 left_start = hint - 1;
2477 while (test_bit(left_start, free_i->free_secmap)) {
2478 if (left_start > 0) {
2482 left_start = find_first_zero_bit(free_i->free_secmap,
2484 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2489 segno = GET_SEG_FROM_SEC(sbi, secno);
2490 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2492 /* give up on finding another zone */
2495 if (sbi->secs_per_zone == 1)
2497 if (zoneno == old_zoneno)
2499 if (dir == ALLOC_LEFT) {
2500 if (!go_left && zoneno + 1 >= total_zones)
2502 if (go_left && zoneno == 0)
2505 for (i = 0; i < NR_CURSEG_TYPE; i++)
2506 if (CURSEG_I(sbi, i)->zone == zoneno)
2509 if (i < NR_CURSEG_TYPE) {
2510 /* zone is in user, try another */
2512 hint = zoneno * sbi->secs_per_zone - 1;
2513 else if (zoneno + 1 >= total_zones)
2516 hint = (zoneno + 1) * sbi->secs_per_zone;
2518 goto find_other_zone;
2521 /* set it as dirty segment in free segmap */
2522 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2523 __set_inuse(sbi, segno);
2525 spin_unlock(&free_i->segmap_lock);
2528 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2530 struct curseg_info *curseg = CURSEG_I(sbi, type);
2531 struct summary_footer *sum_footer;
2532 unsigned short seg_type = curseg->seg_type;
2534 curseg->inited = true;
2535 curseg->segno = curseg->next_segno;
2536 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2537 curseg->next_blkoff = 0;
2538 curseg->next_segno = NULL_SEGNO;
2540 sum_footer = &(curseg->sum_blk->footer);
2541 memset(sum_footer, 0, sizeof(struct summary_footer));
2543 sanity_check_seg_type(sbi, seg_type);
2545 if (IS_DATASEG(seg_type))
2546 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2547 if (IS_NODESEG(seg_type))
2548 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2549 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2552 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2554 struct curseg_info *curseg = CURSEG_I(sbi, type);
2555 unsigned short seg_type = curseg->seg_type;
2557 sanity_check_seg_type(sbi, seg_type);
2558 if (f2fs_need_rand_seg(sbi))
2559 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2561 /* if segs_per_sec is large than 1, we need to keep original policy. */
2562 if (__is_large_section(sbi))
2563 return curseg->segno;
2565 /* inmem log may not locate on any segment after mount */
2566 if (!curseg->inited)
2569 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2572 if (test_opt(sbi, NOHEAP) &&
2573 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2576 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2577 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2579 /* find segments from 0 to reuse freed segments */
2580 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2583 return curseg->segno;
2587 * Allocate a current working segment.
2588 * This function always allocates a free segment in LFS manner.
2590 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2592 struct curseg_info *curseg = CURSEG_I(sbi, type);
2593 unsigned short seg_type = curseg->seg_type;
2594 unsigned int segno = curseg->segno;
2595 int dir = ALLOC_LEFT;
2598 write_sum_page(sbi, curseg->sum_blk,
2599 GET_SUM_BLOCK(sbi, segno));
2600 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2603 if (test_opt(sbi, NOHEAP))
2606 segno = __get_next_segno(sbi, type);
2607 get_new_segment(sbi, &segno, new_sec, dir);
2608 curseg->next_segno = segno;
2609 reset_curseg(sbi, type, 1);
2610 curseg->alloc_type = LFS;
2611 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2612 curseg->fragment_remained_chunk =
2613 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2616 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2617 int segno, block_t start)
2619 struct seg_entry *se = get_seg_entry(sbi, segno);
2620 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2621 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2622 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2623 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2626 for (i = 0; i < entries; i++)
2627 target_map[i] = ckpt_map[i] | cur_map[i];
2629 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2633 * If a segment is written by LFS manner, next block offset is just obtained
2634 * by increasing the current block offset. However, if a segment is written by
2635 * SSR manner, next block offset obtained by calling __next_free_blkoff
2637 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2638 struct curseg_info *seg)
2640 if (seg->alloc_type == SSR) {
2642 __next_free_blkoff(sbi, seg->segno,
2643 seg->next_blkoff + 1);
2646 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2647 /* To allocate block chunks in different sizes, use random number */
2648 if (--seg->fragment_remained_chunk <= 0) {
2649 seg->fragment_remained_chunk =
2650 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2652 get_random_u32_inclusive(1, sbi->max_fragment_hole);
2658 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2660 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2664 * This function always allocates a used segment(from dirty seglist) by SSR
2665 * manner, so it should recover the existing segment information of valid blocks
2667 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2669 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2670 struct curseg_info *curseg = CURSEG_I(sbi, type);
2671 unsigned int new_segno = curseg->next_segno;
2672 struct f2fs_summary_block *sum_node;
2673 struct page *sum_page;
2675 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2677 __set_test_and_inuse(sbi, new_segno);
2679 mutex_lock(&dirty_i->seglist_lock);
2680 __remove_dirty_segment(sbi, new_segno, PRE);
2681 __remove_dirty_segment(sbi, new_segno, DIRTY);
2682 mutex_unlock(&dirty_i->seglist_lock);
2684 reset_curseg(sbi, type, 1);
2685 curseg->alloc_type = SSR;
2686 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2688 sum_page = f2fs_get_sum_page(sbi, new_segno);
2689 if (IS_ERR(sum_page)) {
2690 /* GC won't be able to use stale summary pages by cp_error */
2691 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2694 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2695 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2696 f2fs_put_page(sum_page, 1);
2699 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2700 int alloc_mode, unsigned long long age);
2702 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2703 int target_type, int alloc_mode,
2704 unsigned long long age)
2706 struct curseg_info *curseg = CURSEG_I(sbi, type);
2708 curseg->seg_type = target_type;
2710 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2711 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2713 curseg->seg_type = se->type;
2714 change_curseg(sbi, type);
2716 /* allocate cold segment by default */
2717 curseg->seg_type = CURSEG_COLD_DATA;
2718 new_curseg(sbi, type, true);
2720 stat_inc_seg_type(sbi, curseg);
2723 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2725 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2727 if (!sbi->am.atgc_enabled)
2730 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2732 mutex_lock(&curseg->curseg_mutex);
2733 down_write(&SIT_I(sbi)->sentry_lock);
2735 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2737 up_write(&SIT_I(sbi)->sentry_lock);
2738 mutex_unlock(&curseg->curseg_mutex);
2740 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2743 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2745 __f2fs_init_atgc_curseg(sbi);
2748 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2750 struct curseg_info *curseg = CURSEG_I(sbi, type);
2752 mutex_lock(&curseg->curseg_mutex);
2753 if (!curseg->inited)
2756 if (get_valid_blocks(sbi, curseg->segno, false)) {
2757 write_sum_page(sbi, curseg->sum_blk,
2758 GET_SUM_BLOCK(sbi, curseg->segno));
2760 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2761 __set_test_and_free(sbi, curseg->segno, true);
2762 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2765 mutex_unlock(&curseg->curseg_mutex);
2768 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2770 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2772 if (sbi->am.atgc_enabled)
2773 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2776 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2778 struct curseg_info *curseg = CURSEG_I(sbi, type);
2780 mutex_lock(&curseg->curseg_mutex);
2781 if (!curseg->inited)
2783 if (get_valid_blocks(sbi, curseg->segno, false))
2786 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2787 __set_test_and_inuse(sbi, curseg->segno);
2788 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2790 mutex_unlock(&curseg->curseg_mutex);
2793 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2795 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2797 if (sbi->am.atgc_enabled)
2798 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2801 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2802 int alloc_mode, unsigned long long age)
2804 struct curseg_info *curseg = CURSEG_I(sbi, type);
2805 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2806 unsigned segno = NULL_SEGNO;
2807 unsigned short seg_type = curseg->seg_type;
2809 bool reversed = false;
2811 sanity_check_seg_type(sbi, seg_type);
2813 /* f2fs_need_SSR() already forces to do this */
2814 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2815 curseg->next_segno = segno;
2819 /* For node segments, let's do SSR more intensively */
2820 if (IS_NODESEG(seg_type)) {
2821 if (seg_type >= CURSEG_WARM_NODE) {
2823 i = CURSEG_COLD_NODE;
2825 i = CURSEG_HOT_NODE;
2827 cnt = NR_CURSEG_NODE_TYPE;
2829 if (seg_type >= CURSEG_WARM_DATA) {
2831 i = CURSEG_COLD_DATA;
2833 i = CURSEG_HOT_DATA;
2835 cnt = NR_CURSEG_DATA_TYPE;
2838 for (; cnt-- > 0; reversed ? i-- : i++) {
2841 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2842 curseg->next_segno = segno;
2847 /* find valid_blocks=0 in dirty list */
2848 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2849 segno = get_free_segment(sbi);
2850 if (segno != NULL_SEGNO) {
2851 curseg->next_segno = segno;
2858 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2860 struct curseg_info *curseg = CURSEG_I(sbi, type);
2862 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2863 curseg->seg_type == CURSEG_WARM_NODE)
2865 if (curseg->alloc_type == LFS &&
2866 is_next_segment_free(sbi, curseg, type) &&
2867 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2869 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2874 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2875 unsigned int start, unsigned int end)
2877 struct curseg_info *curseg = CURSEG_I(sbi, type);
2880 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2881 mutex_lock(&curseg->curseg_mutex);
2882 down_write(&SIT_I(sbi)->sentry_lock);
2884 segno = CURSEG_I(sbi, type)->segno;
2885 if (segno < start || segno > end)
2888 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2889 change_curseg(sbi, type);
2891 new_curseg(sbi, type, true);
2893 stat_inc_seg_type(sbi, curseg);
2895 locate_dirty_segment(sbi, segno);
2897 up_write(&SIT_I(sbi)->sentry_lock);
2899 if (segno != curseg->segno)
2900 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2901 type, segno, curseg->segno);
2903 mutex_unlock(&curseg->curseg_mutex);
2904 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2907 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2908 bool new_sec, bool force)
2910 struct curseg_info *curseg = CURSEG_I(sbi, type);
2911 unsigned int old_segno;
2913 if (!curseg->inited)
2916 if (force || curseg->next_blkoff ||
2917 get_valid_blocks(sbi, curseg->segno, new_sec))
2920 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2923 old_segno = curseg->segno;
2924 new_curseg(sbi, type, true);
2925 stat_inc_seg_type(sbi, curseg);
2926 locate_dirty_segment(sbi, old_segno);
2929 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2930 int type, bool force)
2932 __allocate_new_segment(sbi, type, true, force);
2935 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2937 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2938 down_write(&SIT_I(sbi)->sentry_lock);
2939 __allocate_new_section(sbi, type, force);
2940 up_write(&SIT_I(sbi)->sentry_lock);
2941 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2944 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2948 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2949 down_write(&SIT_I(sbi)->sentry_lock);
2950 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2951 __allocate_new_segment(sbi, i, false, false);
2952 up_write(&SIT_I(sbi)->sentry_lock);
2953 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2956 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2957 struct cp_control *cpc)
2959 __u64 trim_start = cpc->trim_start;
2960 bool has_candidate = false;
2962 down_write(&SIT_I(sbi)->sentry_lock);
2963 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2964 if (add_discard_addrs(sbi, cpc, true)) {
2965 has_candidate = true;
2969 up_write(&SIT_I(sbi)->sentry_lock);
2971 cpc->trim_start = trim_start;
2972 return has_candidate;
2975 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2976 struct discard_policy *dpolicy,
2977 unsigned int start, unsigned int end)
2979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2980 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2981 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2982 struct discard_cmd *dc;
2983 struct blk_plug plug;
2985 unsigned int trimmed = 0;
2990 mutex_lock(&dcc->cmd_lock);
2991 if (unlikely(dcc->rbtree_check))
2992 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2993 &dcc->root, false));
2995 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2997 (struct rb_entry **)&prev_dc,
2998 (struct rb_entry **)&next_dc,
2999 &insert_p, &insert_parent, true, NULL);
3003 blk_start_plug(&plug);
3005 while (dc && dc->lstart <= end) {
3006 struct rb_node *node;
3009 if (dc->len < dpolicy->granularity)
3012 if (dc->state != D_PREP) {
3013 list_move_tail(&dc->list, &dcc->fstrim_list);
3017 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3019 if (issued >= dpolicy->max_requests) {
3020 start = dc->lstart + dc->len;
3023 __remove_discard_cmd(sbi, dc);
3025 blk_finish_plug(&plug);
3026 mutex_unlock(&dcc->cmd_lock);
3027 trimmed += __wait_all_discard_cmd(sbi, NULL);
3028 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3032 node = rb_next(&dc->rb_node);
3034 __remove_discard_cmd(sbi, dc);
3035 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3037 if (fatal_signal_pending(current))
3041 blk_finish_plug(&plug);
3042 mutex_unlock(&dcc->cmd_lock);
3047 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3049 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3050 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3051 unsigned int start_segno, end_segno;
3052 block_t start_block, end_block;
3053 struct cp_control cpc;
3054 struct discard_policy dpolicy;
3055 unsigned long long trimmed = 0;
3057 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3059 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3062 if (end < MAIN_BLKADDR(sbi))
3065 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3066 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3067 return -EFSCORRUPTED;
3070 /* start/end segment number in main_area */
3071 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3072 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3073 GET_SEGNO(sbi, end);
3075 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3076 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3079 cpc.reason = CP_DISCARD;
3080 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3081 cpc.trim_start = start_segno;
3082 cpc.trim_end = end_segno;
3084 if (sbi->discard_blks == 0)
3087 f2fs_down_write(&sbi->gc_lock);
3088 err = f2fs_write_checkpoint(sbi, &cpc);
3089 f2fs_up_write(&sbi->gc_lock);
3094 * We filed discard candidates, but actually we don't need to wait for
3095 * all of them, since they'll be issued in idle time along with runtime
3096 * discard option. User configuration looks like using runtime discard
3097 * or periodic fstrim instead of it.
3099 if (f2fs_realtime_discard_enable(sbi))
3102 start_block = START_BLOCK(sbi, start_segno);
3103 end_block = START_BLOCK(sbi, end_segno + 1);
3105 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3106 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3107 start_block, end_block);
3109 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3110 start_block, end_block);
3113 range->len = F2FS_BLK_TO_BYTES(trimmed);
3117 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3118 struct curseg_info *curseg)
3120 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3124 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3127 case WRITE_LIFE_SHORT:
3128 return CURSEG_HOT_DATA;
3129 case WRITE_LIFE_EXTREME:
3130 return CURSEG_COLD_DATA;
3132 return CURSEG_WARM_DATA;
3136 static int __get_segment_type_2(struct f2fs_io_info *fio)
3138 if (fio->type == DATA)
3139 return CURSEG_HOT_DATA;
3141 return CURSEG_HOT_NODE;
3144 static int __get_segment_type_4(struct f2fs_io_info *fio)
3146 if (fio->type == DATA) {
3147 struct inode *inode = fio->page->mapping->host;
3149 if (S_ISDIR(inode->i_mode))
3150 return CURSEG_HOT_DATA;
3152 return CURSEG_COLD_DATA;
3154 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3155 return CURSEG_WARM_NODE;
3157 return CURSEG_COLD_NODE;
3161 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3164 struct extent_info ei;
3166 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3168 return NO_CHECK_TYPE;
3169 if (ei.age <= sbi->hot_data_age_threshold)
3170 return CURSEG_HOT_DATA;
3171 if (ei.age <= sbi->warm_data_age_threshold)
3172 return CURSEG_WARM_DATA;
3173 return CURSEG_COLD_DATA;
3175 return NO_CHECK_TYPE;
3178 static int __get_segment_type_6(struct f2fs_io_info *fio)
3180 if (fio->type == DATA) {
3181 struct inode *inode = fio->page->mapping->host;
3184 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3185 return CURSEG_COLD_DATA_PINNED;
3187 if (page_private_gcing(fio->page)) {
3188 if (fio->sbi->am.atgc_enabled &&
3189 (fio->io_type == FS_DATA_IO) &&
3190 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3191 return CURSEG_ALL_DATA_ATGC;
3193 return CURSEG_COLD_DATA;
3195 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3196 return CURSEG_COLD_DATA;
3198 type = __get_age_segment_type(inode, fio->page->index);
3199 if (type != NO_CHECK_TYPE)
3202 if (file_is_hot(inode) ||
3203 is_inode_flag_set(inode, FI_HOT_DATA) ||
3204 f2fs_is_cow_file(inode))
3205 return CURSEG_HOT_DATA;
3206 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3208 if (IS_DNODE(fio->page))
3209 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3211 return CURSEG_COLD_NODE;
3215 static int __get_segment_type(struct f2fs_io_info *fio)
3219 switch (F2FS_OPTION(fio->sbi).active_logs) {
3221 type = __get_segment_type_2(fio);
3224 type = __get_segment_type_4(fio);
3227 type = __get_segment_type_6(fio);
3230 f2fs_bug_on(fio->sbi, true);
3235 else if (IS_WARM(type))
3242 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3243 block_t old_blkaddr, block_t *new_blkaddr,
3244 struct f2fs_summary *sum, int type,
3245 struct f2fs_io_info *fio)
3247 struct sit_info *sit_i = SIT_I(sbi);
3248 struct curseg_info *curseg = CURSEG_I(sbi, type);
3249 unsigned long long old_mtime;
3250 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3251 struct seg_entry *se = NULL;
3253 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3255 mutex_lock(&curseg->curseg_mutex);
3256 down_write(&sit_i->sentry_lock);
3259 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3260 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3261 sanity_check_seg_type(sbi, se->type);
3262 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3264 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3266 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3268 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3271 * __add_sum_entry should be resided under the curseg_mutex
3272 * because, this function updates a summary entry in the
3273 * current summary block.
3275 __add_sum_entry(sbi, type, sum);
3277 __refresh_next_blkoff(sbi, curseg);
3279 stat_inc_block_count(sbi, curseg);
3282 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3284 update_segment_mtime(sbi, old_blkaddr, 0);
3287 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3290 * SIT information should be updated before segment allocation,
3291 * since SSR needs latest valid block information.
3293 update_sit_entry(sbi, *new_blkaddr, 1);
3294 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3295 update_sit_entry(sbi, old_blkaddr, -1);
3297 if (!__has_curseg_space(sbi, curseg)) {
3299 * Flush out current segment and replace it with new segment.
3302 get_atssr_segment(sbi, type, se->type,
3305 if (need_new_seg(sbi, type))
3306 new_curseg(sbi, type, false);
3308 change_curseg(sbi, type);
3309 stat_inc_seg_type(sbi, curseg);
3313 * segment dirty status should be updated after segment allocation,
3314 * so we just need to update status only one time after previous
3315 * segment being closed.
3317 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3318 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3320 if (IS_DATASEG(type))
3321 atomic64_inc(&sbi->allocated_data_blocks);
3323 up_write(&sit_i->sentry_lock);
3325 if (page && IS_NODESEG(type)) {
3326 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3328 f2fs_inode_chksum_set(sbi, page);
3332 struct f2fs_bio_info *io;
3334 if (F2FS_IO_ALIGNED(sbi))
3337 INIT_LIST_HEAD(&fio->list);
3338 fio->in_list = true;
3339 io = sbi->write_io[fio->type] + fio->temp;
3340 spin_lock(&io->io_lock);
3341 list_add_tail(&fio->list, &io->io_list);
3342 spin_unlock(&io->io_lock);
3345 mutex_unlock(&curseg->curseg_mutex);
3347 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3350 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3351 block_t blkaddr, unsigned int blkcnt)
3353 if (!f2fs_is_multi_device(sbi))
3357 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3358 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3360 /* update device state for fsync */
3361 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3363 /* update device state for checkpoint */
3364 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3365 spin_lock(&sbi->dev_lock);
3366 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3367 spin_unlock(&sbi->dev_lock);
3377 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3379 int type = __get_segment_type(fio);
3380 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3383 f2fs_down_read(&fio->sbi->io_order_lock);
3385 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3386 &fio->new_blkaddr, sum, type, fio);
3387 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3388 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3389 fio->old_blkaddr, fio->old_blkaddr);
3390 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3393 /* writeout dirty page into bdev */
3394 f2fs_submit_page_write(fio);
3396 fio->old_blkaddr = fio->new_blkaddr;
3400 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3403 f2fs_up_read(&fio->sbi->io_order_lock);
3406 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3407 enum iostat_type io_type)
3409 struct f2fs_io_info fio = {
3414 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3415 .old_blkaddr = page->index,
3416 .new_blkaddr = page->index,
3418 .encrypted_page = NULL,
3422 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3423 fio.op_flags &= ~REQ_META;
3425 set_page_writeback(page);
3426 ClearPageError(page);
3427 f2fs_submit_page_write(&fio);
3429 stat_inc_meta_count(sbi, page->index);
3430 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3433 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3435 struct f2fs_summary sum;
3437 set_summary(&sum, nid, 0, 0);
3438 do_write_page(&sum, fio);
3440 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3443 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3444 struct f2fs_io_info *fio)
3446 struct f2fs_sb_info *sbi = fio->sbi;
3447 struct f2fs_summary sum;
3449 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3450 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3451 f2fs_update_age_extent_cache(dn);
3452 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3453 do_write_page(&sum, fio);
3454 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3456 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3459 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3462 struct f2fs_sb_info *sbi = fio->sbi;
3465 fio->new_blkaddr = fio->old_blkaddr;
3466 /* i/o temperature is needed for passing down write hints */
3467 __get_segment_type(fio);
3469 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3471 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3472 set_sbi_flag(sbi, SBI_NEED_FSCK);
3473 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3475 err = -EFSCORRUPTED;
3476 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3480 if (f2fs_cp_error(sbi)) {
3486 invalidate_mapping_pages(META_MAPPING(sbi),
3487 fio->new_blkaddr, fio->new_blkaddr);
3489 stat_inc_inplace_blocks(fio->sbi);
3491 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3492 err = f2fs_merge_page_bio(fio);
3494 err = f2fs_submit_page_bio(fio);
3496 f2fs_update_device_state(fio->sbi, fio->ino,
3497 fio->new_blkaddr, 1);
3498 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3499 fio->io_type, F2FS_BLKSIZE);
3504 if (fio->bio && *(fio->bio)) {
3505 struct bio *bio = *(fio->bio);
3507 bio->bi_status = BLK_STS_IOERR;
3514 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3519 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3520 if (CURSEG_I(sbi, i)->segno == segno)
3526 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3527 block_t old_blkaddr, block_t new_blkaddr,
3528 bool recover_curseg, bool recover_newaddr,
3531 struct sit_info *sit_i = SIT_I(sbi);
3532 struct curseg_info *curseg;
3533 unsigned int segno, old_cursegno;
3534 struct seg_entry *se;
3536 unsigned short old_blkoff;
3537 unsigned char old_alloc_type;
3539 segno = GET_SEGNO(sbi, new_blkaddr);
3540 se = get_seg_entry(sbi, segno);
3543 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3545 if (!recover_curseg) {
3546 /* for recovery flow */
3547 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3548 if (old_blkaddr == NULL_ADDR)
3549 type = CURSEG_COLD_DATA;
3551 type = CURSEG_WARM_DATA;
3554 if (IS_CURSEG(sbi, segno)) {
3555 /* se->type is volatile as SSR allocation */
3556 type = __f2fs_get_curseg(sbi, segno);
3557 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3559 type = CURSEG_WARM_DATA;
3563 f2fs_bug_on(sbi, !IS_DATASEG(type));
3564 curseg = CURSEG_I(sbi, type);
3566 mutex_lock(&curseg->curseg_mutex);
3567 down_write(&sit_i->sentry_lock);
3569 old_cursegno = curseg->segno;
3570 old_blkoff = curseg->next_blkoff;
3571 old_alloc_type = curseg->alloc_type;
3573 /* change the current segment */
3574 if (segno != curseg->segno) {
3575 curseg->next_segno = segno;
3576 change_curseg(sbi, type);
3579 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3580 __add_sum_entry(sbi, type, sum);
3582 if (!recover_curseg || recover_newaddr) {
3584 update_segment_mtime(sbi, new_blkaddr, 0);
3585 update_sit_entry(sbi, new_blkaddr, 1);
3587 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3588 invalidate_mapping_pages(META_MAPPING(sbi),
3589 old_blkaddr, old_blkaddr);
3590 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3592 update_segment_mtime(sbi, old_blkaddr, 0);
3593 update_sit_entry(sbi, old_blkaddr, -1);
3596 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3597 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3599 locate_dirty_segment(sbi, old_cursegno);
3601 if (recover_curseg) {
3602 if (old_cursegno != curseg->segno) {
3603 curseg->next_segno = old_cursegno;
3604 change_curseg(sbi, type);
3606 curseg->next_blkoff = old_blkoff;
3607 curseg->alloc_type = old_alloc_type;
3610 up_write(&sit_i->sentry_lock);
3611 mutex_unlock(&curseg->curseg_mutex);
3612 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3615 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3616 block_t old_addr, block_t new_addr,
3617 unsigned char version, bool recover_curseg,
3618 bool recover_newaddr)
3620 struct f2fs_summary sum;
3622 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3624 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3625 recover_curseg, recover_newaddr, false);
3627 f2fs_update_data_blkaddr(dn, new_addr);
3630 void f2fs_wait_on_page_writeback(struct page *page,
3631 enum page_type type, bool ordered, bool locked)
3633 if (PageWriteback(page)) {
3634 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3636 /* submit cached LFS IO */
3637 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3638 /* sbumit cached IPU IO */
3639 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3641 wait_on_page_writeback(page);
3642 f2fs_bug_on(sbi, locked && PageWriteback(page));
3644 wait_for_stable_page(page);
3649 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3654 if (!f2fs_post_read_required(inode))
3657 if (!__is_valid_data_blkaddr(blkaddr))
3660 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3662 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3663 f2fs_put_page(cpage, 1);
3667 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3673 if (!f2fs_post_read_required(inode))
3676 for (i = 0; i < len; i++)
3677 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3679 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3682 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3684 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3685 struct curseg_info *seg_i;
3686 unsigned char *kaddr;
3691 start = start_sum_block(sbi);
3693 page = f2fs_get_meta_page(sbi, start++);
3695 return PTR_ERR(page);
3696 kaddr = (unsigned char *)page_address(page);
3698 /* Step 1: restore nat cache */
3699 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3700 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3702 /* Step 2: restore sit cache */
3703 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3704 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3705 offset = 2 * SUM_JOURNAL_SIZE;
3707 /* Step 3: restore summary entries */
3708 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3709 unsigned short blk_off;
3712 seg_i = CURSEG_I(sbi, i);
3713 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3714 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3715 seg_i->next_segno = segno;
3716 reset_curseg(sbi, i, 0);
3717 seg_i->alloc_type = ckpt->alloc_type[i];
3718 seg_i->next_blkoff = blk_off;
3720 if (seg_i->alloc_type == SSR)
3721 blk_off = sbi->blocks_per_seg;
3723 for (j = 0; j < blk_off; j++) {
3724 struct f2fs_summary *s;
3726 s = (struct f2fs_summary *)(kaddr + offset);
3727 seg_i->sum_blk->entries[j] = *s;
3728 offset += SUMMARY_SIZE;
3729 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3733 f2fs_put_page(page, 1);
3736 page = f2fs_get_meta_page(sbi, start++);
3738 return PTR_ERR(page);
3739 kaddr = (unsigned char *)page_address(page);
3743 f2fs_put_page(page, 1);
3747 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3749 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3750 struct f2fs_summary_block *sum;
3751 struct curseg_info *curseg;
3753 unsigned short blk_off;
3754 unsigned int segno = 0;
3755 block_t blk_addr = 0;
3758 /* get segment number and block addr */
3759 if (IS_DATASEG(type)) {
3760 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3761 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3763 if (__exist_node_summaries(sbi))
3764 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3766 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3768 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3770 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3772 if (__exist_node_summaries(sbi))
3773 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3774 type - CURSEG_HOT_NODE);
3776 blk_addr = GET_SUM_BLOCK(sbi, segno);
3779 new = f2fs_get_meta_page(sbi, blk_addr);
3781 return PTR_ERR(new);
3782 sum = (struct f2fs_summary_block *)page_address(new);
3784 if (IS_NODESEG(type)) {
3785 if (__exist_node_summaries(sbi)) {
3786 struct f2fs_summary *ns = &sum->entries[0];
3789 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3791 ns->ofs_in_node = 0;
3794 err = f2fs_restore_node_summary(sbi, segno, sum);
3800 /* set uncompleted segment to curseg */
3801 curseg = CURSEG_I(sbi, type);
3802 mutex_lock(&curseg->curseg_mutex);
3804 /* update journal info */
3805 down_write(&curseg->journal_rwsem);
3806 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3807 up_write(&curseg->journal_rwsem);
3809 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3810 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3811 curseg->next_segno = segno;
3812 reset_curseg(sbi, type, 0);
3813 curseg->alloc_type = ckpt->alloc_type[type];
3814 curseg->next_blkoff = blk_off;
3815 mutex_unlock(&curseg->curseg_mutex);
3817 f2fs_put_page(new, 1);
3821 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3823 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3824 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3825 int type = CURSEG_HOT_DATA;
3828 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3829 int npages = f2fs_npages_for_summary_flush(sbi, true);
3832 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3835 /* restore for compacted data summary */
3836 err = read_compacted_summaries(sbi);
3839 type = CURSEG_HOT_NODE;
3842 if (__exist_node_summaries(sbi))
3843 f2fs_ra_meta_pages(sbi,
3844 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3845 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3847 for (; type <= CURSEG_COLD_NODE; type++) {
3848 err = read_normal_summaries(sbi, type);
3853 /* sanity check for summary blocks */
3854 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3855 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3856 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3857 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3864 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3867 unsigned char *kaddr;
3868 struct f2fs_summary *summary;
3869 struct curseg_info *seg_i;
3870 int written_size = 0;
3873 page = f2fs_grab_meta_page(sbi, blkaddr++);
3874 kaddr = (unsigned char *)page_address(page);
3875 memset(kaddr, 0, PAGE_SIZE);
3877 /* Step 1: write nat cache */
3878 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3879 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3880 written_size += SUM_JOURNAL_SIZE;
3882 /* Step 2: write sit cache */
3883 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3884 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3885 written_size += SUM_JOURNAL_SIZE;
3887 /* Step 3: write summary entries */
3888 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3889 unsigned short blkoff;
3891 seg_i = CURSEG_I(sbi, i);
3892 if (sbi->ckpt->alloc_type[i] == SSR)
3893 blkoff = sbi->blocks_per_seg;
3895 blkoff = curseg_blkoff(sbi, i);
3897 for (j = 0; j < blkoff; j++) {
3899 page = f2fs_grab_meta_page(sbi, blkaddr++);
3900 kaddr = (unsigned char *)page_address(page);
3901 memset(kaddr, 0, PAGE_SIZE);
3904 summary = (struct f2fs_summary *)(kaddr + written_size);
3905 *summary = seg_i->sum_blk->entries[j];
3906 written_size += SUMMARY_SIZE;
3908 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3912 set_page_dirty(page);
3913 f2fs_put_page(page, 1);
3918 set_page_dirty(page);
3919 f2fs_put_page(page, 1);
3923 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3924 block_t blkaddr, int type)
3928 if (IS_DATASEG(type))
3929 end = type + NR_CURSEG_DATA_TYPE;
3931 end = type + NR_CURSEG_NODE_TYPE;
3933 for (i = type; i < end; i++)
3934 write_current_sum_page(sbi, i, blkaddr + (i - type));
3937 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3939 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3940 write_compacted_summaries(sbi, start_blk);
3942 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3945 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3947 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3950 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3951 unsigned int val, int alloc)
3955 if (type == NAT_JOURNAL) {
3956 for (i = 0; i < nats_in_cursum(journal); i++) {
3957 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3960 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3961 return update_nats_in_cursum(journal, 1);
3962 } else if (type == SIT_JOURNAL) {
3963 for (i = 0; i < sits_in_cursum(journal); i++)
3964 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3966 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3967 return update_sits_in_cursum(journal, 1);
3972 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3975 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3978 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3981 struct sit_info *sit_i = SIT_I(sbi);
3983 pgoff_t src_off, dst_off;
3985 src_off = current_sit_addr(sbi, start);
3986 dst_off = next_sit_addr(sbi, src_off);
3988 page = f2fs_grab_meta_page(sbi, dst_off);
3989 seg_info_to_sit_page(sbi, page, start);
3991 set_page_dirty(page);
3992 set_to_next_sit(sit_i, start);
3997 static struct sit_entry_set *grab_sit_entry_set(void)
3999 struct sit_entry_set *ses =
4000 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4001 GFP_NOFS, true, NULL);
4004 INIT_LIST_HEAD(&ses->set_list);
4008 static void release_sit_entry_set(struct sit_entry_set *ses)
4010 list_del(&ses->set_list);
4011 kmem_cache_free(sit_entry_set_slab, ses);
4014 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4015 struct list_head *head)
4017 struct sit_entry_set *next = ses;
4019 if (list_is_last(&ses->set_list, head))
4022 list_for_each_entry_continue(next, head, set_list)
4023 if (ses->entry_cnt <= next->entry_cnt) {
4024 list_move_tail(&ses->set_list, &next->set_list);
4028 list_move_tail(&ses->set_list, head);
4031 static void add_sit_entry(unsigned int segno, struct list_head *head)
4033 struct sit_entry_set *ses;
4034 unsigned int start_segno = START_SEGNO(segno);
4036 list_for_each_entry(ses, head, set_list) {
4037 if (ses->start_segno == start_segno) {
4039 adjust_sit_entry_set(ses, head);
4044 ses = grab_sit_entry_set();
4046 ses->start_segno = start_segno;
4048 list_add(&ses->set_list, head);
4051 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4053 struct f2fs_sm_info *sm_info = SM_I(sbi);
4054 struct list_head *set_list = &sm_info->sit_entry_set;
4055 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4058 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4059 add_sit_entry(segno, set_list);
4062 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4065 struct f2fs_journal *journal = curseg->journal;
4068 down_write(&curseg->journal_rwsem);
4069 for (i = 0; i < sits_in_cursum(journal); i++) {
4073 segno = le32_to_cpu(segno_in_journal(journal, i));
4074 dirtied = __mark_sit_entry_dirty(sbi, segno);
4077 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4079 update_sits_in_cursum(journal, -i);
4080 up_write(&curseg->journal_rwsem);
4084 * CP calls this function, which flushes SIT entries including sit_journal,
4085 * and moves prefree segs to free segs.
4087 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4089 struct sit_info *sit_i = SIT_I(sbi);
4090 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4092 struct f2fs_journal *journal = curseg->journal;
4093 struct sit_entry_set *ses, *tmp;
4094 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4095 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4096 struct seg_entry *se;
4098 down_write(&sit_i->sentry_lock);
4100 if (!sit_i->dirty_sentries)
4104 * add and account sit entries of dirty bitmap in sit entry
4107 add_sits_in_set(sbi);
4110 * if there are no enough space in journal to store dirty sit
4111 * entries, remove all entries from journal and add and account
4112 * them in sit entry set.
4114 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4116 remove_sits_in_journal(sbi);
4119 * there are two steps to flush sit entries:
4120 * #1, flush sit entries to journal in current cold data summary block.
4121 * #2, flush sit entries to sit page.
4123 list_for_each_entry_safe(ses, tmp, head, set_list) {
4124 struct page *page = NULL;
4125 struct f2fs_sit_block *raw_sit = NULL;
4126 unsigned int start_segno = ses->start_segno;
4127 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4128 (unsigned long)MAIN_SEGS(sbi));
4129 unsigned int segno = start_segno;
4132 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4136 down_write(&curseg->journal_rwsem);
4138 page = get_next_sit_page(sbi, start_segno);
4139 raw_sit = page_address(page);
4142 /* flush dirty sit entries in region of current sit set */
4143 for_each_set_bit_from(segno, bitmap, end) {
4144 int offset, sit_offset;
4146 se = get_seg_entry(sbi, segno);
4147 #ifdef CONFIG_F2FS_CHECK_FS
4148 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4149 SIT_VBLOCK_MAP_SIZE))
4150 f2fs_bug_on(sbi, 1);
4153 /* add discard candidates */
4154 if (!(cpc->reason & CP_DISCARD)) {
4155 cpc->trim_start = segno;
4156 add_discard_addrs(sbi, cpc, false);
4160 offset = f2fs_lookup_journal_in_cursum(journal,
4161 SIT_JOURNAL, segno, 1);
4162 f2fs_bug_on(sbi, offset < 0);
4163 segno_in_journal(journal, offset) =
4165 seg_info_to_raw_sit(se,
4166 &sit_in_journal(journal, offset));
4167 check_block_count(sbi, segno,
4168 &sit_in_journal(journal, offset));
4170 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4171 seg_info_to_raw_sit(se,
4172 &raw_sit->entries[sit_offset]);
4173 check_block_count(sbi, segno,
4174 &raw_sit->entries[sit_offset]);
4177 __clear_bit(segno, bitmap);
4178 sit_i->dirty_sentries--;
4183 up_write(&curseg->journal_rwsem);
4185 f2fs_put_page(page, 1);
4187 f2fs_bug_on(sbi, ses->entry_cnt);
4188 release_sit_entry_set(ses);
4191 f2fs_bug_on(sbi, !list_empty(head));
4192 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4194 if (cpc->reason & CP_DISCARD) {
4195 __u64 trim_start = cpc->trim_start;
4197 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4198 add_discard_addrs(sbi, cpc, false);
4200 cpc->trim_start = trim_start;
4202 up_write(&sit_i->sentry_lock);
4204 set_prefree_as_free_segments(sbi);
4207 static int build_sit_info(struct f2fs_sb_info *sbi)
4209 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4210 struct sit_info *sit_i;
4211 unsigned int sit_segs, start;
4212 char *src_bitmap, *bitmap;
4213 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4214 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4216 /* allocate memory for SIT information */
4217 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4221 SM_I(sbi)->sit_info = sit_i;
4224 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4227 if (!sit_i->sentries)
4230 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4231 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4233 if (!sit_i->dirty_sentries_bitmap)
4236 #ifdef CONFIG_F2FS_CHECK_FS
4237 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4239 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4241 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4245 bitmap = sit_i->bitmap;
4247 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4248 sit_i->sentries[start].cur_valid_map = bitmap;
4249 bitmap += SIT_VBLOCK_MAP_SIZE;
4251 sit_i->sentries[start].ckpt_valid_map = bitmap;
4252 bitmap += SIT_VBLOCK_MAP_SIZE;
4254 #ifdef CONFIG_F2FS_CHECK_FS
4255 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4256 bitmap += SIT_VBLOCK_MAP_SIZE;
4260 sit_i->sentries[start].discard_map = bitmap;
4261 bitmap += SIT_VBLOCK_MAP_SIZE;
4265 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4266 if (!sit_i->tmp_map)
4269 if (__is_large_section(sbi)) {
4270 sit_i->sec_entries =
4271 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4274 if (!sit_i->sec_entries)
4278 /* get information related with SIT */
4279 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4281 /* setup SIT bitmap from ckeckpoint pack */
4282 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4283 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4285 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4286 if (!sit_i->sit_bitmap)
4289 #ifdef CONFIG_F2FS_CHECK_FS
4290 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4291 sit_bitmap_size, GFP_KERNEL);
4292 if (!sit_i->sit_bitmap_mir)
4295 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4296 main_bitmap_size, GFP_KERNEL);
4297 if (!sit_i->invalid_segmap)
4301 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4302 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4303 sit_i->written_valid_blocks = 0;
4304 sit_i->bitmap_size = sit_bitmap_size;
4305 sit_i->dirty_sentries = 0;
4306 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4307 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4308 sit_i->mounted_time = ktime_get_boottime_seconds();
4309 init_rwsem(&sit_i->sentry_lock);
4313 static int build_free_segmap(struct f2fs_sb_info *sbi)
4315 struct free_segmap_info *free_i;
4316 unsigned int bitmap_size, sec_bitmap_size;
4318 /* allocate memory for free segmap information */
4319 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4323 SM_I(sbi)->free_info = free_i;
4325 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4326 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4327 if (!free_i->free_segmap)
4330 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4331 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4332 if (!free_i->free_secmap)
4335 /* set all segments as dirty temporarily */
4336 memset(free_i->free_segmap, 0xff, bitmap_size);
4337 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4339 /* init free segmap information */
4340 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4341 free_i->free_segments = 0;
4342 free_i->free_sections = 0;
4343 spin_lock_init(&free_i->segmap_lock);
4347 static int build_curseg(struct f2fs_sb_info *sbi)
4349 struct curseg_info *array;
4352 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4353 sizeof(*array)), GFP_KERNEL);
4357 SM_I(sbi)->curseg_array = array;
4359 for (i = 0; i < NO_CHECK_TYPE; i++) {
4360 mutex_init(&array[i].curseg_mutex);
4361 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4362 if (!array[i].sum_blk)
4364 init_rwsem(&array[i].journal_rwsem);
4365 array[i].journal = f2fs_kzalloc(sbi,
4366 sizeof(struct f2fs_journal), GFP_KERNEL);
4367 if (!array[i].journal)
4369 if (i < NR_PERSISTENT_LOG)
4370 array[i].seg_type = CURSEG_HOT_DATA + i;
4371 else if (i == CURSEG_COLD_DATA_PINNED)
4372 array[i].seg_type = CURSEG_COLD_DATA;
4373 else if (i == CURSEG_ALL_DATA_ATGC)
4374 array[i].seg_type = CURSEG_COLD_DATA;
4375 array[i].segno = NULL_SEGNO;
4376 array[i].next_blkoff = 0;
4377 array[i].inited = false;
4379 return restore_curseg_summaries(sbi);
4382 static int build_sit_entries(struct f2fs_sb_info *sbi)
4384 struct sit_info *sit_i = SIT_I(sbi);
4385 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4386 struct f2fs_journal *journal = curseg->journal;
4387 struct seg_entry *se;
4388 struct f2fs_sit_entry sit;
4389 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4390 unsigned int i, start, end;
4391 unsigned int readed, start_blk = 0;
4393 block_t sit_valid_blocks[2] = {0, 0};
4396 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4399 start = start_blk * sit_i->sents_per_block;
4400 end = (start_blk + readed) * sit_i->sents_per_block;
4402 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4403 struct f2fs_sit_block *sit_blk;
4406 se = &sit_i->sentries[start];
4407 page = get_current_sit_page(sbi, start);
4409 return PTR_ERR(page);
4410 sit_blk = (struct f2fs_sit_block *)page_address(page);
4411 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4412 f2fs_put_page(page, 1);
4414 err = check_block_count(sbi, start, &sit);
4417 seg_info_from_raw_sit(se, &sit);
4419 if (se->type >= NR_PERSISTENT_LOG) {
4420 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4422 f2fs_handle_error(sbi,
4423 ERROR_INCONSISTENT_SUM_TYPE);
4424 return -EFSCORRUPTED;
4427 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4429 if (f2fs_block_unit_discard(sbi)) {
4430 /* build discard map only one time */
4431 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4432 memset(se->discard_map, 0xff,
4433 SIT_VBLOCK_MAP_SIZE);
4435 memcpy(se->discard_map,
4437 SIT_VBLOCK_MAP_SIZE);
4438 sbi->discard_blks +=
4439 sbi->blocks_per_seg -
4444 if (__is_large_section(sbi))
4445 get_sec_entry(sbi, start)->valid_blocks +=
4448 start_blk += readed;
4449 } while (start_blk < sit_blk_cnt);
4451 down_read(&curseg->journal_rwsem);
4452 for (i = 0; i < sits_in_cursum(journal); i++) {
4453 unsigned int old_valid_blocks;
4455 start = le32_to_cpu(segno_in_journal(journal, i));
4456 if (start >= MAIN_SEGS(sbi)) {
4457 f2fs_err(sbi, "Wrong journal entry on segno %u",
4459 err = -EFSCORRUPTED;
4460 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4464 se = &sit_i->sentries[start];
4465 sit = sit_in_journal(journal, i);
4467 old_valid_blocks = se->valid_blocks;
4469 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4471 err = check_block_count(sbi, start, &sit);
4474 seg_info_from_raw_sit(se, &sit);
4476 if (se->type >= NR_PERSISTENT_LOG) {
4477 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4479 err = -EFSCORRUPTED;
4480 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4484 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4486 if (f2fs_block_unit_discard(sbi)) {
4487 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4488 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4490 memcpy(se->discard_map, se->cur_valid_map,
4491 SIT_VBLOCK_MAP_SIZE);
4492 sbi->discard_blks += old_valid_blocks;
4493 sbi->discard_blks -= se->valid_blocks;
4497 if (__is_large_section(sbi)) {
4498 get_sec_entry(sbi, start)->valid_blocks +=
4500 get_sec_entry(sbi, start)->valid_blocks -=
4504 up_read(&curseg->journal_rwsem);
4509 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4510 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4511 sit_valid_blocks[NODE], valid_node_count(sbi));
4512 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4513 return -EFSCORRUPTED;
4516 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4517 valid_user_blocks(sbi)) {
4518 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4519 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4520 valid_user_blocks(sbi));
4521 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4522 return -EFSCORRUPTED;
4528 static void init_free_segmap(struct f2fs_sb_info *sbi)
4532 struct seg_entry *sentry;
4534 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4535 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4537 sentry = get_seg_entry(sbi, start);
4538 if (!sentry->valid_blocks)
4539 __set_free(sbi, start);
4541 SIT_I(sbi)->written_valid_blocks +=
4542 sentry->valid_blocks;
4545 /* set use the current segments */
4546 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4547 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4549 __set_test_and_inuse(sbi, curseg_t->segno);
4553 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4555 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4556 struct free_segmap_info *free_i = FREE_I(sbi);
4557 unsigned int segno = 0, offset = 0, secno;
4558 block_t valid_blocks, usable_blks_in_seg;
4561 /* find dirty segment based on free segmap */
4562 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4563 if (segno >= MAIN_SEGS(sbi))
4566 valid_blocks = get_valid_blocks(sbi, segno, false);
4567 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4568 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4570 if (valid_blocks > usable_blks_in_seg) {
4571 f2fs_bug_on(sbi, 1);
4574 mutex_lock(&dirty_i->seglist_lock);
4575 __locate_dirty_segment(sbi, segno, DIRTY);
4576 mutex_unlock(&dirty_i->seglist_lock);
4579 if (!__is_large_section(sbi))
4582 mutex_lock(&dirty_i->seglist_lock);
4583 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4584 valid_blocks = get_valid_blocks(sbi, segno, true);
4585 secno = GET_SEC_FROM_SEG(sbi, segno);
4587 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4589 if (IS_CURSEC(sbi, secno))
4591 set_bit(secno, dirty_i->dirty_secmap);
4593 mutex_unlock(&dirty_i->seglist_lock);
4596 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4598 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4599 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4601 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4602 if (!dirty_i->victim_secmap)
4605 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4606 if (!dirty_i->pinned_secmap)
4609 dirty_i->pinned_secmap_cnt = 0;
4610 dirty_i->enable_pin_section = true;
4614 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4616 struct dirty_seglist_info *dirty_i;
4617 unsigned int bitmap_size, i;
4619 /* allocate memory for dirty segments list information */
4620 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4625 SM_I(sbi)->dirty_info = dirty_i;
4626 mutex_init(&dirty_i->seglist_lock);
4628 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4630 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4631 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4633 if (!dirty_i->dirty_segmap[i])
4637 if (__is_large_section(sbi)) {
4638 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4639 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4640 bitmap_size, GFP_KERNEL);
4641 if (!dirty_i->dirty_secmap)
4645 init_dirty_segmap(sbi);
4646 return init_victim_secmap(sbi);
4649 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4654 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4655 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4657 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4658 struct curseg_info *curseg = CURSEG_I(sbi, i);
4659 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4660 unsigned int blkofs = curseg->next_blkoff;
4662 if (f2fs_sb_has_readonly(sbi) &&
4663 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4666 sanity_check_seg_type(sbi, curseg->seg_type);
4668 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4670 "Current segment has invalid alloc_type:%d",
4671 curseg->alloc_type);
4672 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4673 return -EFSCORRUPTED;
4676 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4679 if (curseg->alloc_type == SSR)
4682 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4683 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4687 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4688 i, curseg->segno, curseg->alloc_type,
4689 curseg->next_blkoff, blkofs);
4690 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4691 return -EFSCORRUPTED;
4697 #ifdef CONFIG_BLK_DEV_ZONED
4699 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4700 struct f2fs_dev_info *fdev,
4701 struct blk_zone *zone)
4703 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4704 block_t zone_block, wp_block, last_valid_block;
4705 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4707 struct seg_entry *se;
4709 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4712 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4713 wp_segno = GET_SEGNO(sbi, wp_block);
4714 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4715 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4716 zone_segno = GET_SEGNO(sbi, zone_block);
4717 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4719 if (zone_segno >= MAIN_SEGS(sbi))
4723 * Skip check of zones cursegs point to, since
4724 * fix_curseg_write_pointer() checks them.
4726 for (i = 0; i < NO_CHECK_TYPE; i++)
4727 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4728 CURSEG_I(sbi, i)->segno))
4732 * Get last valid block of the zone.
4734 last_valid_block = zone_block - 1;
4735 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4736 segno = zone_segno + s;
4737 se = get_seg_entry(sbi, segno);
4738 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4739 if (f2fs_test_bit(b, se->cur_valid_map)) {
4740 last_valid_block = START_BLOCK(sbi, segno) + b;
4743 if (last_valid_block >= zone_block)
4748 * If last valid block is beyond the write pointer, report the
4749 * inconsistency. This inconsistency does not cause write error
4750 * because the zone will not be selected for write operation until
4751 * it get discarded. Just report it.
4753 if (last_valid_block >= wp_block) {
4754 f2fs_notice(sbi, "Valid block beyond write pointer: "
4755 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4756 GET_SEGNO(sbi, last_valid_block),
4757 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4758 wp_segno, wp_blkoff);
4763 * If there is no valid block in the zone and if write pointer is
4764 * not at zone start, reset the write pointer.
4766 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4768 "Zone without valid block has non-zero write "
4769 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4770 wp_segno, wp_blkoff);
4771 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4772 zone->len >> log_sectors_per_block);
4774 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4783 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4784 block_t zone_blkaddr)
4788 for (i = 0; i < sbi->s_ndevs; i++) {
4789 if (!bdev_is_zoned(FDEV(i).bdev))
4791 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4792 zone_blkaddr <= FDEV(i).end_blk))
4799 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4802 memcpy(data, zone, sizeof(struct blk_zone));
4806 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4808 struct curseg_info *cs = CURSEG_I(sbi, type);
4809 struct f2fs_dev_info *zbd;
4810 struct blk_zone zone;
4811 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4812 block_t cs_zone_block, wp_block;
4813 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4814 sector_t zone_sector;
4817 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4818 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4820 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4824 /* report zone for the sector the curseg points to */
4825 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4826 << log_sectors_per_block;
4827 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4828 report_one_zone_cb, &zone);
4830 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4835 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4838 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4839 wp_segno = GET_SEGNO(sbi, wp_block);
4840 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4841 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4843 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4847 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4848 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4849 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4851 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4852 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4854 f2fs_allocate_new_section(sbi, type, true);
4856 /* check consistency of the zone curseg pointed to */
4857 if (check_zone_write_pointer(sbi, zbd, &zone))
4860 /* check newly assigned zone */
4861 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4862 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4864 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4868 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4869 << log_sectors_per_block;
4870 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4871 report_one_zone_cb, &zone);
4873 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4878 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4881 if (zone.wp != zone.start) {
4883 "New zone for curseg[%d] is not yet discarded. "
4884 "Reset the zone: curseg[0x%x,0x%x]",
4885 type, cs->segno, cs->next_blkoff);
4886 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4887 zone_sector >> log_sectors_per_block,
4888 zone.len >> log_sectors_per_block);
4890 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4899 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4903 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4904 ret = fix_curseg_write_pointer(sbi, i);
4912 struct check_zone_write_pointer_args {
4913 struct f2fs_sb_info *sbi;
4914 struct f2fs_dev_info *fdev;
4917 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4920 struct check_zone_write_pointer_args *args;
4922 args = (struct check_zone_write_pointer_args *)data;
4924 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4927 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4930 struct check_zone_write_pointer_args args;
4932 for (i = 0; i < sbi->s_ndevs; i++) {
4933 if (!bdev_is_zoned(FDEV(i).bdev))
4937 args.fdev = &FDEV(i);
4938 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4939 check_zone_write_pointer_cb, &args);
4947 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4948 unsigned int dev_idx)
4950 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4952 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4955 /* Return the zone index in the given device */
4956 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4959 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4961 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4962 sbi->log_blocks_per_blkz;
4966 * Return the usable segments in a section based on the zone's
4967 * corresponding zone capacity. Zone is equal to a section.
4969 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4970 struct f2fs_sb_info *sbi, unsigned int segno)
4972 unsigned int dev_idx, zone_idx;
4974 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4975 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4977 /* Conventional zone's capacity is always equal to zone size */
4978 if (is_conv_zone(sbi, zone_idx, dev_idx))
4979 return sbi->segs_per_sec;
4981 if (!sbi->unusable_blocks_per_sec)
4982 return sbi->segs_per_sec;
4984 /* Get the segment count beyond zone capacity block */
4985 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4986 sbi->log_blocks_per_seg);
4990 * Return the number of usable blocks in a segment. The number of blocks
4991 * returned is always equal to the number of blocks in a segment for
4992 * segments fully contained within a sequential zone capacity or a
4993 * conventional zone. For segments partially contained in a sequential
4994 * zone capacity, the number of usable blocks up to the zone capacity
4995 * is returned. 0 is returned in all other cases.
4997 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4998 struct f2fs_sb_info *sbi, unsigned int segno)
5000 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5001 unsigned int zone_idx, dev_idx, secno;
5003 secno = GET_SEC_FROM_SEG(sbi, segno);
5004 seg_start = START_BLOCK(sbi, segno);
5005 dev_idx = f2fs_target_device_index(sbi, seg_start);
5006 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5009 * Conventional zone's capacity is always equal to zone size,
5010 * so, blocks per segment is unchanged.
5012 if (is_conv_zone(sbi, zone_idx, dev_idx))
5013 return sbi->blocks_per_seg;
5015 if (!sbi->unusable_blocks_per_sec)
5016 return sbi->blocks_per_seg;
5018 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5019 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5022 * If segment starts before zone capacity and spans beyond
5023 * zone capacity, then usable blocks are from seg start to
5024 * zone capacity. If the segment starts after the zone capacity,
5025 * then there are no usable blocks.
5027 if (seg_start >= sec_cap_blkaddr)
5029 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5030 return sec_cap_blkaddr - seg_start;
5032 return sbi->blocks_per_seg;
5035 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5040 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5045 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5051 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5057 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5060 if (f2fs_sb_has_blkzoned(sbi))
5061 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5063 return sbi->blocks_per_seg;
5066 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5069 if (f2fs_sb_has_blkzoned(sbi))
5070 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5072 return sbi->segs_per_sec;
5076 * Update min, max modified time for cost-benefit GC algorithm
5078 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5080 struct sit_info *sit_i = SIT_I(sbi);
5083 down_write(&sit_i->sentry_lock);
5085 sit_i->min_mtime = ULLONG_MAX;
5087 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5089 unsigned long long mtime = 0;
5091 for (i = 0; i < sbi->segs_per_sec; i++)
5092 mtime += get_seg_entry(sbi, segno + i)->mtime;
5094 mtime = div_u64(mtime, sbi->segs_per_sec);
5096 if (sit_i->min_mtime > mtime)
5097 sit_i->min_mtime = mtime;
5099 sit_i->max_mtime = get_mtime(sbi, false);
5100 sit_i->dirty_max_mtime = 0;
5101 up_write(&sit_i->sentry_lock);
5104 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5106 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5107 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5108 struct f2fs_sm_info *sm_info;
5111 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5116 sbi->sm_info = sm_info;
5117 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5118 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5119 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5120 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5121 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5122 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5123 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5124 sm_info->rec_prefree_segments = sm_info->main_segments *
5125 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5126 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5127 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5129 if (!f2fs_lfs_mode(sbi))
5130 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5131 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5132 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5133 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5134 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5135 sm_info->min_ssr_sections = reserved_sections(sbi);
5137 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5139 init_f2fs_rwsem(&sm_info->curseg_lock);
5141 if (!f2fs_readonly(sbi->sb)) {
5142 err = f2fs_create_flush_cmd_control(sbi);
5147 err = create_discard_cmd_control(sbi);
5151 err = build_sit_info(sbi);
5154 err = build_free_segmap(sbi);
5157 err = build_curseg(sbi);
5161 /* reinit free segmap based on SIT */
5162 err = build_sit_entries(sbi);
5166 init_free_segmap(sbi);
5167 err = build_dirty_segmap(sbi);
5171 err = sanity_check_curseg(sbi);
5175 init_min_max_mtime(sbi);
5179 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5180 enum dirty_type dirty_type)
5182 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5184 mutex_lock(&dirty_i->seglist_lock);
5185 kvfree(dirty_i->dirty_segmap[dirty_type]);
5186 dirty_i->nr_dirty[dirty_type] = 0;
5187 mutex_unlock(&dirty_i->seglist_lock);
5190 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5192 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5194 kvfree(dirty_i->pinned_secmap);
5195 kvfree(dirty_i->victim_secmap);
5198 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5200 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5206 /* discard pre-free/dirty segments list */
5207 for (i = 0; i < NR_DIRTY_TYPE; i++)
5208 discard_dirty_segmap(sbi, i);
5210 if (__is_large_section(sbi)) {
5211 mutex_lock(&dirty_i->seglist_lock);
5212 kvfree(dirty_i->dirty_secmap);
5213 mutex_unlock(&dirty_i->seglist_lock);
5216 destroy_victim_secmap(sbi);
5217 SM_I(sbi)->dirty_info = NULL;
5221 static void destroy_curseg(struct f2fs_sb_info *sbi)
5223 struct curseg_info *array = SM_I(sbi)->curseg_array;
5228 SM_I(sbi)->curseg_array = NULL;
5229 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5230 kfree(array[i].sum_blk);
5231 kfree(array[i].journal);
5236 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5238 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5242 SM_I(sbi)->free_info = NULL;
5243 kvfree(free_i->free_segmap);
5244 kvfree(free_i->free_secmap);
5248 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5250 struct sit_info *sit_i = SIT_I(sbi);
5255 if (sit_i->sentries)
5256 kvfree(sit_i->bitmap);
5257 kfree(sit_i->tmp_map);
5259 kvfree(sit_i->sentries);
5260 kvfree(sit_i->sec_entries);
5261 kvfree(sit_i->dirty_sentries_bitmap);
5263 SM_I(sbi)->sit_info = NULL;
5264 kvfree(sit_i->sit_bitmap);
5265 #ifdef CONFIG_F2FS_CHECK_FS
5266 kvfree(sit_i->sit_bitmap_mir);
5267 kvfree(sit_i->invalid_segmap);
5272 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5274 struct f2fs_sm_info *sm_info = SM_I(sbi);
5278 f2fs_destroy_flush_cmd_control(sbi, true);
5279 destroy_discard_cmd_control(sbi);
5280 destroy_dirty_segmap(sbi);
5281 destroy_curseg(sbi);
5282 destroy_free_segmap(sbi);
5283 destroy_sit_info(sbi);
5284 sbi->sm_info = NULL;
5288 int __init f2fs_create_segment_manager_caches(void)
5290 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5291 sizeof(struct discard_entry));
5292 if (!discard_entry_slab)
5295 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5296 sizeof(struct discard_cmd));
5297 if (!discard_cmd_slab)
5298 goto destroy_discard_entry;
5300 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5301 sizeof(struct sit_entry_set));
5302 if (!sit_entry_set_slab)
5303 goto destroy_discard_cmd;
5305 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5306 sizeof(struct revoke_entry));
5307 if (!revoke_entry_slab)
5308 goto destroy_sit_entry_set;
5311 destroy_sit_entry_set:
5312 kmem_cache_destroy(sit_entry_set_slab);
5313 destroy_discard_cmd:
5314 kmem_cache_destroy(discard_cmd_slab);
5315 destroy_discard_entry:
5316 kmem_cache_destroy(discard_entry_slab);
5321 void f2fs_destroy_segment_manager_caches(void)
5323 kmem_cache_destroy(sit_entry_set_slab);
5324 kmem_cache_destroy(discard_cmd_slab);
5325 kmem_cache_destroy(discard_entry_slab);
5326 kmem_cache_destroy(revoke_entry_slab);