1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
64 if ((word & 0xffff0000) == 0)
69 if ((word & 0xff00) == 0)
74 if ((word & 0xf0) == 0)
79 if ((word & 0xc) == 0)
84 if ((word & 0x2) == 0)
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
123 if (size <= BITS_PER_LONG)
125 size -= BITS_PER_LONG;
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
151 tmp = __reverse_ulong((unsigned char *)p);
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
160 if (size <= BITS_PER_LONG)
162 size -= BITS_PER_LONG;
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
179 if (sbi->gc_mode == GC_URGENT_HIGH)
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
190 struct f2fs_inode_info *fi = F2FS_I(inode);
192 if (!f2fs_is_atomic_file(inode))
196 truncate_inode_pages_final(inode->i_mapping);
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 f2fs_mark_inode_dirty_sync(inode, true);
206 stat_dec_atomic_inode(inode);
208 F2FS_I(inode)->atomic_write_task = NULL;
211 f2fs_i_size_write(inode, fi->original_i_size);
212 fi->original_i_size = 0;
214 /* avoid stale dirty inode during eviction */
215 sync_inode_metadata(inode, 0);
218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 block_t new_addr, block_t *old_addr, bool recover)
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct dnode_of_data dn;
227 set_new_dnode(&dn, inode, NULL, NULL, 0);
228 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
230 if (err == -ENOMEM) {
231 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
237 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 /* dn.data_blkaddr is always valid */
245 if (!__is_valid_data_blkaddr(new_addr)) {
246 if (new_addr == NULL_ADDR)
247 dec_valid_block_count(sbi, inode, 1);
248 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 f2fs_update_data_blkaddr(&dn, new_addr);
251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 new_addr, ni.version, true, true);
257 err = inc_valid_block_count(sbi, inode, &count, true);
263 *old_addr = dn.data_blkaddr;
264 f2fs_truncate_data_blocks_range(&dn, 1);
265 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 ni.version, true, false);
273 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 index, old_addr ? *old_addr : 0, new_addr, recover);
278 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
281 struct revoke_entry *cur, *tmp;
282 pgoff_t start_index = 0;
283 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
285 list_for_each_entry_safe(cur, tmp, head, list) {
287 __replace_atomic_write_block(inode, cur->index,
288 cur->old_addr, NULL, true);
289 } else if (truncate) {
290 f2fs_truncate_hole(inode, start_index, cur->index);
291 start_index = cur->index + 1;
294 list_del(&cur->list);
295 kmem_cache_free(revoke_entry_slab, cur);
298 if (!revoke && truncate)
299 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
302 static int __f2fs_commit_atomic_write(struct inode *inode)
304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 struct f2fs_inode_info *fi = F2FS_I(inode);
306 struct inode *cow_inode = fi->cow_inode;
307 struct revoke_entry *new;
308 struct list_head revoke_list;
310 struct dnode_of_data dn;
311 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 pgoff_t off = 0, blen, index;
315 INIT_LIST_HEAD(&revoke_list);
318 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
320 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 if (ret && ret != -ENOENT) {
324 } else if (ret == -ENOENT) {
326 if (dn.max_level == 0)
331 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
334 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 blkaddr = f2fs_data_blkaddr(&dn);
337 if (!__is_valid_data_blkaddr(blkaddr)) {
339 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 DATA_GENERIC_ENHANCE)) {
346 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
349 ret = __replace_atomic_write_block(inode, index, blkaddr,
350 &new->old_addr, false);
353 kmem_cache_free(revoke_entry_slab, new);
357 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
359 list_add_tail(&new->list, &revoke_list);
369 sbi->revoked_atomic_block += fi->atomic_write_cnt;
371 sbi->committed_atomic_block += fi->atomic_write_cnt;
372 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
373 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
374 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
375 f2fs_mark_inode_dirty_sync(inode, true);
379 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
384 int f2fs_commit_atomic_write(struct inode *inode)
386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387 struct f2fs_inode_info *fi = F2FS_I(inode);
390 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
394 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
397 err = __f2fs_commit_atomic_write(inode);
400 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
406 * This function balances dirty node and dentry pages.
407 * In addition, it controls garbage collection.
409 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
411 if (f2fs_cp_error(sbi))
414 if (time_to_inject(sbi, FAULT_CHECKPOINT))
415 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
417 /* balance_fs_bg is able to be pending */
418 if (need && excess_cached_nats(sbi))
419 f2fs_balance_fs_bg(sbi, false);
421 if (!f2fs_is_checkpoint_ready(sbi))
425 * We should do GC or end up with checkpoint, if there are so many dirty
426 * dir/node pages without enough free segments.
428 if (has_enough_free_secs(sbi, 0, 0))
431 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
432 sbi->gc_thread->f2fs_gc_task) {
435 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
436 TASK_UNINTERRUPTIBLE);
437 wake_up(&sbi->gc_thread->gc_wait_queue_head);
439 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
441 struct f2fs_gc_control gc_control = {
442 .victim_segno = NULL_SEGNO,
443 .init_gc_type = BG_GC,
445 .should_migrate_blocks = false,
446 .err_gc_skipped = false,
448 f2fs_down_write(&sbi->gc_lock);
449 stat_inc_gc_call_count(sbi, FOREGROUND);
450 f2fs_gc(sbi, &gc_control);
454 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
456 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
457 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
458 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
459 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
460 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
461 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
462 unsigned int threshold =
463 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
464 unsigned int global_threshold = threshold * 3 / 2;
466 if (dents >= threshold || qdata >= threshold ||
467 nodes >= threshold || meta >= threshold ||
470 return dents + qdata + nodes + meta + imeta > global_threshold;
473 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
475 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
478 /* try to shrink extent cache when there is no enough memory */
479 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
480 f2fs_shrink_read_extent_tree(sbi,
481 READ_EXTENT_CACHE_SHRINK_NUMBER);
483 /* try to shrink age extent cache when there is no enough memory */
484 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
485 f2fs_shrink_age_extent_tree(sbi,
486 AGE_EXTENT_CACHE_SHRINK_NUMBER);
488 /* check the # of cached NAT entries */
489 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
490 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
492 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
493 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
495 f2fs_build_free_nids(sbi, false, false);
497 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
498 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
501 /* there is background inflight IO or foreground operation recently */
502 if (is_inflight_io(sbi, REQ_TIME) ||
503 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
506 /* exceed periodical checkpoint timeout threshold */
507 if (f2fs_time_over(sbi, CP_TIME))
510 /* checkpoint is the only way to shrink partial cached entries */
511 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
512 f2fs_available_free_memory(sbi, INO_ENTRIES))
516 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
517 struct blk_plug plug;
519 mutex_lock(&sbi->flush_lock);
521 blk_start_plug(&plug);
522 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
523 blk_finish_plug(&plug);
525 mutex_unlock(&sbi->flush_lock);
527 stat_inc_cp_call_count(sbi, BACKGROUND);
528 f2fs_sync_fs(sbi->sb, 1);
531 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
532 struct block_device *bdev)
534 int ret = blkdev_issue_flush(bdev);
536 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
537 test_opt(sbi, FLUSH_MERGE), ret);
539 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
548 if (!f2fs_is_multi_device(sbi))
549 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
551 for (i = 0; i < sbi->s_ndevs; i++) {
552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
554 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
561 static int issue_flush_thread(void *data)
563 struct f2fs_sb_info *sbi = data;
564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
565 wait_queue_head_t *q = &fcc->flush_wait_queue;
567 if (kthread_should_stop())
570 if (!llist_empty(&fcc->issue_list)) {
571 struct flush_cmd *cmd, *next;
574 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
575 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
577 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
579 ret = submit_flush_wait(sbi, cmd->ino);
580 atomic_inc(&fcc->issued_flush);
582 llist_for_each_entry_safe(cmd, next,
583 fcc->dispatch_list, llnode) {
585 complete(&cmd->wait);
587 fcc->dispatch_list = NULL;
590 wait_event_interruptible(*q,
591 kthread_should_stop() || !llist_empty(&fcc->issue_list));
595 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
597 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
598 struct flush_cmd cmd;
601 if (test_opt(sbi, NOBARRIER))
604 if (!test_opt(sbi, FLUSH_MERGE)) {
605 atomic_inc(&fcc->queued_flush);
606 ret = submit_flush_wait(sbi, ino);
607 atomic_dec(&fcc->queued_flush);
608 atomic_inc(&fcc->issued_flush);
612 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
613 f2fs_is_multi_device(sbi)) {
614 ret = submit_flush_wait(sbi, ino);
615 atomic_dec(&fcc->queued_flush);
617 atomic_inc(&fcc->issued_flush);
622 init_completion(&cmd.wait);
624 llist_add(&cmd.llnode, &fcc->issue_list);
627 * update issue_list before we wake up issue_flush thread, this
628 * smp_mb() pairs with another barrier in ___wait_event(), see
629 * more details in comments of waitqueue_active().
633 if (waitqueue_active(&fcc->flush_wait_queue))
634 wake_up(&fcc->flush_wait_queue);
636 if (fcc->f2fs_issue_flush) {
637 wait_for_completion(&cmd.wait);
638 atomic_dec(&fcc->queued_flush);
640 struct llist_node *list;
642 list = llist_del_all(&fcc->issue_list);
644 wait_for_completion(&cmd.wait);
645 atomic_dec(&fcc->queued_flush);
647 struct flush_cmd *tmp, *next;
649 ret = submit_flush_wait(sbi, ino);
651 llist_for_each_entry_safe(tmp, next, list, llnode) {
654 atomic_dec(&fcc->queued_flush);
658 complete(&tmp->wait);
666 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
668 dev_t dev = sbi->sb->s_bdev->bd_dev;
669 struct flush_cmd_control *fcc;
671 if (SM_I(sbi)->fcc_info) {
672 fcc = SM_I(sbi)->fcc_info;
673 if (fcc->f2fs_issue_flush)
678 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
681 atomic_set(&fcc->issued_flush, 0);
682 atomic_set(&fcc->queued_flush, 0);
683 init_waitqueue_head(&fcc->flush_wait_queue);
684 init_llist_head(&fcc->issue_list);
685 SM_I(sbi)->fcc_info = fcc;
686 if (!test_opt(sbi, FLUSH_MERGE))
690 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
691 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
692 if (IS_ERR(fcc->f2fs_issue_flush)) {
693 int err = PTR_ERR(fcc->f2fs_issue_flush);
695 fcc->f2fs_issue_flush = NULL;
702 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
704 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
706 if (fcc && fcc->f2fs_issue_flush) {
707 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
709 fcc->f2fs_issue_flush = NULL;
710 kthread_stop(flush_thread);
714 SM_I(sbi)->fcc_info = NULL;
718 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
722 if (!f2fs_is_multi_device(sbi))
725 if (test_opt(sbi, NOBARRIER))
728 for (i = 1; i < sbi->s_ndevs; i++) {
729 int count = DEFAULT_RETRY_IO_COUNT;
731 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
735 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
737 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
738 } while (ret && --count);
741 f2fs_stop_checkpoint(sbi, false,
742 STOP_CP_REASON_FLUSH_FAIL);
746 spin_lock(&sbi->dev_lock);
747 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
748 spin_unlock(&sbi->dev_lock);
754 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
755 enum dirty_type dirty_type)
757 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
759 /* need not be added */
760 if (IS_CURSEG(sbi, segno))
763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
764 dirty_i->nr_dirty[dirty_type]++;
766 if (dirty_type == DIRTY) {
767 struct seg_entry *sentry = get_seg_entry(sbi, segno);
768 enum dirty_type t = sentry->type;
770 if (unlikely(t >= DIRTY)) {
774 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
775 dirty_i->nr_dirty[t]++;
777 if (__is_large_section(sbi)) {
778 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
779 block_t valid_blocks =
780 get_valid_blocks(sbi, segno, true);
783 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
785 valid_blocks == CAP_BLKS_PER_SEC(sbi));
787 if (!IS_CURSEC(sbi, secno))
788 set_bit(secno, dirty_i->dirty_secmap);
793 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 enum dirty_type dirty_type)
796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 block_t valid_blocks;
799 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
800 dirty_i->nr_dirty[dirty_type]--;
802 if (dirty_type == DIRTY) {
803 struct seg_entry *sentry = get_seg_entry(sbi, segno);
804 enum dirty_type t = sentry->type;
806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
807 dirty_i->nr_dirty[t]--;
809 valid_blocks = get_valid_blocks(sbi, segno, true);
810 if (valid_blocks == 0) {
811 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
812 dirty_i->victim_secmap);
813 #ifdef CONFIG_F2FS_CHECK_FS
814 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
817 if (__is_large_section(sbi)) {
818 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
821 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
822 clear_bit(secno, dirty_i->dirty_secmap);
826 if (!IS_CURSEC(sbi, secno))
827 set_bit(secno, dirty_i->dirty_secmap);
833 * Should not occur error such as -ENOMEM.
834 * Adding dirty entry into seglist is not critical operation.
835 * If a given segment is one of current working segments, it won't be added.
837 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
840 unsigned short valid_blocks, ckpt_valid_blocks;
841 unsigned int usable_blocks;
843 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
846 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
847 mutex_lock(&dirty_i->seglist_lock);
849 valid_blocks = get_valid_blocks(sbi, segno, false);
850 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
852 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
853 ckpt_valid_blocks == usable_blocks)) {
854 __locate_dirty_segment(sbi, segno, PRE);
855 __remove_dirty_segment(sbi, segno, DIRTY);
856 } else if (valid_blocks < usable_blocks) {
857 __locate_dirty_segment(sbi, segno, DIRTY);
859 /* Recovery routine with SSR needs this */
860 __remove_dirty_segment(sbi, segno, DIRTY);
863 mutex_unlock(&dirty_i->seglist_lock);
866 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
867 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
869 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
872 mutex_lock(&dirty_i->seglist_lock);
873 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
874 if (get_valid_blocks(sbi, segno, false))
876 if (IS_CURSEG(sbi, segno))
878 __locate_dirty_segment(sbi, segno, PRE);
879 __remove_dirty_segment(sbi, segno, DIRTY);
881 mutex_unlock(&dirty_i->seglist_lock);
884 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
887 (overprovision_segments(sbi) - reserved_segments(sbi));
888 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
890 block_t holes[2] = {0, 0}; /* DATA and NODE */
892 struct seg_entry *se;
895 mutex_lock(&dirty_i->seglist_lock);
896 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
897 se = get_seg_entry(sbi, segno);
898 if (IS_NODESEG(se->type))
899 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
902 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
905 mutex_unlock(&dirty_i->seglist_lock);
907 unusable = max(holes[DATA], holes[NODE]);
908 if (unusable > ovp_holes)
909 return unusable - ovp_holes;
913 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
916 (overprovision_segments(sbi) - reserved_segments(sbi));
918 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
920 if (unusable > F2FS_OPTION(sbi).unusable_cap)
922 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
923 dirty_segments(sbi) > ovp_hole_segs)
925 if (has_not_enough_free_secs(sbi, 0, 0))
930 /* This is only used by SBI_CP_DISABLED */
931 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
934 unsigned int segno = 0;
936 mutex_lock(&dirty_i->seglist_lock);
937 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
938 if (get_valid_blocks(sbi, segno, false))
940 if (get_ckpt_valid_blocks(sbi, segno, false))
942 mutex_unlock(&dirty_i->seglist_lock);
945 mutex_unlock(&dirty_i->seglist_lock);
949 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
950 struct block_device *bdev, block_t lstart,
951 block_t start, block_t len)
953 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
954 struct list_head *pend_list;
955 struct discard_cmd *dc;
957 f2fs_bug_on(sbi, !len);
959 pend_list = &dcc->pend_list[plist_idx(len)];
961 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
962 INIT_LIST_HEAD(&dc->list);
964 dc->di.lstart = lstart;
965 dc->di.start = start;
971 init_completion(&dc->wait);
972 list_add_tail(&dc->list, pend_list);
973 spin_lock_init(&dc->lock);
975 atomic_inc(&dcc->discard_cmd_cnt);
976 dcc->undiscard_blks += len;
981 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
983 #ifdef CONFIG_F2FS_CHECK_FS
984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
986 struct discard_cmd *cur_dc, *next_dc;
993 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
994 next_dc = rb_entry(next, struct discard_cmd, rb_node);
996 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
997 f2fs_info(sbi, "broken discard_rbtree, "
998 "cur(%u, %u) next(%u, %u)",
999 cur_dc->di.lstart, cur_dc->di.len,
1000 next_dc->di.lstart, next_dc->di.len);
1009 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1013 struct rb_node *node = dcc->root.rb_root.rb_node;
1014 struct discard_cmd *dc;
1017 dc = rb_entry(node, struct discard_cmd, rb_node);
1019 if (blkaddr < dc->di.lstart)
1020 node = node->rb_left;
1021 else if (blkaddr >= dc->di.lstart + dc->di.len)
1022 node = node->rb_right;
1029 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1031 struct discard_cmd **prev_entry,
1032 struct discard_cmd **next_entry,
1033 struct rb_node ***insert_p,
1034 struct rb_node **insert_parent)
1036 struct rb_node **pnode = &root->rb_root.rb_node;
1037 struct rb_node *parent = NULL, *tmp_node;
1038 struct discard_cmd *dc;
1041 *insert_parent = NULL;
1045 if (RB_EMPTY_ROOT(&root->rb_root))
1050 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1052 if (blkaddr < dc->di.lstart)
1053 pnode = &(*pnode)->rb_left;
1054 else if (blkaddr >= dc->di.lstart + dc->di.len)
1055 pnode = &(*pnode)->rb_right;
1057 goto lookup_neighbors;
1061 *insert_parent = parent;
1063 dc = rb_entry(parent, struct discard_cmd, rb_node);
1065 if (parent && blkaddr > dc->di.lstart)
1066 tmp_node = rb_next(parent);
1067 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1070 if (parent && blkaddr < dc->di.lstart)
1071 tmp_node = rb_prev(parent);
1072 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1076 /* lookup prev node for merging backward later */
1077 tmp_node = rb_prev(&dc->rb_node);
1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1080 /* lookup next node for merging frontward later */
1081 tmp_node = rb_next(&dc->rb_node);
1082 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1086 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1087 struct discard_cmd *dc)
1089 if (dc->state == D_DONE)
1090 atomic_sub(dc->queued, &dcc->queued_discard);
1092 list_del(&dc->list);
1093 rb_erase_cached(&dc->rb_node, &dcc->root);
1094 dcc->undiscard_blks -= dc->di.len;
1096 kmem_cache_free(discard_cmd_slab, dc);
1098 atomic_dec(&dcc->discard_cmd_cnt);
1101 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1102 struct discard_cmd *dc)
1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105 unsigned long flags;
1107 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1109 spin_lock_irqsave(&dc->lock, flags);
1111 spin_unlock_irqrestore(&dc->lock, flags);
1114 spin_unlock_irqrestore(&dc->lock, flags);
1116 f2fs_bug_on(sbi, dc->ref);
1118 if (dc->error == -EOPNOTSUPP)
1122 f2fs_info_ratelimited(sbi,
1123 "Issue discard(%u, %u, %u) failed, ret: %d",
1124 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1125 __detach_discard_cmd(dcc, dc);
1128 static void f2fs_submit_discard_endio(struct bio *bio)
1130 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1131 unsigned long flags;
1133 spin_lock_irqsave(&dc->lock, flags);
1135 dc->error = blk_status_to_errno(bio->bi_status);
1137 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1139 complete_all(&dc->wait);
1141 spin_unlock_irqrestore(&dc->lock, flags);
1145 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1146 block_t start, block_t end)
1148 #ifdef CONFIG_F2FS_CHECK_FS
1149 struct seg_entry *sentry;
1151 block_t blk = start;
1152 unsigned long offset, size, *map;
1155 segno = GET_SEGNO(sbi, blk);
1156 sentry = get_seg_entry(sbi, segno);
1157 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1159 if (end < START_BLOCK(sbi, segno + 1))
1160 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1162 size = BLKS_PER_SEG(sbi);
1163 map = (unsigned long *)(sentry->cur_valid_map);
1164 offset = __find_rev_next_bit(map, size, offset);
1165 f2fs_bug_on(sbi, offset != size);
1166 blk = START_BLOCK(sbi, segno + 1);
1171 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1172 struct discard_policy *dpolicy,
1173 int discard_type, unsigned int granularity)
1175 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1178 dpolicy->type = discard_type;
1179 dpolicy->sync = true;
1180 dpolicy->ordered = false;
1181 dpolicy->granularity = granularity;
1183 dpolicy->max_requests = dcc->max_discard_request;
1184 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1185 dpolicy->timeout = false;
1187 if (discard_type == DPOLICY_BG) {
1188 dpolicy->min_interval = dcc->min_discard_issue_time;
1189 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190 dpolicy->max_interval = dcc->max_discard_issue_time;
1191 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1192 dpolicy->io_aware = true;
1193 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1194 dpolicy->io_aware = false;
1195 dpolicy->sync = false;
1196 dpolicy->ordered = true;
1197 if (utilization(sbi) > dcc->discard_urgent_util) {
1198 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1199 if (atomic_read(&dcc->discard_cmd_cnt))
1200 dpolicy->max_interval =
1201 dcc->min_discard_issue_time;
1203 } else if (discard_type == DPOLICY_FORCE) {
1204 dpolicy->min_interval = dcc->min_discard_issue_time;
1205 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 dpolicy->max_interval = dcc->max_discard_issue_time;
1207 dpolicy->io_aware = false;
1208 } else if (discard_type == DPOLICY_FSTRIM) {
1209 dpolicy->io_aware = false;
1210 } else if (discard_type == DPOLICY_UMOUNT) {
1211 dpolicy->io_aware = false;
1212 /* we need to issue all to keep CP_TRIMMED_FLAG */
1213 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214 dpolicy->timeout = true;
1218 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1219 struct block_device *bdev, block_t lstart,
1220 block_t start, block_t len);
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1224 struct discard_cmd *dc, blk_opf_t flag,
1225 struct list_head *wait_list,
1226 unsigned int *issued)
1228 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1229 struct block_device *bdev = dc->bdev;
1230 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1231 unsigned long flags;
1233 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1235 spin_lock_irqsave(&dc->lock, flags);
1236 dc->state = D_SUBMIT;
1238 spin_unlock_irqrestore(&dc->lock, flags);
1243 atomic_inc(&dcc->queued_discard);
1245 list_move_tail(&dc->list, wait_list);
1247 /* sanity check on discard range */
1248 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1250 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1251 bio->bi_private = dc;
1252 bio->bi_end_io = f2fs_submit_discard_endio;
1255 atomic_inc(&dcc->issued_discard);
1256 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1260 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1261 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1262 struct discard_policy *dpolicy,
1263 struct discard_cmd *dc, int *issued)
1265 struct block_device *bdev = dc->bdev;
1266 unsigned int max_discard_blocks =
1267 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1268 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270 &(dcc->fstrim_list) : &(dcc->wait_list);
1271 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1272 block_t lstart, start, len, total_len;
1275 if (dc->state != D_PREP)
1278 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1281 #ifdef CONFIG_BLK_DEV_ZONED
1282 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1283 int devi = f2fs_bdev_index(sbi, bdev);
1288 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1289 __submit_zone_reset_cmd(sbi, dc, flag,
1297 * stop issuing discard for any of below cases:
1298 * 1. device is conventional zone, but it doesn't support discard.
1299 * 2. device is regulare device, after snapshot it doesn't support
1302 if (!bdev_max_discard_sectors(bdev))
1305 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1307 lstart = dc->di.lstart;
1308 start = dc->di.start;
1314 while (total_len && *issued < dpolicy->max_requests && !err) {
1315 struct bio *bio = NULL;
1316 unsigned long flags;
1319 if (len > max_discard_blocks) {
1320 len = max_discard_blocks;
1325 if (*issued == dpolicy->max_requests)
1330 if (time_to_inject(sbi, FAULT_DISCARD)) {
1333 err = __blkdev_issue_discard(bdev,
1334 SECTOR_FROM_BLOCK(start),
1335 SECTOR_FROM_BLOCK(len),
1339 spin_lock_irqsave(&dc->lock, flags);
1340 if (dc->state == D_PARTIAL)
1341 dc->state = D_SUBMIT;
1342 spin_unlock_irqrestore(&dc->lock, flags);
1347 f2fs_bug_on(sbi, !bio);
1350 * should keep before submission to avoid D_DONE
1353 spin_lock_irqsave(&dc->lock, flags);
1355 dc->state = D_SUBMIT;
1357 dc->state = D_PARTIAL;
1359 spin_unlock_irqrestore(&dc->lock, flags);
1361 atomic_inc(&dcc->queued_discard);
1363 list_move_tail(&dc->list, wait_list);
1365 /* sanity check on discard range */
1366 __check_sit_bitmap(sbi, lstart, lstart + len);
1368 bio->bi_private = dc;
1369 bio->bi_end_io = f2fs_submit_discard_endio;
1370 bio->bi_opf |= flag;
1373 atomic_inc(&dcc->issued_discard);
1375 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1384 dcc->undiscard_blks -= len;
1385 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1390 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1391 struct block_device *bdev, block_t lstart,
1392 block_t start, block_t len)
1394 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1395 struct rb_node **p = &dcc->root.rb_root.rb_node;
1396 struct rb_node *parent = NULL;
1397 struct discard_cmd *dc;
1398 bool leftmost = true;
1400 /* look up rb tree to find parent node */
1403 dc = rb_entry(parent, struct discard_cmd, rb_node);
1405 if (lstart < dc->di.lstart) {
1407 } else if (lstart >= dc->di.lstart + dc->di.len) {
1408 p = &(*p)->rb_right;
1411 /* Let's skip to add, if exists */
1416 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1418 rb_link_node(&dc->rb_node, parent, p);
1419 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1422 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1423 struct discard_cmd *dc)
1425 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1428 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1429 struct discard_cmd *dc, block_t blkaddr)
1431 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 struct discard_info di = dc->di;
1433 bool modified = false;
1435 if (dc->state == D_DONE || dc->di.len == 1) {
1436 __remove_discard_cmd(sbi, dc);
1440 dcc->undiscard_blks -= di.len;
1442 if (blkaddr > di.lstart) {
1443 dc->di.len = blkaddr - dc->di.lstart;
1444 dcc->undiscard_blks += dc->di.len;
1445 __relocate_discard_cmd(dcc, dc);
1449 if (blkaddr < di.lstart + di.len - 1) {
1451 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1452 di.start + blkaddr + 1 - di.lstart,
1453 di.lstart + di.len - 1 - blkaddr);
1458 dcc->undiscard_blks += dc->di.len;
1459 __relocate_discard_cmd(dcc, dc);
1464 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1465 struct block_device *bdev, block_t lstart,
1466 block_t start, block_t len)
1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1470 struct discard_cmd *dc;
1471 struct discard_info di = {0};
1472 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1473 unsigned int max_discard_blocks =
1474 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1475 block_t end = lstart + len;
1477 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1478 &prev_dc, &next_dc, &insert_p, &insert_parent);
1484 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1485 di.len = min(di.len, len);
1490 struct rb_node *node;
1491 bool merged = false;
1492 struct discard_cmd *tdc = NULL;
1495 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1496 if (di.lstart < lstart)
1498 if (di.lstart >= end)
1501 if (!next_dc || next_dc->di.lstart > end)
1502 di.len = end - di.lstart;
1504 di.len = next_dc->di.lstart - di.lstart;
1505 di.start = start + di.lstart - lstart;
1511 if (prev_dc && prev_dc->state == D_PREP &&
1512 prev_dc->bdev == bdev &&
1513 __is_discard_back_mergeable(&di, &prev_dc->di,
1514 max_discard_blocks)) {
1515 prev_dc->di.len += di.len;
1516 dcc->undiscard_blks += di.len;
1517 __relocate_discard_cmd(dcc, prev_dc);
1523 if (next_dc && next_dc->state == D_PREP &&
1524 next_dc->bdev == bdev &&
1525 __is_discard_front_mergeable(&di, &next_dc->di,
1526 max_discard_blocks)) {
1527 next_dc->di.lstart = di.lstart;
1528 next_dc->di.len += di.len;
1529 next_dc->di.start = di.start;
1530 dcc->undiscard_blks += di.len;
1531 __relocate_discard_cmd(dcc, next_dc);
1533 __remove_discard_cmd(sbi, tdc);
1538 __insert_discard_cmd(sbi, bdev,
1539 di.lstart, di.start, di.len);
1545 node = rb_next(&prev_dc->rb_node);
1546 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1550 #ifdef CONFIG_BLK_DEV_ZONED
1551 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1552 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1555 trace_f2fs_queue_reset_zone(bdev, blkstart);
1557 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1558 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1559 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1563 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1564 struct block_device *bdev, block_t blkstart, block_t blklen)
1566 block_t lblkstart = blkstart;
1568 if (!f2fs_bdev_support_discard(bdev))
1571 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1573 if (f2fs_is_multi_device(sbi)) {
1574 int devi = f2fs_target_device_index(sbi, blkstart);
1576 blkstart -= FDEV(devi).start_blk;
1578 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1579 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1580 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1583 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1584 struct discard_policy *dpolicy, int *issued)
1586 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1587 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1588 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1589 struct discard_cmd *dc;
1590 struct blk_plug plug;
1591 bool io_interrupted = false;
1593 mutex_lock(&dcc->cmd_lock);
1594 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1595 &prev_dc, &next_dc, &insert_p, &insert_parent);
1599 blk_start_plug(&plug);
1602 struct rb_node *node;
1605 if (dc->state != D_PREP)
1608 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1609 io_interrupted = true;
1613 dcc->next_pos = dc->di.lstart + dc->di.len;
1614 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1616 if (*issued >= dpolicy->max_requests)
1619 node = rb_next(&dc->rb_node);
1621 __remove_discard_cmd(sbi, dc);
1622 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1625 blk_finish_plug(&plug);
1630 mutex_unlock(&dcc->cmd_lock);
1632 if (!(*issued) && io_interrupted)
1635 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1636 struct discard_policy *dpolicy);
1638 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1639 struct discard_policy *dpolicy)
1641 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 struct list_head *pend_list;
1643 struct discard_cmd *dc, *tmp;
1644 struct blk_plug plug;
1646 bool io_interrupted = false;
1648 if (dpolicy->timeout)
1649 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1653 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1654 if (dpolicy->timeout &&
1655 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1658 if (i + 1 < dpolicy->granularity)
1661 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1662 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1666 pend_list = &dcc->pend_list[i];
1668 mutex_lock(&dcc->cmd_lock);
1669 if (list_empty(pend_list))
1671 if (unlikely(dcc->rbtree_check))
1672 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1673 blk_start_plug(&plug);
1674 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1675 f2fs_bug_on(sbi, dc->state != D_PREP);
1677 if (dpolicy->timeout &&
1678 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1681 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1682 !is_idle(sbi, DISCARD_TIME)) {
1683 io_interrupted = true;
1687 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1689 if (issued >= dpolicy->max_requests)
1692 blk_finish_plug(&plug);
1694 mutex_unlock(&dcc->cmd_lock);
1696 if (issued >= dpolicy->max_requests || io_interrupted)
1700 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1701 __wait_all_discard_cmd(sbi, dpolicy);
1705 if (!issued && io_interrupted)
1711 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1713 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1714 struct list_head *pend_list;
1715 struct discard_cmd *dc, *tmp;
1717 bool dropped = false;
1719 mutex_lock(&dcc->cmd_lock);
1720 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1721 pend_list = &dcc->pend_list[i];
1722 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1723 f2fs_bug_on(sbi, dc->state != D_PREP);
1724 __remove_discard_cmd(sbi, dc);
1728 mutex_unlock(&dcc->cmd_lock);
1733 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1735 __drop_discard_cmd(sbi);
1738 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1739 struct discard_cmd *dc)
1741 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742 unsigned int len = 0;
1744 wait_for_completion_io(&dc->wait);
1745 mutex_lock(&dcc->cmd_lock);
1746 f2fs_bug_on(sbi, dc->state != D_DONE);
1751 __remove_discard_cmd(sbi, dc);
1753 mutex_unlock(&dcc->cmd_lock);
1758 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1759 struct discard_policy *dpolicy,
1760 block_t start, block_t end)
1762 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1764 &(dcc->fstrim_list) : &(dcc->wait_list);
1765 struct discard_cmd *dc = NULL, *iter, *tmp;
1766 unsigned int trimmed = 0;
1771 mutex_lock(&dcc->cmd_lock);
1772 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1773 if (iter->di.lstart + iter->di.len <= start ||
1774 end <= iter->di.lstart)
1776 if (iter->di.len < dpolicy->granularity)
1778 if (iter->state == D_DONE && !iter->ref) {
1779 wait_for_completion_io(&iter->wait);
1781 trimmed += iter->di.len;
1782 __remove_discard_cmd(sbi, iter);
1789 mutex_unlock(&dcc->cmd_lock);
1792 trimmed += __wait_one_discard_bio(sbi, dc);
1799 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1800 struct discard_policy *dpolicy)
1802 struct discard_policy dp;
1803 unsigned int discard_blks;
1806 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1809 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1810 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1811 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1812 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1814 return discard_blks;
1817 /* This should be covered by global mutex, &sit_i->sentry_lock */
1818 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1820 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1821 struct discard_cmd *dc;
1822 bool need_wait = false;
1824 mutex_lock(&dcc->cmd_lock);
1825 dc = __lookup_discard_cmd(sbi, blkaddr);
1826 #ifdef CONFIG_BLK_DEV_ZONED
1827 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1828 int devi = f2fs_bdev_index(sbi, dc->bdev);
1831 mutex_unlock(&dcc->cmd_lock);
1835 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1836 /* force submit zone reset */
1837 if (dc->state == D_PREP)
1838 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1839 &dcc->wait_list, NULL);
1841 mutex_unlock(&dcc->cmd_lock);
1842 /* wait zone reset */
1843 __wait_one_discard_bio(sbi, dc);
1849 if (dc->state == D_PREP) {
1850 __punch_discard_cmd(sbi, dc, blkaddr);
1856 mutex_unlock(&dcc->cmd_lock);
1859 __wait_one_discard_bio(sbi, dc);
1862 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1864 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1866 if (dcc && dcc->f2fs_issue_discard) {
1867 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1869 dcc->f2fs_issue_discard = NULL;
1870 kthread_stop(discard_thread);
1875 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1876 * @sbi: the f2fs_sb_info data for discard cmd to issue
1878 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1880 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1882 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1884 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885 struct discard_policy dpolicy;
1888 if (!atomic_read(&dcc->discard_cmd_cnt))
1891 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1892 dcc->discard_granularity);
1893 __issue_discard_cmd(sbi, &dpolicy);
1894 dropped = __drop_discard_cmd(sbi);
1896 /* just to make sure there is no pending discard commands */
1897 __wait_all_discard_cmd(sbi, NULL);
1899 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1903 static int issue_discard_thread(void *data)
1905 struct f2fs_sb_info *sbi = data;
1906 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907 wait_queue_head_t *q = &dcc->discard_wait_queue;
1908 struct discard_policy dpolicy;
1909 unsigned int wait_ms = dcc->min_discard_issue_time;
1915 wait_event_freezable_timeout(*q,
1916 kthread_should_stop() || dcc->discard_wake,
1917 msecs_to_jiffies(wait_ms));
1919 if (sbi->gc_mode == GC_URGENT_HIGH ||
1920 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1922 MIN_DISCARD_GRANULARITY);
1924 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1925 dcc->discard_granularity);
1927 if (dcc->discard_wake)
1928 dcc->discard_wake = false;
1930 /* clean up pending candidates before going to sleep */
1931 if (atomic_read(&dcc->queued_discard))
1932 __wait_all_discard_cmd(sbi, NULL);
1934 if (f2fs_readonly(sbi->sb))
1936 if (kthread_should_stop())
1938 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1939 !atomic_read(&dcc->discard_cmd_cnt)) {
1940 wait_ms = dpolicy.max_interval;
1944 sb_start_intwrite(sbi->sb);
1946 issued = __issue_discard_cmd(sbi, &dpolicy);
1948 __wait_all_discard_cmd(sbi, &dpolicy);
1949 wait_ms = dpolicy.min_interval;
1950 } else if (issued == -1) {
1951 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1953 wait_ms = dpolicy.mid_interval;
1955 wait_ms = dpolicy.max_interval;
1957 if (!atomic_read(&dcc->discard_cmd_cnt))
1958 wait_ms = dpolicy.max_interval;
1960 sb_end_intwrite(sbi->sb);
1962 } while (!kthread_should_stop());
1966 #ifdef CONFIG_BLK_DEV_ZONED
1967 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1968 struct block_device *bdev, block_t blkstart, block_t blklen)
1970 sector_t sector, nr_sects;
1971 block_t lblkstart = blkstart;
1975 if (f2fs_is_multi_device(sbi)) {
1976 devi = f2fs_target_device_index(sbi, blkstart);
1977 if (blkstart < FDEV(devi).start_blk ||
1978 blkstart > FDEV(devi).end_blk) {
1979 f2fs_err(sbi, "Invalid block %x", blkstart);
1982 blkstart -= FDEV(devi).start_blk;
1985 /* For sequential zones, reset the zone write pointer */
1986 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1987 sector = SECTOR_FROM_BLOCK(blkstart);
1988 nr_sects = SECTOR_FROM_BLOCK(blklen);
1989 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1991 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1992 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1993 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1998 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1999 unsigned int nofs_flags;
2002 trace_f2fs_issue_reset_zone(bdev, blkstart);
2003 nofs_flags = memalloc_nofs_save();
2004 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2006 memalloc_nofs_restore(nofs_flags);
2010 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2014 /* For conventional zones, use regular discard if supported */
2015 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2020 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2021 struct block_device *bdev, block_t blkstart, block_t blklen)
2023 #ifdef CONFIG_BLK_DEV_ZONED
2024 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2025 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2027 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2031 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2032 block_t blkstart, block_t blklen)
2034 sector_t start = blkstart, len = 0;
2035 struct block_device *bdev;
2036 struct seg_entry *se;
2037 unsigned int offset;
2041 bdev = f2fs_target_device(sbi, blkstart, NULL);
2043 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2045 struct block_device *bdev2 =
2046 f2fs_target_device(sbi, i, NULL);
2048 if (bdev2 != bdev) {
2049 err = __issue_discard_async(sbi, bdev,
2059 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2060 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2062 if (f2fs_block_unit_discard(sbi) &&
2063 !f2fs_test_and_set_bit(offset, se->discard_map))
2064 sbi->discard_blks--;
2068 err = __issue_discard_async(sbi, bdev, start, len);
2072 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2075 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2076 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2077 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2078 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2079 unsigned long *discard_map = (unsigned long *)se->discard_map;
2080 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2081 unsigned int start = 0, end = -1;
2082 bool force = (cpc->reason & CP_DISCARD);
2083 struct discard_entry *de = NULL;
2084 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2087 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2088 !f2fs_hw_support_discard(sbi) ||
2089 !f2fs_block_unit_discard(sbi))
2093 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2094 SM_I(sbi)->dcc_info->nr_discards >=
2095 SM_I(sbi)->dcc_info->max_discards)
2099 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2100 for (i = 0; i < entries; i++)
2101 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2102 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2104 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2105 SM_I(sbi)->dcc_info->max_discards) {
2106 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2107 if (start >= BLKS_PER_SEG(sbi))
2110 end = __find_rev_next_zero_bit(dmap,
2111 BLKS_PER_SEG(sbi), start + 1);
2112 if (force && start && end != BLKS_PER_SEG(sbi) &&
2113 (end - start) < cpc->trim_minlen)
2120 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2121 GFP_F2FS_ZERO, true, NULL);
2122 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2123 list_add_tail(&de->list, head);
2126 for (i = start; i < end; i++)
2127 __set_bit_le(i, (void *)de->discard_map);
2129 SM_I(sbi)->dcc_info->nr_discards += end - start;
2134 static void release_discard_addr(struct discard_entry *entry)
2136 list_del(&entry->list);
2137 kmem_cache_free(discard_entry_slab, entry);
2140 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2142 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2143 struct discard_entry *entry, *this;
2146 list_for_each_entry_safe(entry, this, head, list)
2147 release_discard_addr(entry);
2151 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2153 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2158 mutex_lock(&dirty_i->seglist_lock);
2159 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2160 __set_test_and_free(sbi, segno, false);
2161 mutex_unlock(&dirty_i->seglist_lock);
2164 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2165 struct cp_control *cpc)
2167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2168 struct list_head *head = &dcc->entry_list;
2169 struct discard_entry *entry, *this;
2170 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2171 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2172 unsigned int start = 0, end = -1;
2173 unsigned int secno, start_segno;
2174 bool force = (cpc->reason & CP_DISCARD);
2175 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2176 DISCARD_UNIT_SECTION;
2178 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2179 section_alignment = true;
2181 mutex_lock(&dirty_i->seglist_lock);
2186 if (section_alignment && end != -1)
2188 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2189 if (start >= MAIN_SEGS(sbi))
2191 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2194 if (section_alignment) {
2195 start = rounddown(start, SEGS_PER_SEC(sbi));
2196 end = roundup(end, SEGS_PER_SEC(sbi));
2199 for (i = start; i < end; i++) {
2200 if (test_and_clear_bit(i, prefree_map))
2201 dirty_i->nr_dirty[PRE]--;
2204 if (!f2fs_realtime_discard_enable(sbi))
2207 if (force && start >= cpc->trim_start &&
2208 (end - 1) <= cpc->trim_end)
2211 /* Should cover 2MB zoned device for zone-based reset */
2212 if (!f2fs_sb_has_blkzoned(sbi) &&
2213 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2214 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2215 SEGS_TO_BLKS(sbi, end - start));
2219 secno = GET_SEC_FROM_SEG(sbi, start);
2220 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2221 if (!IS_CURSEC(sbi, secno) &&
2222 !get_valid_blocks(sbi, start, true))
2223 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2226 start = start_segno + SEGS_PER_SEC(sbi);
2232 mutex_unlock(&dirty_i->seglist_lock);
2234 if (!f2fs_block_unit_discard(sbi))
2237 /* send small discards */
2238 list_for_each_entry_safe(entry, this, head, list) {
2239 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2240 bool is_valid = test_bit_le(0, entry->discard_map);
2244 next_pos = find_next_zero_bit_le(entry->discard_map,
2245 BLKS_PER_SEG(sbi), cur_pos);
2246 len = next_pos - cur_pos;
2248 if (f2fs_sb_has_blkzoned(sbi) ||
2249 (force && len < cpc->trim_minlen))
2252 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2256 next_pos = find_next_bit_le(entry->discard_map,
2257 BLKS_PER_SEG(sbi), cur_pos);
2261 is_valid = !is_valid;
2263 if (cur_pos < BLKS_PER_SEG(sbi))
2266 release_discard_addr(entry);
2267 dcc->nr_discards -= total_len;
2271 wake_up_discard_thread(sbi, false);
2274 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2276 dev_t dev = sbi->sb->s_bdev->bd_dev;
2277 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2280 if (f2fs_sb_has_readonly(sbi)) {
2282 "Skip to start discard thread for readonly image");
2286 if (!f2fs_realtime_discard_enable(sbi))
2289 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2290 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2291 if (IS_ERR(dcc->f2fs_issue_discard)) {
2292 err = PTR_ERR(dcc->f2fs_issue_discard);
2293 dcc->f2fs_issue_discard = NULL;
2299 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2301 struct discard_cmd_control *dcc;
2304 if (SM_I(sbi)->dcc_info) {
2305 dcc = SM_I(sbi)->dcc_info;
2309 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2313 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2314 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2315 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2316 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2317 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2318 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2319 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2320 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2322 INIT_LIST_HEAD(&dcc->entry_list);
2323 for (i = 0; i < MAX_PLIST_NUM; i++)
2324 INIT_LIST_HEAD(&dcc->pend_list[i]);
2325 INIT_LIST_HEAD(&dcc->wait_list);
2326 INIT_LIST_HEAD(&dcc->fstrim_list);
2327 mutex_init(&dcc->cmd_lock);
2328 atomic_set(&dcc->issued_discard, 0);
2329 atomic_set(&dcc->queued_discard, 0);
2330 atomic_set(&dcc->discard_cmd_cnt, 0);
2331 dcc->nr_discards = 0;
2332 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2333 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2334 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2335 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2336 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2337 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2338 dcc->undiscard_blks = 0;
2340 dcc->root = RB_ROOT_CACHED;
2341 dcc->rbtree_check = false;
2343 init_waitqueue_head(&dcc->discard_wait_queue);
2344 SM_I(sbi)->dcc_info = dcc;
2346 err = f2fs_start_discard_thread(sbi);
2349 SM_I(sbi)->dcc_info = NULL;
2355 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2357 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2362 f2fs_stop_discard_thread(sbi);
2365 * Recovery can cache discard commands, so in error path of
2366 * fill_super(), it needs to give a chance to handle them.
2368 f2fs_issue_discard_timeout(sbi);
2371 SM_I(sbi)->dcc_info = NULL;
2374 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2376 struct sit_info *sit_i = SIT_I(sbi);
2378 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2379 sit_i->dirty_sentries++;
2386 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2387 unsigned int segno, int modified)
2389 struct seg_entry *se = get_seg_entry(sbi, segno);
2393 __mark_sit_entry_dirty(sbi, segno);
2396 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2399 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2401 if (segno == NULL_SEGNO)
2403 return get_seg_entry(sbi, segno)->mtime;
2406 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2407 unsigned long long old_mtime)
2409 struct seg_entry *se;
2410 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2411 unsigned long long ctime = get_mtime(sbi, false);
2412 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2414 if (segno == NULL_SEGNO)
2417 se = get_seg_entry(sbi, segno);
2422 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2423 se->valid_blocks + 1);
2425 if (ctime > SIT_I(sbi)->max_mtime)
2426 SIT_I(sbi)->max_mtime = ctime;
2429 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2431 struct seg_entry *se;
2432 unsigned int segno, offset;
2433 long int new_vblocks;
2435 #ifdef CONFIG_F2FS_CHECK_FS
2439 segno = GET_SEGNO(sbi, blkaddr);
2440 if (segno == NULL_SEGNO)
2443 se = get_seg_entry(sbi, segno);
2444 new_vblocks = se->valid_blocks + del;
2445 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2447 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2448 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2450 se->valid_blocks = new_vblocks;
2452 /* Update valid block bitmap */
2454 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2455 #ifdef CONFIG_F2FS_CHECK_FS
2456 mir_exist = f2fs_test_and_set_bit(offset,
2457 se->cur_valid_map_mir);
2458 if (unlikely(exist != mir_exist)) {
2459 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2461 f2fs_bug_on(sbi, 1);
2464 if (unlikely(exist)) {
2465 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2467 f2fs_bug_on(sbi, 1);
2472 if (f2fs_block_unit_discard(sbi) &&
2473 !f2fs_test_and_set_bit(offset, se->discard_map))
2474 sbi->discard_blks--;
2477 * SSR should never reuse block which is checkpointed
2478 * or newly invalidated.
2480 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2481 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2482 se->ckpt_valid_blocks++;
2485 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2486 #ifdef CONFIG_F2FS_CHECK_FS
2487 mir_exist = f2fs_test_and_clear_bit(offset,
2488 se->cur_valid_map_mir);
2489 if (unlikely(exist != mir_exist)) {
2490 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2492 f2fs_bug_on(sbi, 1);
2495 if (unlikely(!exist)) {
2496 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2498 f2fs_bug_on(sbi, 1);
2501 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2503 * If checkpoints are off, we must not reuse data that
2504 * was used in the previous checkpoint. If it was used
2505 * before, we must track that to know how much space we
2508 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2509 spin_lock(&sbi->stat_lock);
2510 sbi->unusable_block_count++;
2511 spin_unlock(&sbi->stat_lock);
2515 if (f2fs_block_unit_discard(sbi) &&
2516 f2fs_test_and_clear_bit(offset, se->discard_map))
2517 sbi->discard_blks++;
2519 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2520 se->ckpt_valid_blocks += del;
2522 __mark_sit_entry_dirty(sbi, segno);
2524 /* update total number of valid blocks to be written in ckpt area */
2525 SIT_I(sbi)->written_valid_blocks += del;
2527 if (__is_large_section(sbi))
2528 get_sec_entry(sbi, segno)->valid_blocks += del;
2531 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2533 unsigned int segno = GET_SEGNO(sbi, addr);
2534 struct sit_info *sit_i = SIT_I(sbi);
2536 f2fs_bug_on(sbi, addr == NULL_ADDR);
2537 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2540 f2fs_invalidate_internal_cache(sbi, addr);
2542 /* add it into sit main buffer */
2543 down_write(&sit_i->sentry_lock);
2545 update_segment_mtime(sbi, addr, 0);
2546 update_sit_entry(sbi, addr, -1);
2548 /* add it into dirty seglist */
2549 locate_dirty_segment(sbi, segno);
2551 up_write(&sit_i->sentry_lock);
2554 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2556 struct sit_info *sit_i = SIT_I(sbi);
2557 unsigned int segno, offset;
2558 struct seg_entry *se;
2561 if (!__is_valid_data_blkaddr(blkaddr))
2564 down_read(&sit_i->sentry_lock);
2566 segno = GET_SEGNO(sbi, blkaddr);
2567 se = get_seg_entry(sbi, segno);
2568 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2570 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2573 up_read(&sit_i->sentry_lock);
2578 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2580 struct curseg_info *curseg = CURSEG_I(sbi, type);
2582 if (sbi->ckpt->alloc_type[type] == SSR)
2583 return BLKS_PER_SEG(sbi);
2584 return curseg->next_blkoff;
2588 * Calculate the number of current summary pages for writing
2590 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2592 int valid_sum_count = 0;
2595 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2596 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2598 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2600 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2603 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2604 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2605 if (valid_sum_count <= sum_in_page)
2607 else if ((valid_sum_count - sum_in_page) <=
2608 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2614 * Caller should put this summary page
2616 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2618 if (unlikely(f2fs_cp_error(sbi)))
2619 return ERR_PTR(-EIO);
2620 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2623 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2624 void *src, block_t blk_addr)
2626 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2628 memcpy(page_address(page), src, PAGE_SIZE);
2629 set_page_dirty(page);
2630 f2fs_put_page(page, 1);
2633 static void write_sum_page(struct f2fs_sb_info *sbi,
2634 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2636 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2639 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2640 int type, block_t blk_addr)
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2644 struct f2fs_summary_block *src = curseg->sum_blk;
2645 struct f2fs_summary_block *dst;
2647 dst = (struct f2fs_summary_block *)page_address(page);
2648 memset(dst, 0, PAGE_SIZE);
2650 mutex_lock(&curseg->curseg_mutex);
2652 down_read(&curseg->journal_rwsem);
2653 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2654 up_read(&curseg->journal_rwsem);
2656 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2657 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2659 mutex_unlock(&curseg->curseg_mutex);
2661 set_page_dirty(page);
2662 f2fs_put_page(page, 1);
2665 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2666 struct curseg_info *curseg)
2668 unsigned int segno = curseg->segno + 1;
2669 struct free_segmap_info *free_i = FREE_I(sbi);
2671 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2672 return !test_bit(segno, free_i->free_segmap);
2677 * Find a new segment from the free segments bitmap to right order
2678 * This function should be returned with success, otherwise BUG
2680 static int get_new_segment(struct f2fs_sb_info *sbi,
2681 unsigned int *newseg, bool new_sec, bool pinning)
2683 struct free_segmap_info *free_i = FREE_I(sbi);
2684 unsigned int segno, secno, zoneno;
2685 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2686 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2687 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2692 spin_lock(&free_i->segmap_lock);
2694 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2699 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2700 segno = find_next_zero_bit(free_i->free_segmap,
2701 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2702 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2706 #ifdef CONFIG_BLK_DEV_ZONED
2708 * If we format f2fs on zoned storage, let's try to get pinned sections
2709 * from beginning of the storage, which should be a conventional one.
2711 if (f2fs_sb_has_blkzoned(sbi)) {
2712 /* Prioritize writing to conventional zones */
2713 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2716 segno = max(sbi->first_zoned_segno, *newseg);
2717 hint = GET_SEC_FROM_SEG(sbi, segno);
2722 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2724 #ifdef CONFIG_BLK_DEV_ZONED
2725 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2726 /* Write only to sequential zones */
2727 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2728 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2729 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2731 secno = find_first_zero_bit(free_i->free_secmap,
2733 if (secno >= MAIN_SECS(sbi)) {
2735 f2fs_bug_on(sbi, 1);
2741 if (secno >= MAIN_SECS(sbi)) {
2742 secno = find_first_zero_bit(free_i->free_secmap,
2744 if (secno >= MAIN_SECS(sbi)) {
2746 f2fs_bug_on(sbi, 1);
2750 segno = GET_SEG_FROM_SEC(sbi, secno);
2751 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2753 /* give up on finding another zone */
2756 if (sbi->secs_per_zone == 1)
2758 if (zoneno == old_zoneno)
2760 for (i = 0; i < NR_CURSEG_TYPE; i++)
2761 if (CURSEG_I(sbi, i)->zone == zoneno)
2764 if (i < NR_CURSEG_TYPE) {
2765 /* zone is in user, try another */
2766 if (zoneno + 1 >= total_zones)
2769 hint = (zoneno + 1) * sbi->secs_per_zone;
2771 goto find_other_zone;
2774 /* set it as dirty segment in free segmap */
2775 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2777 /* no free section in conventional zone */
2778 if (new_sec && pinning &&
2779 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2783 __set_inuse(sbi, segno);
2786 spin_unlock(&free_i->segmap_lock);
2789 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2793 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2795 struct curseg_info *curseg = CURSEG_I(sbi, type);
2796 struct summary_footer *sum_footer;
2797 unsigned short seg_type = curseg->seg_type;
2799 /* only happen when get_new_segment() fails */
2800 if (curseg->next_segno == NULL_SEGNO)
2803 curseg->inited = true;
2804 curseg->segno = curseg->next_segno;
2805 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2806 curseg->next_blkoff = 0;
2807 curseg->next_segno = NULL_SEGNO;
2809 sum_footer = &(curseg->sum_blk->footer);
2810 memset(sum_footer, 0, sizeof(struct summary_footer));
2812 sanity_check_seg_type(sbi, seg_type);
2814 if (IS_DATASEG(seg_type))
2815 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2816 if (IS_NODESEG(seg_type))
2817 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2818 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2821 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2823 struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 unsigned short seg_type = curseg->seg_type;
2826 sanity_check_seg_type(sbi, seg_type);
2827 if (__is_large_section(sbi)) {
2828 if (f2fs_need_rand_seg(sbi)) {
2829 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2831 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2832 return curseg->segno;
2833 return get_random_u32_inclusive(curseg->segno + 1,
2834 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2836 return curseg->segno;
2837 } else if (f2fs_need_rand_seg(sbi)) {
2838 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2841 /* inmem log may not locate on any segment after mount */
2842 if (!curseg->inited)
2845 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2848 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2851 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2852 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2854 /* find segments from 0 to reuse freed segments */
2855 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2858 return curseg->segno;
2862 * Allocate a current working segment.
2863 * This function always allocates a free segment in LFS manner.
2865 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2867 struct curseg_info *curseg = CURSEG_I(sbi, type);
2868 unsigned int segno = curseg->segno;
2869 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2873 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2875 segno = __get_next_segno(sbi, type);
2876 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2879 curseg->segno = NULL_SEGNO;
2883 curseg->next_segno = segno;
2884 reset_curseg(sbi, type, 1);
2885 curseg->alloc_type = LFS;
2886 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2887 curseg->fragment_remained_chunk =
2888 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2892 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2893 int segno, block_t start)
2895 struct seg_entry *se = get_seg_entry(sbi, segno);
2896 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2897 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2898 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2899 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2902 for (i = 0; i < entries; i++)
2903 target_map[i] = ckpt_map[i] | cur_map[i];
2905 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2908 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2909 struct curseg_info *seg)
2911 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2914 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2916 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2920 * This function always allocates a used segment(from dirty seglist) by SSR
2921 * manner, so it should recover the existing segment information of valid blocks
2923 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2926 struct curseg_info *curseg = CURSEG_I(sbi, type);
2927 unsigned int new_segno = curseg->next_segno;
2928 struct f2fs_summary_block *sum_node;
2929 struct page *sum_page;
2932 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2934 __set_test_and_inuse(sbi, new_segno);
2936 mutex_lock(&dirty_i->seglist_lock);
2937 __remove_dirty_segment(sbi, new_segno, PRE);
2938 __remove_dirty_segment(sbi, new_segno, DIRTY);
2939 mutex_unlock(&dirty_i->seglist_lock);
2941 reset_curseg(sbi, type, 1);
2942 curseg->alloc_type = SSR;
2943 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2945 sum_page = f2fs_get_sum_page(sbi, new_segno);
2946 if (IS_ERR(sum_page)) {
2947 /* GC won't be able to use stale summary pages by cp_error */
2948 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2949 return PTR_ERR(sum_page);
2951 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2952 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2953 f2fs_put_page(sum_page, 1);
2957 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2958 int alloc_mode, unsigned long long age);
2960 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2961 int target_type, int alloc_mode,
2962 unsigned long long age)
2964 struct curseg_info *curseg = CURSEG_I(sbi, type);
2967 curseg->seg_type = target_type;
2969 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2970 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2972 curseg->seg_type = se->type;
2973 ret = change_curseg(sbi, type);
2975 /* allocate cold segment by default */
2976 curseg->seg_type = CURSEG_COLD_DATA;
2977 ret = new_curseg(sbi, type, true);
2979 stat_inc_seg_type(sbi, curseg);
2983 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2988 if (!sbi->am.atgc_enabled && !force)
2991 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2993 mutex_lock(&curseg->curseg_mutex);
2994 down_write(&SIT_I(sbi)->sentry_lock);
2996 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2997 CURSEG_COLD_DATA, SSR, 0);
2999 up_write(&SIT_I(sbi)->sentry_lock);
3000 mutex_unlock(&curseg->curseg_mutex);
3002 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3006 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3008 return __f2fs_init_atgc_curseg(sbi, false);
3011 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3015 if (!test_opt(sbi, ATGC))
3017 if (sbi->am.atgc_enabled)
3019 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3020 sbi->am.age_threshold)
3023 ret = __f2fs_init_atgc_curseg(sbi, true);
3025 sbi->am.atgc_enabled = true;
3026 f2fs_info(sbi, "reenabled age threshold GC");
3031 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3033 struct curseg_info *curseg = CURSEG_I(sbi, type);
3035 mutex_lock(&curseg->curseg_mutex);
3036 if (!curseg->inited)
3039 if (get_valid_blocks(sbi, curseg->segno, false)) {
3040 write_sum_page(sbi, curseg->sum_blk,
3041 GET_SUM_BLOCK(sbi, curseg->segno));
3043 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3044 __set_test_and_free(sbi, curseg->segno, true);
3045 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3048 mutex_unlock(&curseg->curseg_mutex);
3051 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3053 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3055 if (sbi->am.atgc_enabled)
3056 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3059 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3061 struct curseg_info *curseg = CURSEG_I(sbi, type);
3063 mutex_lock(&curseg->curseg_mutex);
3064 if (!curseg->inited)
3066 if (get_valid_blocks(sbi, curseg->segno, false))
3069 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3070 __set_test_and_inuse(sbi, curseg->segno);
3071 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3073 mutex_unlock(&curseg->curseg_mutex);
3076 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3078 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3080 if (sbi->am.atgc_enabled)
3081 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3084 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3085 int alloc_mode, unsigned long long age)
3087 struct curseg_info *curseg = CURSEG_I(sbi, type);
3088 unsigned segno = NULL_SEGNO;
3089 unsigned short seg_type = curseg->seg_type;
3091 bool reversed = false;
3093 sanity_check_seg_type(sbi, seg_type);
3095 /* f2fs_need_SSR() already forces to do this */
3096 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3097 alloc_mode, age, false)) {
3098 curseg->next_segno = segno;
3102 /* For node segments, let's do SSR more intensively */
3103 if (IS_NODESEG(seg_type)) {
3104 if (seg_type >= CURSEG_WARM_NODE) {
3106 i = CURSEG_COLD_NODE;
3108 i = CURSEG_HOT_NODE;
3110 cnt = NR_CURSEG_NODE_TYPE;
3112 if (seg_type >= CURSEG_WARM_DATA) {
3114 i = CURSEG_COLD_DATA;
3116 i = CURSEG_HOT_DATA;
3118 cnt = NR_CURSEG_DATA_TYPE;
3121 for (; cnt-- > 0; reversed ? i-- : i++) {
3124 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3125 alloc_mode, age, false)) {
3126 curseg->next_segno = segno;
3131 /* find valid_blocks=0 in dirty list */
3132 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3133 segno = get_free_segment(sbi);
3134 if (segno != NULL_SEGNO) {
3135 curseg->next_segno = segno;
3142 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3144 struct curseg_info *curseg = CURSEG_I(sbi, type);
3146 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3147 curseg->seg_type == CURSEG_WARM_NODE)
3149 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3150 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3152 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3157 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3158 unsigned int start, unsigned int end)
3160 struct curseg_info *curseg = CURSEG_I(sbi, type);
3164 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3165 mutex_lock(&curseg->curseg_mutex);
3166 down_write(&SIT_I(sbi)->sentry_lock);
3168 segno = CURSEG_I(sbi, type)->segno;
3169 if (segno < start || segno > end)
3172 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3173 ret = change_curseg(sbi, type);
3175 ret = new_curseg(sbi, type, true);
3177 stat_inc_seg_type(sbi, curseg);
3179 locate_dirty_segment(sbi, segno);
3181 up_write(&SIT_I(sbi)->sentry_lock);
3183 if (segno != curseg->segno)
3184 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3185 type, segno, curseg->segno);
3187 mutex_unlock(&curseg->curseg_mutex);
3188 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3192 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3193 bool new_sec, bool force)
3195 struct curseg_info *curseg = CURSEG_I(sbi, type);
3196 unsigned int old_segno;
3199 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3202 if (!force && curseg->inited &&
3203 !curseg->next_blkoff &&
3204 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3205 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3209 old_segno = curseg->segno;
3210 err = new_curseg(sbi, type, true);
3213 stat_inc_seg_type(sbi, curseg);
3214 locate_dirty_segment(sbi, old_segno);
3218 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3222 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3223 down_write(&SIT_I(sbi)->sentry_lock);
3224 ret = __allocate_new_segment(sbi, type, true, force);
3225 up_write(&SIT_I(sbi)->sentry_lock);
3226 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3231 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3234 bool gc_required = true;
3238 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3239 f2fs_unlock_op(sbi);
3241 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3242 f2fs_down_write(&sbi->gc_lock);
3243 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk),
3244 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3245 f2fs_up_write(&sbi->gc_lock);
3247 gc_required = false;
3255 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3260 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3261 down_write(&SIT_I(sbi)->sentry_lock);
3262 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3263 err += __allocate_new_segment(sbi, i, false, false);
3264 up_write(&SIT_I(sbi)->sentry_lock);
3265 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3270 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3271 struct cp_control *cpc)
3273 __u64 trim_start = cpc->trim_start;
3274 bool has_candidate = false;
3276 down_write(&SIT_I(sbi)->sentry_lock);
3277 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3278 if (add_discard_addrs(sbi, cpc, true)) {
3279 has_candidate = true;
3283 up_write(&SIT_I(sbi)->sentry_lock);
3285 cpc->trim_start = trim_start;
3286 return has_candidate;
3289 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3290 struct discard_policy *dpolicy,
3291 unsigned int start, unsigned int end)
3293 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3294 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3295 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3296 struct discard_cmd *dc;
3297 struct blk_plug plug;
3299 unsigned int trimmed = 0;
3304 mutex_lock(&dcc->cmd_lock);
3305 if (unlikely(dcc->rbtree_check))
3306 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3308 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3309 &prev_dc, &next_dc, &insert_p, &insert_parent);
3313 blk_start_plug(&plug);
3315 while (dc && dc->di.lstart <= end) {
3316 struct rb_node *node;
3319 if (dc->di.len < dpolicy->granularity)
3322 if (dc->state != D_PREP) {
3323 list_move_tail(&dc->list, &dcc->fstrim_list);
3327 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3329 if (issued >= dpolicy->max_requests) {
3330 start = dc->di.lstart + dc->di.len;
3333 __remove_discard_cmd(sbi, dc);
3335 blk_finish_plug(&plug);
3336 mutex_unlock(&dcc->cmd_lock);
3337 trimmed += __wait_all_discard_cmd(sbi, NULL);
3338 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3342 node = rb_next(&dc->rb_node);
3344 __remove_discard_cmd(sbi, dc);
3345 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3347 if (fatal_signal_pending(current))
3351 blk_finish_plug(&plug);
3352 mutex_unlock(&dcc->cmd_lock);
3357 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3359 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3360 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3361 unsigned int start_segno, end_segno;
3362 block_t start_block, end_block;
3363 struct cp_control cpc;
3364 struct discard_policy dpolicy;
3365 unsigned long long trimmed = 0;
3367 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3369 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3372 if (end < MAIN_BLKADDR(sbi))
3375 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3376 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3377 return -EFSCORRUPTED;
3380 /* start/end segment number in main_area */
3381 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3382 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3383 GET_SEGNO(sbi, end);
3385 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3386 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3389 cpc.reason = CP_DISCARD;
3390 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3391 cpc.trim_start = start_segno;
3392 cpc.trim_end = end_segno;
3394 if (sbi->discard_blks == 0)
3397 f2fs_down_write(&sbi->gc_lock);
3398 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3399 err = f2fs_write_checkpoint(sbi, &cpc);
3400 f2fs_up_write(&sbi->gc_lock);
3405 * We filed discard candidates, but actually we don't need to wait for
3406 * all of them, since they'll be issued in idle time along with runtime
3407 * discard option. User configuration looks like using runtime discard
3408 * or periodic fstrim instead of it.
3410 if (f2fs_realtime_discard_enable(sbi))
3413 start_block = START_BLOCK(sbi, start_segno);
3414 end_block = START_BLOCK(sbi, end_segno + 1);
3416 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3417 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3418 start_block, end_block);
3420 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3421 start_block, end_block);
3424 range->len = F2FS_BLK_TO_BYTES(trimmed);
3428 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3430 if (F2FS_OPTION(sbi).active_logs == 2)
3431 return CURSEG_HOT_DATA;
3432 else if (F2FS_OPTION(sbi).active_logs == 4)
3433 return CURSEG_COLD_DATA;
3435 /* active_log == 6 */
3437 case WRITE_LIFE_SHORT:
3438 return CURSEG_HOT_DATA;
3439 case WRITE_LIFE_EXTREME:
3440 return CURSEG_COLD_DATA;
3442 return CURSEG_WARM_DATA;
3447 * This returns write hints for each segment type. This hints will be
3448 * passed down to block layer as below by default.
3452 * META WRITE_LIFE_NONE|REQ_META
3453 * HOT_NODE WRITE_LIFE_NONE
3454 * WARM_NODE WRITE_LIFE_MEDIUM
3455 * COLD_NODE WRITE_LIFE_LONG
3456 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3457 * extension list " "
3460 * COLD_DATA WRITE_LIFE_EXTREME
3461 * HOT_DATA WRITE_LIFE_SHORT
3462 * WARM_DATA WRITE_LIFE_NOT_SET
3465 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3466 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3467 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3468 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3469 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3470 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3472 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3473 enum page_type type, enum temp_type temp)
3479 return WRITE_LIFE_NOT_SET;
3481 return WRITE_LIFE_SHORT;
3483 return WRITE_LIFE_EXTREME;
3485 return WRITE_LIFE_NONE;
3490 return WRITE_LIFE_MEDIUM;
3492 return WRITE_LIFE_NONE;
3494 return WRITE_LIFE_LONG;
3496 return WRITE_LIFE_NONE;
3499 return WRITE_LIFE_NONE;
3501 return WRITE_LIFE_NONE;
3505 static int __get_segment_type_2(struct f2fs_io_info *fio)
3507 if (fio->type == DATA)
3508 return CURSEG_HOT_DATA;
3510 return CURSEG_HOT_NODE;
3513 static int __get_segment_type_4(struct f2fs_io_info *fio)
3515 if (fio->type == DATA) {
3516 struct inode *inode = fio->page->mapping->host;
3518 if (S_ISDIR(inode->i_mode))
3519 return CURSEG_HOT_DATA;
3521 return CURSEG_COLD_DATA;
3523 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3524 return CURSEG_WARM_NODE;
3526 return CURSEG_COLD_NODE;
3530 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 struct extent_info ei = {};
3535 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3537 return NO_CHECK_TYPE;
3538 if (ei.age <= sbi->hot_data_age_threshold)
3539 return CURSEG_HOT_DATA;
3540 if (ei.age <= sbi->warm_data_age_threshold)
3541 return CURSEG_WARM_DATA;
3542 return CURSEG_COLD_DATA;
3544 return NO_CHECK_TYPE;
3547 static int __get_segment_type_6(struct f2fs_io_info *fio)
3549 if (fio->type == DATA) {
3550 struct inode *inode = fio->page->mapping->host;
3553 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3554 return CURSEG_COLD_DATA_PINNED;
3556 if (page_private_gcing(fio->page)) {
3557 if (fio->sbi->am.atgc_enabled &&
3558 (fio->io_type == FS_DATA_IO) &&
3559 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3560 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3561 !is_inode_flag_set(inode, FI_OPU_WRITE))
3562 return CURSEG_ALL_DATA_ATGC;
3564 return CURSEG_COLD_DATA;
3566 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3567 return CURSEG_COLD_DATA;
3569 type = __get_age_segment_type(inode,
3570 page_folio(fio->page)->index);
3571 if (type != NO_CHECK_TYPE)
3574 if (file_is_hot(inode) ||
3575 is_inode_flag_set(inode, FI_HOT_DATA) ||
3576 f2fs_is_cow_file(inode))
3577 return CURSEG_HOT_DATA;
3578 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3579 inode->i_write_hint);
3581 if (IS_DNODE(fio->page))
3582 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3584 return CURSEG_COLD_NODE;
3588 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3591 struct curseg_info *curseg = CURSEG_I(sbi, type);
3592 enum temp_type temp = COLD;
3594 switch (curseg->seg_type) {
3595 case CURSEG_HOT_NODE:
3596 case CURSEG_HOT_DATA:
3599 case CURSEG_WARM_NODE:
3600 case CURSEG_WARM_DATA:
3603 case CURSEG_COLD_NODE:
3604 case CURSEG_COLD_DATA:
3608 f2fs_bug_on(sbi, 1);
3614 static int __get_segment_type(struct f2fs_io_info *fio)
3616 enum log_type type = CURSEG_HOT_DATA;
3618 switch (F2FS_OPTION(fio->sbi).active_logs) {
3620 type = __get_segment_type_2(fio);
3623 type = __get_segment_type_4(fio);
3626 type = __get_segment_type_6(fio);
3629 f2fs_bug_on(fio->sbi, true);
3632 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3637 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3638 struct curseg_info *seg)
3640 /* To allocate block chunks in different sizes, use random number */
3641 if (--seg->fragment_remained_chunk > 0)
3644 seg->fragment_remained_chunk =
3645 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3647 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3650 static void reset_curseg_fields(struct curseg_info *curseg)
3652 curseg->inited = false;
3653 curseg->segno = NULL_SEGNO;
3654 curseg->next_segno = 0;
3657 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3658 block_t old_blkaddr, block_t *new_blkaddr,
3659 struct f2fs_summary *sum, int type,
3660 struct f2fs_io_info *fio)
3662 struct sit_info *sit_i = SIT_I(sbi);
3663 struct curseg_info *curseg = CURSEG_I(sbi, type);
3664 unsigned long long old_mtime;
3665 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3666 struct seg_entry *se = NULL;
3667 bool segment_full = false;
3670 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3672 mutex_lock(&curseg->curseg_mutex);
3673 down_write(&sit_i->sentry_lock);
3675 if (curseg->segno == NULL_SEGNO) {
3681 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3682 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3683 sanity_check_seg_type(sbi, se->type);
3684 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3686 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3688 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3690 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3692 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3693 if (curseg->alloc_type == SSR) {
3694 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3696 curseg->next_blkoff++;
3697 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3698 f2fs_randomize_chunk(sbi, curseg);
3700 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3701 segment_full = true;
3702 stat_inc_block_count(sbi, curseg);
3705 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3707 update_segment_mtime(sbi, old_blkaddr, 0);
3710 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3713 * SIT information should be updated before segment allocation,
3714 * since SSR needs latest valid block information.
3716 update_sit_entry(sbi, *new_blkaddr, 1);
3717 update_sit_entry(sbi, old_blkaddr, -1);
3720 * If the current segment is full, flush it out and replace it with a
3724 if (type == CURSEG_COLD_DATA_PINNED &&
3725 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3726 write_sum_page(sbi, curseg->sum_blk,
3727 GET_SUM_BLOCK(sbi, curseg->segno));
3728 reset_curseg_fields(curseg);
3729 goto skip_new_segment;
3733 ret = get_atssr_segment(sbi, type, se->type,
3736 if (need_new_seg(sbi, type))
3737 ret = new_curseg(sbi, type, false);
3739 ret = change_curseg(sbi, type);
3740 stat_inc_seg_type(sbi, curseg);
3749 * segment dirty status should be updated after segment allocation,
3750 * so we just need to update status only one time after previous
3751 * segment being closed.
3753 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3754 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3756 if (IS_DATASEG(curseg->seg_type))
3757 atomic64_inc(&sbi->allocated_data_blocks);
3759 up_write(&sit_i->sentry_lock);
3761 if (page && IS_NODESEG(curseg->seg_type)) {
3762 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3764 f2fs_inode_chksum_set(sbi, page);
3768 struct f2fs_bio_info *io;
3770 INIT_LIST_HEAD(&fio->list);
3772 io = sbi->write_io[fio->type] + fio->temp;
3773 spin_lock(&io->io_lock);
3774 list_add_tail(&fio->list, &io->io_list);
3775 spin_unlock(&io->io_lock);
3778 mutex_unlock(&curseg->curseg_mutex);
3779 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3783 *new_blkaddr = NULL_ADDR;
3784 up_write(&sit_i->sentry_lock);
3785 mutex_unlock(&curseg->curseg_mutex);
3786 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3790 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3791 block_t blkaddr, unsigned int blkcnt)
3793 if (!f2fs_is_multi_device(sbi))
3797 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3798 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3800 /* update device state for fsync */
3801 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3803 /* update device state for checkpoint */
3804 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3805 spin_lock(&sbi->dev_lock);
3806 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3807 spin_unlock(&sbi->dev_lock);
3817 static int log_type_to_seg_type(enum log_type type)
3819 int seg_type = CURSEG_COLD_DATA;
3822 case CURSEG_HOT_DATA:
3823 case CURSEG_WARM_DATA:
3824 case CURSEG_COLD_DATA:
3825 case CURSEG_HOT_NODE:
3826 case CURSEG_WARM_NODE:
3827 case CURSEG_COLD_NODE:
3828 seg_type = (int)type;
3830 case CURSEG_COLD_DATA_PINNED:
3831 case CURSEG_ALL_DATA_ATGC:
3832 seg_type = CURSEG_COLD_DATA;
3840 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3842 enum log_type type = __get_segment_type(fio);
3843 int seg_type = log_type_to_seg_type(type);
3844 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3845 seg_type == CURSEG_COLD_DATA);
3848 f2fs_down_read(&fio->sbi->io_order_lock);
3850 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3851 &fio->new_blkaddr, sum, type, fio)) {
3852 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3853 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3854 end_page_writeback(fio->page);
3855 if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3856 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3859 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3860 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3862 /* writeout dirty page into bdev */
3863 f2fs_submit_page_write(fio);
3865 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3868 f2fs_up_read(&fio->sbi->io_order_lock);
3871 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3872 enum iostat_type io_type)
3874 struct f2fs_io_info fio = {
3879 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3880 .old_blkaddr = folio->index,
3881 .new_blkaddr = folio->index,
3882 .page = folio_page(folio, 0),
3883 .encrypted_page = NULL,
3887 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3888 fio.op_flags &= ~REQ_META;
3890 folio_start_writeback(folio);
3891 f2fs_submit_page_write(&fio);
3893 stat_inc_meta_count(sbi, folio->index);
3894 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3897 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3899 struct f2fs_summary sum;
3901 set_summary(&sum, nid, 0, 0);
3902 do_write_page(&sum, fio);
3904 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3907 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3908 struct f2fs_io_info *fio)
3910 struct f2fs_sb_info *sbi = fio->sbi;
3911 struct f2fs_summary sum;
3913 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3914 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3915 f2fs_update_age_extent_cache(dn);
3916 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3917 do_write_page(&sum, fio);
3918 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3920 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3923 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3926 struct f2fs_sb_info *sbi = fio->sbi;
3929 fio->new_blkaddr = fio->old_blkaddr;
3930 /* i/o temperature is needed for passing down write hints */
3931 __get_segment_type(fio);
3933 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3935 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3936 set_sbi_flag(sbi, SBI_NEED_FSCK);
3937 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3939 err = -EFSCORRUPTED;
3940 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3944 if (f2fs_cp_error(sbi)) {
3950 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3952 stat_inc_inplace_blocks(fio->sbi);
3954 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3955 err = f2fs_merge_page_bio(fio);
3957 err = f2fs_submit_page_bio(fio);
3959 f2fs_update_device_state(fio->sbi, fio->ino,
3960 fio->new_blkaddr, 1);
3961 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3962 fio->io_type, F2FS_BLKSIZE);
3967 if (fio->bio && *(fio->bio)) {
3968 struct bio *bio = *(fio->bio);
3970 bio->bi_status = BLK_STS_IOERR;
3977 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3982 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3983 if (CURSEG_I(sbi, i)->segno == segno)
3989 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3990 block_t old_blkaddr, block_t new_blkaddr,
3991 bool recover_curseg, bool recover_newaddr,
3994 struct sit_info *sit_i = SIT_I(sbi);
3995 struct curseg_info *curseg;
3996 unsigned int segno, old_cursegno;
3997 struct seg_entry *se;
3999 unsigned short old_blkoff;
4000 unsigned char old_alloc_type;
4002 segno = GET_SEGNO(sbi, new_blkaddr);
4003 se = get_seg_entry(sbi, segno);
4006 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4008 if (!recover_curseg) {
4009 /* for recovery flow */
4010 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4011 if (old_blkaddr == NULL_ADDR)
4012 type = CURSEG_COLD_DATA;
4014 type = CURSEG_WARM_DATA;
4017 if (IS_CURSEG(sbi, segno)) {
4018 /* se->type is volatile as SSR allocation */
4019 type = __f2fs_get_curseg(sbi, segno);
4020 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4022 type = CURSEG_WARM_DATA;
4026 curseg = CURSEG_I(sbi, type);
4027 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4029 mutex_lock(&curseg->curseg_mutex);
4030 down_write(&sit_i->sentry_lock);
4032 old_cursegno = curseg->segno;
4033 old_blkoff = curseg->next_blkoff;
4034 old_alloc_type = curseg->alloc_type;
4036 /* change the current segment */
4037 if (segno != curseg->segno) {
4038 curseg->next_segno = segno;
4039 if (change_curseg(sbi, type))
4043 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4044 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4046 if (!recover_curseg || recover_newaddr) {
4048 update_segment_mtime(sbi, new_blkaddr, 0);
4049 update_sit_entry(sbi, new_blkaddr, 1);
4051 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4052 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
4054 update_segment_mtime(sbi, old_blkaddr, 0);
4055 update_sit_entry(sbi, old_blkaddr, -1);
4058 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4059 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4061 locate_dirty_segment(sbi, old_cursegno);
4063 if (recover_curseg) {
4064 if (old_cursegno != curseg->segno) {
4065 curseg->next_segno = old_cursegno;
4066 if (change_curseg(sbi, type))
4069 curseg->next_blkoff = old_blkoff;
4070 curseg->alloc_type = old_alloc_type;
4074 up_write(&sit_i->sentry_lock);
4075 mutex_unlock(&curseg->curseg_mutex);
4076 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4079 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4080 block_t old_addr, block_t new_addr,
4081 unsigned char version, bool recover_curseg,
4082 bool recover_newaddr)
4084 struct f2fs_summary sum;
4086 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4088 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4089 recover_curseg, recover_newaddr, false);
4091 f2fs_update_data_blkaddr(dn, new_addr);
4094 void f2fs_wait_on_page_writeback(struct page *page,
4095 enum page_type type, bool ordered, bool locked)
4097 if (folio_test_writeback(page_folio(page))) {
4098 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4100 /* submit cached LFS IO */
4101 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4102 /* submit cached IPU IO */
4103 f2fs_submit_merged_ipu_write(sbi, NULL, page);
4105 wait_on_page_writeback(page);
4106 f2fs_bug_on(sbi, locked &&
4107 folio_test_writeback(page_folio(page)));
4109 wait_for_stable_page(page);
4114 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4119 if (!f2fs_meta_inode_gc_required(inode))
4122 if (!__is_valid_data_blkaddr(blkaddr))
4125 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4127 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4128 f2fs_put_page(cpage, 1);
4132 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4138 if (!f2fs_meta_inode_gc_required(inode))
4141 for (i = 0; i < len; i++)
4142 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4144 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4147 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4149 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4150 struct curseg_info *seg_i;
4151 unsigned char *kaddr;
4156 start = start_sum_block(sbi);
4158 page = f2fs_get_meta_page(sbi, start++);
4160 return PTR_ERR(page);
4161 kaddr = (unsigned char *)page_address(page);
4163 /* Step 1: restore nat cache */
4164 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4165 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4167 /* Step 2: restore sit cache */
4168 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4169 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4170 offset = 2 * SUM_JOURNAL_SIZE;
4172 /* Step 3: restore summary entries */
4173 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4174 unsigned short blk_off;
4177 seg_i = CURSEG_I(sbi, i);
4178 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4179 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4180 seg_i->next_segno = segno;
4181 reset_curseg(sbi, i, 0);
4182 seg_i->alloc_type = ckpt->alloc_type[i];
4183 seg_i->next_blkoff = blk_off;
4185 if (seg_i->alloc_type == SSR)
4186 blk_off = BLKS_PER_SEG(sbi);
4188 for (j = 0; j < blk_off; j++) {
4189 struct f2fs_summary *s;
4191 s = (struct f2fs_summary *)(kaddr + offset);
4192 seg_i->sum_blk->entries[j] = *s;
4193 offset += SUMMARY_SIZE;
4194 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4198 f2fs_put_page(page, 1);
4201 page = f2fs_get_meta_page(sbi, start++);
4203 return PTR_ERR(page);
4204 kaddr = (unsigned char *)page_address(page);
4208 f2fs_put_page(page, 1);
4212 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4215 struct f2fs_summary_block *sum;
4216 struct curseg_info *curseg;
4218 unsigned short blk_off;
4219 unsigned int segno = 0;
4220 block_t blk_addr = 0;
4223 /* get segment number and block addr */
4224 if (IS_DATASEG(type)) {
4225 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4226 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4228 if (__exist_node_summaries(sbi))
4229 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4231 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4233 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4235 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4237 if (__exist_node_summaries(sbi))
4238 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4239 type - CURSEG_HOT_NODE);
4241 blk_addr = GET_SUM_BLOCK(sbi, segno);
4244 new = f2fs_get_meta_page(sbi, blk_addr);
4246 return PTR_ERR(new);
4247 sum = (struct f2fs_summary_block *)page_address(new);
4249 if (IS_NODESEG(type)) {
4250 if (__exist_node_summaries(sbi)) {
4251 struct f2fs_summary *ns = &sum->entries[0];
4254 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4256 ns->ofs_in_node = 0;
4259 err = f2fs_restore_node_summary(sbi, segno, sum);
4265 /* set uncompleted segment to curseg */
4266 curseg = CURSEG_I(sbi, type);
4267 mutex_lock(&curseg->curseg_mutex);
4269 /* update journal info */
4270 down_write(&curseg->journal_rwsem);
4271 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4272 up_write(&curseg->journal_rwsem);
4274 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4275 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4276 curseg->next_segno = segno;
4277 reset_curseg(sbi, type, 0);
4278 curseg->alloc_type = ckpt->alloc_type[type];
4279 curseg->next_blkoff = blk_off;
4280 mutex_unlock(&curseg->curseg_mutex);
4282 f2fs_put_page(new, 1);
4286 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4288 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4289 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4290 int type = CURSEG_HOT_DATA;
4293 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4294 int npages = f2fs_npages_for_summary_flush(sbi, true);
4297 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4300 /* restore for compacted data summary */
4301 err = read_compacted_summaries(sbi);
4304 type = CURSEG_HOT_NODE;
4307 if (__exist_node_summaries(sbi))
4308 f2fs_ra_meta_pages(sbi,
4309 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4310 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4312 for (; type <= CURSEG_COLD_NODE; type++) {
4313 err = read_normal_summaries(sbi, type);
4318 /* sanity check for summary blocks */
4319 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4320 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4321 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4322 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4329 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4332 unsigned char *kaddr;
4333 struct f2fs_summary *summary;
4334 struct curseg_info *seg_i;
4335 int written_size = 0;
4338 page = f2fs_grab_meta_page(sbi, blkaddr++);
4339 kaddr = (unsigned char *)page_address(page);
4340 memset(kaddr, 0, PAGE_SIZE);
4342 /* Step 1: write nat cache */
4343 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4344 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4345 written_size += SUM_JOURNAL_SIZE;
4347 /* Step 2: write sit cache */
4348 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4350 written_size += SUM_JOURNAL_SIZE;
4352 /* Step 3: write summary entries */
4353 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4354 seg_i = CURSEG_I(sbi, i);
4355 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4357 page = f2fs_grab_meta_page(sbi, blkaddr++);
4358 kaddr = (unsigned char *)page_address(page);
4359 memset(kaddr, 0, PAGE_SIZE);
4362 summary = (struct f2fs_summary *)(kaddr + written_size);
4363 *summary = seg_i->sum_blk->entries[j];
4364 written_size += SUMMARY_SIZE;
4366 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4370 set_page_dirty(page);
4371 f2fs_put_page(page, 1);
4376 set_page_dirty(page);
4377 f2fs_put_page(page, 1);
4381 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4382 block_t blkaddr, int type)
4386 if (IS_DATASEG(type))
4387 end = type + NR_CURSEG_DATA_TYPE;
4389 end = type + NR_CURSEG_NODE_TYPE;
4391 for (i = type; i < end; i++)
4392 write_current_sum_page(sbi, i, blkaddr + (i - type));
4395 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4397 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4398 write_compacted_summaries(sbi, start_blk);
4400 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4403 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4405 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4408 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4409 unsigned int val, int alloc)
4413 if (type == NAT_JOURNAL) {
4414 for (i = 0; i < nats_in_cursum(journal); i++) {
4415 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4418 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4419 return update_nats_in_cursum(journal, 1);
4420 } else if (type == SIT_JOURNAL) {
4421 for (i = 0; i < sits_in_cursum(journal); i++)
4422 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4424 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4425 return update_sits_in_cursum(journal, 1);
4430 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4433 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4436 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4439 struct sit_info *sit_i = SIT_I(sbi);
4441 pgoff_t src_off, dst_off;
4443 src_off = current_sit_addr(sbi, start);
4444 dst_off = next_sit_addr(sbi, src_off);
4446 page = f2fs_grab_meta_page(sbi, dst_off);
4447 seg_info_to_sit_page(sbi, page, start);
4449 set_page_dirty(page);
4450 set_to_next_sit(sit_i, start);
4455 static struct sit_entry_set *grab_sit_entry_set(void)
4457 struct sit_entry_set *ses =
4458 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4459 GFP_NOFS, true, NULL);
4462 INIT_LIST_HEAD(&ses->set_list);
4466 static void release_sit_entry_set(struct sit_entry_set *ses)
4468 list_del(&ses->set_list);
4469 kmem_cache_free(sit_entry_set_slab, ses);
4472 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4473 struct list_head *head)
4475 struct sit_entry_set *next = ses;
4477 if (list_is_last(&ses->set_list, head))
4480 list_for_each_entry_continue(next, head, set_list)
4481 if (ses->entry_cnt <= next->entry_cnt) {
4482 list_move_tail(&ses->set_list, &next->set_list);
4486 list_move_tail(&ses->set_list, head);
4489 static void add_sit_entry(unsigned int segno, struct list_head *head)
4491 struct sit_entry_set *ses;
4492 unsigned int start_segno = START_SEGNO(segno);
4494 list_for_each_entry(ses, head, set_list) {
4495 if (ses->start_segno == start_segno) {
4497 adjust_sit_entry_set(ses, head);
4502 ses = grab_sit_entry_set();
4504 ses->start_segno = start_segno;
4506 list_add(&ses->set_list, head);
4509 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4511 struct f2fs_sm_info *sm_info = SM_I(sbi);
4512 struct list_head *set_list = &sm_info->sit_entry_set;
4513 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4516 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4517 add_sit_entry(segno, set_list);
4520 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4523 struct f2fs_journal *journal = curseg->journal;
4526 down_write(&curseg->journal_rwsem);
4527 for (i = 0; i < sits_in_cursum(journal); i++) {
4531 segno = le32_to_cpu(segno_in_journal(journal, i));
4532 dirtied = __mark_sit_entry_dirty(sbi, segno);
4535 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4537 update_sits_in_cursum(journal, -i);
4538 up_write(&curseg->journal_rwsem);
4542 * CP calls this function, which flushes SIT entries including sit_journal,
4543 * and moves prefree segs to free segs.
4545 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4547 struct sit_info *sit_i = SIT_I(sbi);
4548 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4550 struct f2fs_journal *journal = curseg->journal;
4551 struct sit_entry_set *ses, *tmp;
4552 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4553 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4554 struct seg_entry *se;
4556 down_write(&sit_i->sentry_lock);
4558 if (!sit_i->dirty_sentries)
4562 * add and account sit entries of dirty bitmap in sit entry
4565 add_sits_in_set(sbi);
4568 * if there are no enough space in journal to store dirty sit
4569 * entries, remove all entries from journal and add and account
4570 * them in sit entry set.
4572 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4574 remove_sits_in_journal(sbi);
4577 * there are two steps to flush sit entries:
4578 * #1, flush sit entries to journal in current cold data summary block.
4579 * #2, flush sit entries to sit page.
4581 list_for_each_entry_safe(ses, tmp, head, set_list) {
4582 struct page *page = NULL;
4583 struct f2fs_sit_block *raw_sit = NULL;
4584 unsigned int start_segno = ses->start_segno;
4585 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4586 (unsigned long)MAIN_SEGS(sbi));
4587 unsigned int segno = start_segno;
4590 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4594 down_write(&curseg->journal_rwsem);
4596 page = get_next_sit_page(sbi, start_segno);
4597 raw_sit = page_address(page);
4600 /* flush dirty sit entries in region of current sit set */
4601 for_each_set_bit_from(segno, bitmap, end) {
4602 int offset, sit_offset;
4604 se = get_seg_entry(sbi, segno);
4605 #ifdef CONFIG_F2FS_CHECK_FS
4606 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4607 SIT_VBLOCK_MAP_SIZE))
4608 f2fs_bug_on(sbi, 1);
4611 /* add discard candidates */
4612 if (!(cpc->reason & CP_DISCARD)) {
4613 cpc->trim_start = segno;
4614 add_discard_addrs(sbi, cpc, false);
4618 offset = f2fs_lookup_journal_in_cursum(journal,
4619 SIT_JOURNAL, segno, 1);
4620 f2fs_bug_on(sbi, offset < 0);
4621 segno_in_journal(journal, offset) =
4623 seg_info_to_raw_sit(se,
4624 &sit_in_journal(journal, offset));
4625 check_block_count(sbi, segno,
4626 &sit_in_journal(journal, offset));
4628 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4629 seg_info_to_raw_sit(se,
4630 &raw_sit->entries[sit_offset]);
4631 check_block_count(sbi, segno,
4632 &raw_sit->entries[sit_offset]);
4635 __clear_bit(segno, bitmap);
4636 sit_i->dirty_sentries--;
4641 up_write(&curseg->journal_rwsem);
4643 f2fs_put_page(page, 1);
4645 f2fs_bug_on(sbi, ses->entry_cnt);
4646 release_sit_entry_set(ses);
4649 f2fs_bug_on(sbi, !list_empty(head));
4650 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4652 if (cpc->reason & CP_DISCARD) {
4653 __u64 trim_start = cpc->trim_start;
4655 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4656 add_discard_addrs(sbi, cpc, false);
4658 cpc->trim_start = trim_start;
4660 up_write(&sit_i->sentry_lock);
4662 set_prefree_as_free_segments(sbi);
4665 static int build_sit_info(struct f2fs_sb_info *sbi)
4667 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4668 struct sit_info *sit_i;
4669 unsigned int sit_segs, start;
4670 char *src_bitmap, *bitmap;
4671 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4672 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4674 /* allocate memory for SIT information */
4675 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4679 SM_I(sbi)->sit_info = sit_i;
4682 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4685 if (!sit_i->sentries)
4688 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4689 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4691 if (!sit_i->dirty_sentries_bitmap)
4694 #ifdef CONFIG_F2FS_CHECK_FS
4695 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4697 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4699 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4703 bitmap = sit_i->bitmap;
4705 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4706 sit_i->sentries[start].cur_valid_map = bitmap;
4707 bitmap += SIT_VBLOCK_MAP_SIZE;
4709 sit_i->sentries[start].ckpt_valid_map = bitmap;
4710 bitmap += SIT_VBLOCK_MAP_SIZE;
4712 #ifdef CONFIG_F2FS_CHECK_FS
4713 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4714 bitmap += SIT_VBLOCK_MAP_SIZE;
4718 sit_i->sentries[start].discard_map = bitmap;
4719 bitmap += SIT_VBLOCK_MAP_SIZE;
4723 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4724 if (!sit_i->tmp_map)
4727 if (__is_large_section(sbi)) {
4728 sit_i->sec_entries =
4729 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4732 if (!sit_i->sec_entries)
4736 /* get information related with SIT */
4737 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4739 /* setup SIT bitmap from ckeckpoint pack */
4740 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4741 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4743 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4744 if (!sit_i->sit_bitmap)
4747 #ifdef CONFIG_F2FS_CHECK_FS
4748 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4749 sit_bitmap_size, GFP_KERNEL);
4750 if (!sit_i->sit_bitmap_mir)
4753 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4754 main_bitmap_size, GFP_KERNEL);
4755 if (!sit_i->invalid_segmap)
4759 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4760 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4761 sit_i->written_valid_blocks = 0;
4762 sit_i->bitmap_size = sit_bitmap_size;
4763 sit_i->dirty_sentries = 0;
4764 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4765 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4766 sit_i->mounted_time = ktime_get_boottime_seconds();
4767 init_rwsem(&sit_i->sentry_lock);
4771 static int build_free_segmap(struct f2fs_sb_info *sbi)
4773 struct free_segmap_info *free_i;
4774 unsigned int bitmap_size, sec_bitmap_size;
4776 /* allocate memory for free segmap information */
4777 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4781 SM_I(sbi)->free_info = free_i;
4783 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4784 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4785 if (!free_i->free_segmap)
4788 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4789 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4790 if (!free_i->free_secmap)
4793 /* set all segments as dirty temporarily */
4794 memset(free_i->free_segmap, 0xff, bitmap_size);
4795 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4797 /* init free segmap information */
4798 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4799 free_i->free_segments = 0;
4800 free_i->free_sections = 0;
4801 spin_lock_init(&free_i->segmap_lock);
4805 static int build_curseg(struct f2fs_sb_info *sbi)
4807 struct curseg_info *array;
4810 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4811 sizeof(*array)), GFP_KERNEL);
4815 SM_I(sbi)->curseg_array = array;
4817 for (i = 0; i < NO_CHECK_TYPE; i++) {
4818 mutex_init(&array[i].curseg_mutex);
4819 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4820 if (!array[i].sum_blk)
4822 init_rwsem(&array[i].journal_rwsem);
4823 array[i].journal = f2fs_kzalloc(sbi,
4824 sizeof(struct f2fs_journal), GFP_KERNEL);
4825 if (!array[i].journal)
4827 array[i].seg_type = log_type_to_seg_type(i);
4828 reset_curseg_fields(&array[i]);
4830 return restore_curseg_summaries(sbi);
4833 static int build_sit_entries(struct f2fs_sb_info *sbi)
4835 struct sit_info *sit_i = SIT_I(sbi);
4836 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4837 struct f2fs_journal *journal = curseg->journal;
4838 struct seg_entry *se;
4839 struct f2fs_sit_entry sit;
4840 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4841 unsigned int i, start, end;
4842 unsigned int readed, start_blk = 0;
4844 block_t sit_valid_blocks[2] = {0, 0};
4847 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4850 start = start_blk * sit_i->sents_per_block;
4851 end = (start_blk + readed) * sit_i->sents_per_block;
4853 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4854 struct f2fs_sit_block *sit_blk;
4857 se = &sit_i->sentries[start];
4858 page = get_current_sit_page(sbi, start);
4860 return PTR_ERR(page);
4861 sit_blk = (struct f2fs_sit_block *)page_address(page);
4862 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4863 f2fs_put_page(page, 1);
4865 err = check_block_count(sbi, start, &sit);
4868 seg_info_from_raw_sit(se, &sit);
4870 if (se->type >= NR_PERSISTENT_LOG) {
4871 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4873 f2fs_handle_error(sbi,
4874 ERROR_INCONSISTENT_SUM_TYPE);
4875 return -EFSCORRUPTED;
4878 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4880 if (!f2fs_block_unit_discard(sbi))
4881 goto init_discard_map_done;
4883 /* build discard map only one time */
4884 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4885 memset(se->discard_map, 0xff,
4886 SIT_VBLOCK_MAP_SIZE);
4887 goto init_discard_map_done;
4889 memcpy(se->discard_map, se->cur_valid_map,
4890 SIT_VBLOCK_MAP_SIZE);
4891 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4893 init_discard_map_done:
4894 if (__is_large_section(sbi))
4895 get_sec_entry(sbi, start)->valid_blocks +=
4898 start_blk += readed;
4899 } while (start_blk < sit_blk_cnt);
4901 down_read(&curseg->journal_rwsem);
4902 for (i = 0; i < sits_in_cursum(journal); i++) {
4903 unsigned int old_valid_blocks;
4905 start = le32_to_cpu(segno_in_journal(journal, i));
4906 if (start >= MAIN_SEGS(sbi)) {
4907 f2fs_err(sbi, "Wrong journal entry on segno %u",
4909 err = -EFSCORRUPTED;
4910 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4914 se = &sit_i->sentries[start];
4915 sit = sit_in_journal(journal, i);
4917 old_valid_blocks = se->valid_blocks;
4919 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4921 err = check_block_count(sbi, start, &sit);
4924 seg_info_from_raw_sit(se, &sit);
4926 if (se->type >= NR_PERSISTENT_LOG) {
4927 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4929 err = -EFSCORRUPTED;
4930 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4934 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4936 if (f2fs_block_unit_discard(sbi)) {
4937 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4938 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4940 memcpy(se->discard_map, se->cur_valid_map,
4941 SIT_VBLOCK_MAP_SIZE);
4942 sbi->discard_blks += old_valid_blocks;
4943 sbi->discard_blks -= se->valid_blocks;
4947 if (__is_large_section(sbi)) {
4948 get_sec_entry(sbi, start)->valid_blocks +=
4950 get_sec_entry(sbi, start)->valid_blocks -=
4954 up_read(&curseg->journal_rwsem);
4959 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4960 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4961 sit_valid_blocks[NODE], valid_node_count(sbi));
4962 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4963 return -EFSCORRUPTED;
4966 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4967 valid_user_blocks(sbi)) {
4968 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4969 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4970 valid_user_blocks(sbi));
4971 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4972 return -EFSCORRUPTED;
4978 static void init_free_segmap(struct f2fs_sb_info *sbi)
4982 struct seg_entry *sentry;
4984 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4985 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4987 sentry = get_seg_entry(sbi, start);
4988 if (!sentry->valid_blocks)
4989 __set_free(sbi, start);
4991 SIT_I(sbi)->written_valid_blocks +=
4992 sentry->valid_blocks;
4995 /* set use the current segments */
4996 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4997 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4999 __set_test_and_inuse(sbi, curseg_t->segno);
5003 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5006 struct free_segmap_info *free_i = FREE_I(sbi);
5007 unsigned int segno = 0, offset = 0, secno;
5008 block_t valid_blocks, usable_blks_in_seg;
5011 /* find dirty segment based on free segmap */
5012 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5013 if (segno >= MAIN_SEGS(sbi))
5016 valid_blocks = get_valid_blocks(sbi, segno, false);
5017 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5018 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5020 if (valid_blocks > usable_blks_in_seg) {
5021 f2fs_bug_on(sbi, 1);
5024 mutex_lock(&dirty_i->seglist_lock);
5025 __locate_dirty_segment(sbi, segno, DIRTY);
5026 mutex_unlock(&dirty_i->seglist_lock);
5029 if (!__is_large_section(sbi))
5032 mutex_lock(&dirty_i->seglist_lock);
5033 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5034 valid_blocks = get_valid_blocks(sbi, segno, true);
5035 secno = GET_SEC_FROM_SEG(sbi, segno);
5037 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5039 if (IS_CURSEC(sbi, secno))
5041 set_bit(secno, dirty_i->dirty_secmap);
5043 mutex_unlock(&dirty_i->seglist_lock);
5046 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5048 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5049 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5051 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5052 if (!dirty_i->victim_secmap)
5055 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5056 if (!dirty_i->pinned_secmap)
5059 dirty_i->pinned_secmap_cnt = 0;
5060 dirty_i->enable_pin_section = true;
5064 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5066 struct dirty_seglist_info *dirty_i;
5067 unsigned int bitmap_size, i;
5069 /* allocate memory for dirty segments list information */
5070 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5075 SM_I(sbi)->dirty_info = dirty_i;
5076 mutex_init(&dirty_i->seglist_lock);
5078 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5080 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5081 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5083 if (!dirty_i->dirty_segmap[i])
5087 if (__is_large_section(sbi)) {
5088 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5089 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5090 bitmap_size, GFP_KERNEL);
5091 if (!dirty_i->dirty_secmap)
5095 init_dirty_segmap(sbi);
5096 return init_victim_secmap(sbi);
5099 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5104 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5105 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5107 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5108 struct curseg_info *curseg = CURSEG_I(sbi, i);
5109 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5110 unsigned int blkofs = curseg->next_blkoff;
5112 if (f2fs_sb_has_readonly(sbi) &&
5113 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5116 sanity_check_seg_type(sbi, curseg->seg_type);
5118 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5120 "Current segment has invalid alloc_type:%d",
5121 curseg->alloc_type);
5122 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5123 return -EFSCORRUPTED;
5126 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5129 if (curseg->alloc_type == SSR)
5132 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5133 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5137 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5138 i, curseg->segno, curseg->alloc_type,
5139 curseg->next_blkoff, blkofs);
5140 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5141 return -EFSCORRUPTED;
5147 #ifdef CONFIG_BLK_DEV_ZONED
5148 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5149 struct f2fs_dev_info *fdev,
5150 struct blk_zone *zone)
5152 unsigned int zone_segno;
5153 block_t zone_block, valid_block_cnt;
5154 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5156 unsigned int nofs_flags;
5158 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5161 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5162 zone_segno = GET_SEGNO(sbi, zone_block);
5165 * Skip check of zones cursegs point to, since
5166 * fix_curseg_write_pointer() checks them.
5168 if (zone_segno >= MAIN_SEGS(sbi))
5172 * Get # of valid block of the zone.
5174 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5175 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5176 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5177 zone_segno, valid_block_cnt,
5178 blk_zone_cond_str(zone->cond));
5182 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5183 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5186 if (!valid_block_cnt) {
5187 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5188 "pointer. Reset the write pointer: cond[%s]",
5189 blk_zone_cond_str(zone->cond));
5190 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5191 zone->len >> log_sectors_per_block);
5193 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5199 * If there are valid blocks and the write pointer doesn't match
5200 * with them, we need to report the inconsistency and fill
5201 * the zone till the end to close the zone. This inconsistency
5202 * does not cause write error because the zone will not be
5203 * selected for write operation until it get discarded.
5205 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5206 "pointer: valid block[0x%x,0x%x] cond[%s]",
5207 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5209 nofs_flags = memalloc_nofs_save();
5210 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5211 zone->start, zone->len);
5212 memalloc_nofs_restore(nofs_flags);
5213 if (ret == -EOPNOTSUPP) {
5214 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5215 zone->len - (zone->wp - zone->start),
5218 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5221 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5228 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5229 block_t zone_blkaddr)
5233 for (i = 0; i < sbi->s_ndevs; i++) {
5234 if (!bdev_is_zoned(FDEV(i).bdev))
5236 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5237 zone_blkaddr <= FDEV(i).end_blk))
5244 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5247 memcpy(data, zone, sizeof(struct blk_zone));
5251 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5253 struct curseg_info *cs = CURSEG_I(sbi, type);
5254 struct f2fs_dev_info *zbd;
5255 struct blk_zone zone;
5256 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5257 block_t cs_zone_block, wp_block;
5258 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5259 sector_t zone_sector;
5262 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5263 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5265 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5269 /* report zone for the sector the curseg points to */
5270 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5271 << log_sectors_per_block;
5272 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5273 report_one_zone_cb, &zone);
5275 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5280 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5284 * When safely unmounted in the previous mount, we could use current
5285 * segments. Otherwise, allocate new sections.
5287 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5288 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5289 wp_segno = GET_SEGNO(sbi, wp_block);
5290 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5291 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5293 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5297 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5298 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5299 cs->next_blkoff, wp_segno, wp_blkoff);
5302 /* Allocate a new section if it's not new. */
5303 if (cs->next_blkoff ||
5304 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5305 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5307 f2fs_allocate_new_section(sbi, type, true);
5308 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5309 "[0x%x,0x%x] -> [0x%x,0x%x]",
5310 type, old_segno, old_blkoff,
5311 cs->segno, cs->next_blkoff);
5314 /* check consistency of the zone curseg pointed to */
5315 if (check_zone_write_pointer(sbi, zbd, &zone))
5318 /* check newly assigned zone */
5319 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5320 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5322 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5326 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5327 << log_sectors_per_block;
5328 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5329 report_one_zone_cb, &zone);
5331 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5336 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5339 if (zone.wp != zone.start) {
5341 "New zone for curseg[%d] is not yet discarded. "
5342 "Reset the zone: curseg[0x%x,0x%x]",
5343 type, cs->segno, cs->next_blkoff);
5344 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5345 zone.len >> log_sectors_per_block);
5347 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5356 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5360 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5361 ret = do_fix_curseg_write_pointer(sbi, i);
5369 struct check_zone_write_pointer_args {
5370 struct f2fs_sb_info *sbi;
5371 struct f2fs_dev_info *fdev;
5374 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5377 struct check_zone_write_pointer_args *args;
5379 args = (struct check_zone_write_pointer_args *)data;
5381 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5384 static int check_write_pointer(struct f2fs_sb_info *sbi)
5387 struct check_zone_write_pointer_args args;
5389 for (i = 0; i < sbi->s_ndevs; i++) {
5390 if (!bdev_is_zoned(FDEV(i).bdev))
5394 args.fdev = &FDEV(i);
5395 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5396 check_zone_write_pointer_cb, &args);
5404 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5408 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb))
5411 f2fs_notice(sbi, "Checking entire write pointers");
5412 ret = fix_curseg_write_pointer(sbi);
5414 ret = check_write_pointer(sbi);
5419 * Return the number of usable blocks in a segment. The number of blocks
5420 * returned is always equal to the number of blocks in a segment for
5421 * segments fully contained within a sequential zone capacity or a
5422 * conventional zone. For segments partially contained in a sequential
5423 * zone capacity, the number of usable blocks up to the zone capacity
5424 * is returned. 0 is returned in all other cases.
5426 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5427 struct f2fs_sb_info *sbi, unsigned int segno)
5429 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5432 if (!sbi->unusable_blocks_per_sec)
5433 return BLKS_PER_SEG(sbi);
5435 secno = GET_SEC_FROM_SEG(sbi, segno);
5436 seg_start = START_BLOCK(sbi, segno);
5437 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5438 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5441 * If segment starts before zone capacity and spans beyond
5442 * zone capacity, then usable blocks are from seg start to
5443 * zone capacity. If the segment starts after the zone capacity,
5444 * then there are no usable blocks.
5446 if (seg_start >= sec_cap_blkaddr)
5448 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5449 return sec_cap_blkaddr - seg_start;
5451 return BLKS_PER_SEG(sbi);
5454 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5459 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5466 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5469 if (f2fs_sb_has_blkzoned(sbi))
5470 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5472 return BLKS_PER_SEG(sbi);
5475 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5477 if (f2fs_sb_has_blkzoned(sbi))
5478 return CAP_SEGS_PER_SEC(sbi);
5480 return SEGS_PER_SEC(sbi);
5483 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5486 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5487 unsigned int secno = 0, start = 0;
5488 unsigned int total_valid_blocks = 0;
5489 unsigned long long mtime = 0;
5492 secno = GET_SEC_FROM_SEG(sbi, segno);
5493 start = GET_SEG_FROM_SEC(sbi, secno);
5495 if (!__is_large_section(sbi))
5496 return get_seg_entry(sbi, start + i)->mtime;
5498 for (i = 0; i < usable_segs_per_sec; i++) {
5499 /* for large section, only check the mtime of valid segments */
5500 struct seg_entry *se = get_seg_entry(sbi, start+i);
5502 mtime += se->mtime * se->valid_blocks;
5503 total_valid_blocks += se->valid_blocks;
5506 if (total_valid_blocks == 0)
5507 return INVALID_MTIME;
5509 return div_u64(mtime, total_valid_blocks);
5513 * Update min, max modified time for cost-benefit GC algorithm
5515 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5517 struct sit_info *sit_i = SIT_I(sbi);
5520 down_write(&sit_i->sentry_lock);
5522 sit_i->min_mtime = ULLONG_MAX;
5524 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5525 unsigned long long mtime = 0;
5527 mtime = f2fs_get_section_mtime(sbi, segno);
5529 if (sit_i->min_mtime > mtime)
5530 sit_i->min_mtime = mtime;
5532 sit_i->max_mtime = get_mtime(sbi, false);
5533 sit_i->dirty_max_mtime = 0;
5534 up_write(&sit_i->sentry_lock);
5537 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5539 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5540 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5541 struct f2fs_sm_info *sm_info;
5544 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5549 sbi->sm_info = sm_info;
5550 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5551 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5552 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5553 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5554 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5555 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5556 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5557 sm_info->rec_prefree_segments = sm_info->main_segments *
5558 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5559 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5560 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5562 if (!f2fs_lfs_mode(sbi))
5563 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5564 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5565 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5566 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5567 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5568 sm_info->min_ssr_sections = reserved_sections(sbi);
5570 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5572 init_f2fs_rwsem(&sm_info->curseg_lock);
5574 err = f2fs_create_flush_cmd_control(sbi);
5578 err = create_discard_cmd_control(sbi);
5582 err = build_sit_info(sbi);
5585 err = build_free_segmap(sbi);
5588 err = build_curseg(sbi);
5592 /* reinit free segmap based on SIT */
5593 err = build_sit_entries(sbi);
5597 init_free_segmap(sbi);
5598 err = build_dirty_segmap(sbi);
5602 err = sanity_check_curseg(sbi);
5606 init_min_max_mtime(sbi);
5610 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5611 enum dirty_type dirty_type)
5613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5615 mutex_lock(&dirty_i->seglist_lock);
5616 kvfree(dirty_i->dirty_segmap[dirty_type]);
5617 dirty_i->nr_dirty[dirty_type] = 0;
5618 mutex_unlock(&dirty_i->seglist_lock);
5621 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5623 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5625 kvfree(dirty_i->pinned_secmap);
5626 kvfree(dirty_i->victim_secmap);
5629 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5631 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5637 /* discard pre-free/dirty segments list */
5638 for (i = 0; i < NR_DIRTY_TYPE; i++)
5639 discard_dirty_segmap(sbi, i);
5641 if (__is_large_section(sbi)) {
5642 mutex_lock(&dirty_i->seglist_lock);
5643 kvfree(dirty_i->dirty_secmap);
5644 mutex_unlock(&dirty_i->seglist_lock);
5647 destroy_victim_secmap(sbi);
5648 SM_I(sbi)->dirty_info = NULL;
5652 static void destroy_curseg(struct f2fs_sb_info *sbi)
5654 struct curseg_info *array = SM_I(sbi)->curseg_array;
5659 SM_I(sbi)->curseg_array = NULL;
5660 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5661 kfree(array[i].sum_blk);
5662 kfree(array[i].journal);
5667 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5669 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5673 SM_I(sbi)->free_info = NULL;
5674 kvfree(free_i->free_segmap);
5675 kvfree(free_i->free_secmap);
5679 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5681 struct sit_info *sit_i = SIT_I(sbi);
5686 if (sit_i->sentries)
5687 kvfree(sit_i->bitmap);
5688 kfree(sit_i->tmp_map);
5690 kvfree(sit_i->sentries);
5691 kvfree(sit_i->sec_entries);
5692 kvfree(sit_i->dirty_sentries_bitmap);
5694 SM_I(sbi)->sit_info = NULL;
5695 kvfree(sit_i->sit_bitmap);
5696 #ifdef CONFIG_F2FS_CHECK_FS
5697 kvfree(sit_i->sit_bitmap_mir);
5698 kvfree(sit_i->invalid_segmap);
5703 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5705 struct f2fs_sm_info *sm_info = SM_I(sbi);
5709 f2fs_destroy_flush_cmd_control(sbi, true);
5710 destroy_discard_cmd_control(sbi);
5711 destroy_dirty_segmap(sbi);
5712 destroy_curseg(sbi);
5713 destroy_free_segmap(sbi);
5714 destroy_sit_info(sbi);
5715 sbi->sm_info = NULL;
5719 int __init f2fs_create_segment_manager_caches(void)
5721 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5722 sizeof(struct discard_entry));
5723 if (!discard_entry_slab)
5726 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5727 sizeof(struct discard_cmd));
5728 if (!discard_cmd_slab)
5729 goto destroy_discard_entry;
5731 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5732 sizeof(struct sit_entry_set));
5733 if (!sit_entry_set_slab)
5734 goto destroy_discard_cmd;
5736 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5737 sizeof(struct revoke_entry));
5738 if (!revoke_entry_slab)
5739 goto destroy_sit_entry_set;
5742 destroy_sit_entry_set:
5743 kmem_cache_destroy(sit_entry_set_slab);
5744 destroy_discard_cmd:
5745 kmem_cache_destroy(discard_cmd_slab);
5746 destroy_discard_entry:
5747 kmem_cache_destroy(discard_entry_slab);
5752 void f2fs_destroy_segment_manager_caches(void)
5754 kmem_cache_destroy(sit_entry_set_slab);
5755 kmem_cache_destroy(discard_cmd_slab);
5756 kmem_cache_destroy(discard_entry_slab);
5757 kmem_cache_destroy(revoke_entry_slab);