2 * Chromium OS cros_ec driver
4 * Copyright (c) 2012 The Chromium OS Authors.
6 * SPDX-License-Identifier: GPL-2.0+
10 * This is the interface to the Chrome OS EC. It provides keyboard functions,
11 * power control and battery management. Quite a few other functions are
12 * provided to enable the EC software to be updated, talk to the EC's I2C bus
13 * and store a small amount of data in a memory which persists while the EC
25 #include <asm/errno.h>
27 #include <asm-generic/gpio.h>
28 #include <dm/device-internal.h>
29 #include <dm/uclass-internal.h>
32 #define debug_trace(fmt, b...) debug(fmt, #b)
34 #define debug_trace(fmt, b...)
38 /* Timeout waiting for a flash erase command to complete */
39 CROS_EC_CMD_TIMEOUT_MS = 5000,
40 /* Timeout waiting for a synchronous hash to be recomputed */
41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
44 #ifndef CONFIG_DM_CROS_EC
45 static struct cros_ec_dev static_dev, *last_dev;
48 DECLARE_GLOBAL_DATA_PTR;
50 /* Note: depends on enum ec_current_image */
51 static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
53 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
60 printf("cmd=%#x: ", cmd);
61 for (i = 0; i < len; i++)
62 printf("%02x ", data[i]);
68 * Calculate a simple 8-bit checksum of a data block
70 * @param data Data block to checksum
71 * @param size Size of data block in bytes
72 * @return checksum value (0 to 255)
74 int cros_ec_calc_checksum(const uint8_t *data, int size)
78 for (i = csum = 0; i < size; i++)
84 * Create a request packet for protocol version 3.
86 * The packet is stored in the device's internal output buffer.
88 * @param dev CROS-EC device
89 * @param cmd Command to send (EC_CMD_...)
90 * @param cmd_version Version of command to send (EC_VER_...)
91 * @param dout Output data (may be NULL If dout_len=0)
92 * @param dout_len Size of output data in bytes
93 * @return packet size in bytes, or <0 if error.
95 static int create_proto3_request(struct cros_ec_dev *dev,
96 int cmd, int cmd_version,
97 const void *dout, int dout_len)
99 struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
100 int out_bytes = dout_len + sizeof(*rq);
102 /* Fail if output size is too big */
103 if (out_bytes > (int)sizeof(dev->dout)) {
104 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
105 return -EC_RES_REQUEST_TRUNCATED;
108 /* Fill in request packet */
109 rq->struct_version = EC_HOST_REQUEST_VERSION;
112 rq->command_version = cmd_version;
114 rq->data_len = dout_len;
116 /* Copy data after header */
117 memcpy(rq + 1, dout, dout_len);
119 /* Write checksum field so the entire packet sums to 0 */
120 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
122 cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
124 /* Return size of request packet */
129 * Prepare the device to receive a protocol version 3 response.
131 * @param dev CROS-EC device
132 * @param din_len Maximum size of response in bytes
133 * @return maximum expected number of bytes in response, or <0 if error.
135 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
137 int in_bytes = din_len + sizeof(struct ec_host_response);
139 /* Fail if input size is too big */
140 if (in_bytes > (int)sizeof(dev->din)) {
141 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
142 return -EC_RES_RESPONSE_TOO_BIG;
145 /* Return expected size of response packet */
150 * Handle a protocol version 3 response packet.
152 * The packet must already be stored in the device's internal input buffer.
154 * @param dev CROS-EC device
155 * @param dinp Returns pointer to response data
156 * @param din_len Maximum size of response in bytes
157 * @return number of bytes of response data, or <0 if error
159 static int handle_proto3_response(struct cros_ec_dev *dev,
160 uint8_t **dinp, int din_len)
162 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
166 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
168 /* Check input data */
169 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
170 debug("%s: EC response version mismatch\n", __func__);
171 return -EC_RES_INVALID_RESPONSE;
175 debug("%s: EC response reserved != 0\n", __func__);
176 return -EC_RES_INVALID_RESPONSE;
179 if (rs->data_len > din_len) {
180 debug("%s: EC returned too much data\n", __func__);
181 return -EC_RES_RESPONSE_TOO_BIG;
184 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
186 /* Update in_bytes to actual data size */
187 in_bytes = sizeof(*rs) + rs->data_len;
189 /* Verify checksum */
190 csum = cros_ec_calc_checksum(dev->din, in_bytes);
192 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
194 return -EC_RES_INVALID_CHECKSUM;
197 /* Return error result, if any */
199 return -(int)rs->result;
201 /* If we're still here, set response data pointer and return length */
202 *dinp = (uint8_t *)(rs + 1);
207 static int send_command_proto3(struct cros_ec_dev *dev,
208 int cmd, int cmd_version,
209 const void *dout, int dout_len,
210 uint8_t **dinp, int din_len)
212 #ifdef CONFIG_DM_CROS_EC
213 struct dm_cros_ec_ops *ops;
215 int out_bytes, in_bytes;
218 /* Create request packet */
219 out_bytes = create_proto3_request(dev, cmd, cmd_version,
224 /* Prepare response buffer */
225 in_bytes = prepare_proto3_response_buffer(dev, din_len);
229 #ifdef CONFIG_DM_CROS_EC
230 ops = dm_cros_ec_get_ops(dev->dev);
231 rv = ops->packet(dev->dev, out_bytes, in_bytes);
233 switch (dev->interface) {
234 #ifdef CONFIG_CROS_EC_SPI
236 rv = cros_ec_spi_packet(dev, out_bytes, in_bytes);
239 #ifdef CONFIG_CROS_EC_SANDBOX
240 case CROS_EC_IF_SANDBOX:
241 rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes);
244 case CROS_EC_IF_NONE:
245 /* TODO: support protocol 3 for LPC, I2C; for now fall through */
247 debug("%s: Unsupported interface\n", __func__);
254 /* Process the response */
255 return handle_proto3_response(dev, dinp, din_len);
258 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
259 const void *dout, int dout_len,
260 uint8_t **dinp, int din_len)
262 #ifdef CONFIG_DM_CROS_EC
263 struct dm_cros_ec_ops *ops;
267 /* Handle protocol version 3 support */
268 if (dev->protocol_version == 3) {
269 return send_command_proto3(dev, cmd, cmd_version,
270 dout, dout_len, dinp, din_len);
273 #ifdef CONFIG_DM_CROS_EC
274 ops = dm_cros_ec_get_ops(dev->dev);
275 ret = ops->command(dev->dev, cmd, cmd_version,
276 (const uint8_t *)dout, dout_len, dinp, din_len);
278 switch (dev->interface) {
279 #ifdef CONFIG_CROS_EC_SPI
281 ret = cros_ec_spi_command(dev, cmd, cmd_version,
282 (const uint8_t *)dout, dout_len,
286 #ifdef CONFIG_CROS_EC_I2C
288 ret = cros_ec_i2c_command(dev, cmd, cmd_version,
289 (const uint8_t *)dout, dout_len,
293 #ifdef CONFIG_CROS_EC_LPC
295 ret = cros_ec_lpc_command(dev, cmd, cmd_version,
296 (const uint8_t *)dout, dout_len,
300 case CROS_EC_IF_NONE:
310 * Send a command to the CROS-EC device and return the reply.
312 * The device's internal input/output buffers are used.
314 * @param dev CROS-EC device
315 * @param cmd Command to send (EC_CMD_...)
316 * @param cmd_version Version of command to send (EC_VER_...)
317 * @param dout Output data (may be NULL If dout_len=0)
318 * @param dout_len Size of output data in bytes
319 * @param dinp Response data (may be NULL If din_len=0).
320 * If not NULL, it will be updated to point to the data
321 * and will always be double word aligned (64-bits)
322 * @param din_len Maximum size of response in bytes
323 * @return number of bytes in response, or -1 on error
325 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
326 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
332 len = send_command(dev, cmd, cmd_version, dout, dout_len,
335 /* If the command doesn't complete, wait a while */
336 if (len == -EC_RES_IN_PROGRESS) {
337 struct ec_response_get_comms_status *resp = NULL;
340 /* Wait for command to complete */
341 start = get_timer(0);
345 mdelay(50); /* Insert some reasonable delay */
346 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
348 (uint8_t **)&resp, sizeof(*resp));
352 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
353 debug("%s: Command %#02x timeout\n",
355 return -EC_RES_TIMEOUT;
357 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
359 /* OK it completed, so read the status response */
360 /* not sure why it was 0 for the last argument */
361 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
362 NULL, 0, &din, din_len);
365 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
366 dinp ? *dinp : NULL);
368 /* If we have any data to return, it must be 64bit-aligned */
369 assert(len <= 0 || !((uintptr_t)din & 7));
377 * Send a command to the CROS-EC device and return the reply.
379 * The device's internal input/output buffers are used.
381 * @param dev CROS-EC device
382 * @param cmd Command to send (EC_CMD_...)
383 * @param cmd_version Version of command to send (EC_VER_...)
384 * @param dout Output data (may be NULL If dout_len=0)
385 * @param dout_len Size of output data in bytes
386 * @param din Response data (may be NULL If din_len=0).
387 * It not NULL, it is a place for ec_command() to copy the
389 * @param din_len Maximum size of response in bytes
390 * @return number of bytes in response, or -1 on error
392 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
393 const void *dout, int dout_len,
394 void *din, int din_len)
399 assert((din_len == 0) || din);
400 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
401 &in_buffer, din_len);
404 * If we were asked to put it somewhere, do so, otherwise just
405 * disregard the result.
407 if (din && in_buffer) {
408 assert(len <= din_len);
409 memmove(din, in_buffer, len);
415 int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
417 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 sizeof(scan->data)) != sizeof(scan->data))
424 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
426 struct ec_response_get_version *r;
428 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
429 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
432 if (maxlen > (int)sizeof(r->version_string_ro))
433 maxlen = sizeof(r->version_string_ro);
435 switch (r->current_image) {
437 memcpy(id, r->version_string_ro, maxlen);
440 memcpy(id, r->version_string_rw, maxlen);
446 id[maxlen - 1] = '\0';
450 int cros_ec_read_version(struct cros_ec_dev *dev,
451 struct ec_response_get_version **versionp)
453 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
454 (uint8_t **)versionp, sizeof(**versionp))
455 != sizeof(**versionp))
461 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
463 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
464 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
470 int cros_ec_read_current_image(struct cros_ec_dev *dev,
471 enum ec_current_image *image)
473 struct ec_response_get_version *r;
475 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
476 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
479 *image = r->current_image;
483 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
484 struct ec_response_vboot_hash *hash)
486 struct ec_params_vboot_hash p;
489 start = get_timer(0);
490 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
491 mdelay(50); /* Insert some reasonable delay */
493 p.cmd = EC_VBOOT_HASH_GET;
494 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
495 hash, sizeof(*hash)) < 0)
498 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
499 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
500 return -EC_RES_TIMEOUT;
507 int cros_ec_read_hash(struct cros_ec_dev *dev,
508 struct ec_response_vboot_hash *hash)
510 struct ec_params_vboot_hash p;
513 p.cmd = EC_VBOOT_HASH_GET;
514 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
515 hash, sizeof(*hash)) < 0)
518 /* If the EC is busy calculating the hash, fidget until it's done. */
519 rv = cros_ec_wait_on_hash_done(dev, hash);
523 /* If the hash is valid, we're done. Otherwise, we have to kick it off
524 * again and wait for it to complete. Note that we explicitly assume
525 * that hashing zero bytes is always wrong, even though that would
526 * produce a valid hash value. */
527 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
530 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
531 __func__, hash->status, hash->size);
533 p.cmd = EC_VBOOT_HASH_START;
534 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
536 p.offset = EC_VBOOT_HASH_OFFSET_RW;
538 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
539 hash, sizeof(*hash)) < 0)
542 rv = cros_ec_wait_on_hash_done(dev, hash);
546 debug("%s: hash done\n", __func__);
551 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
553 struct ec_params_vboot_hash p;
554 struct ec_response_vboot_hash *hash;
556 /* We don't have an explict command for the EC to discard its current
557 * hash value, so we'll just tell it to calculate one that we know is
558 * wrong (we claim that hashing zero bytes is always invalid).
560 p.cmd = EC_VBOOT_HASH_RECALC;
561 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
566 debug("%s:\n", __func__);
568 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
569 (uint8_t **)&hash, sizeof(*hash)) < 0)
572 /* No need to wait for it to finish */
576 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
579 struct ec_params_reboot_ec p;
584 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
588 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
590 * EC reboot will take place immediately so delay to allow it
591 * to complete. Note that some reboot types (EC_REBOOT_COLD)
592 * will reboot the AP as well, in which case we won't actually
597 * better way to determine when the reboot is complete. Could
598 * we poll a memory-mapped LPC value?
606 int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
608 /* no interrupt support : always poll */
609 if (!fdt_gpio_isvalid(&dev->ec_int))
612 return !gpio_get_value(dev->ec_int.gpio);
615 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
617 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
618 sizeof(*info)) != sizeof(*info))
624 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
626 struct ec_response_host_event_mask *resp;
629 * Use the B copy of the event flags, because the main copy is already
632 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
633 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
636 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
639 *events_ptr = resp->mask;
643 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
645 struct ec_params_host_event_mask params;
647 params.mask = events;
650 * Use the B copy of the event flags, so it affects the data returned
651 * by cros_ec_get_host_events().
653 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
654 ¶ms, sizeof(params), NULL, 0) < 0)
660 int cros_ec_flash_protect(struct cros_ec_dev *dev,
661 uint32_t set_mask, uint32_t set_flags,
662 struct ec_response_flash_protect *resp)
664 struct ec_params_flash_protect params;
666 params.mask = set_mask;
667 params.flags = set_flags;
669 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
670 ¶ms, sizeof(params),
671 resp, sizeof(*resp)) != sizeof(*resp))
677 static int cros_ec_check_version(struct cros_ec_dev *dev)
679 struct ec_params_hello req;
680 struct ec_response_hello *resp;
682 #ifdef CONFIG_CROS_EC_LPC
683 /* LPC has its own way of doing this */
684 if (dev->interface == CROS_EC_IF_LPC)
685 return cros_ec_lpc_check_version(dev);
690 * There is a strange oddity here with the EC. We could just ignore
691 * the response, i.e. pass the last two parameters as NULL and 0.
692 * In this case we won't read back very many bytes from the EC.
693 * On the I2C bus the EC gets upset about this and will try to send
694 * the bytes anyway. This means that we will have to wait for that
695 * to complete before continuing with a new EC command.
697 * This problem is probably unique to the I2C bus.
699 * So for now, just read all the data anyway.
702 /* Try sending a version 3 packet */
703 dev->protocol_version = 3;
705 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
706 (uint8_t **)&resp, sizeof(*resp)) > 0) {
710 /* Try sending a version 2 packet */
711 dev->protocol_version = 2;
712 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
713 (uint8_t **)&resp, sizeof(*resp)) > 0) {
718 * Fail if we're still here, since the EC doesn't understand any
719 * protcol version we speak. Version 1 interface without command
720 * version is no longer supported, and we don't know about any new
723 dev->protocol_version = 0;
724 printf("%s: ERROR: old EC interface not supported\n", __func__);
728 int cros_ec_test(struct cros_ec_dev *dev)
730 struct ec_params_hello req;
731 struct ec_response_hello *resp;
733 req.in_data = 0x12345678;
734 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
735 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
736 printf("ec_command_inptr() returned error\n");
739 if (resp->out_data != req.in_data + 0x01020304) {
740 printf("Received invalid handshake %x\n", resp->out_data);
747 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
748 uint32_t *offset, uint32_t *size)
750 struct ec_params_flash_region_info p;
751 struct ec_response_flash_region_info *r;
755 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
756 EC_VER_FLASH_REGION_INFO,
757 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
758 if (ret != sizeof(*r))
769 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
771 struct ec_params_flash_erase p;
775 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
780 * Write a single block to the flash
782 * Write a block of data to the EC flash. The size must not exceed the flash
783 * write block size which you can obtain from cros_ec_flash_write_burst_size().
785 * The offset starts at 0. You can obtain the region information from
786 * cros_ec_flash_offset() to find out where to write for a particular region.
788 * Attempting to write to the region where the EC is currently running from
789 * will result in an error.
791 * @param dev CROS-EC device
792 * @param data Pointer to data buffer to write
793 * @param offset Offset within flash to write to.
794 * @param size Number of bytes to write
795 * @return 0 if ok, -1 on error
797 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
798 const uint8_t *data, uint32_t offset, uint32_t size)
800 struct ec_params_flash_write p;
804 assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
805 memcpy(&p + 1, data, p.size);
807 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
808 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
812 * Return optimal flash write burst size
814 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
816 return EC_FLASH_WRITE_VER0_SIZE;
820 * Check if a block of data is erased (all 0xff)
822 * This function is useful when dealing with flash, for checking whether a
823 * data block is erased and thus does not need to be programmed.
825 * @param data Pointer to data to check (must be word-aligned)
826 * @param size Number of bytes to check (must be word-aligned)
827 * @return 0 if erased, non-zero if any word is not erased
829 static int cros_ec_data_is_erased(const uint32_t *data, int size)
832 size /= sizeof(uint32_t);
833 for (; size > 0; size -= 4, data++)
840 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
841 uint32_t offset, uint32_t size)
843 uint32_t burst = cros_ec_flash_write_burst_size(dev);
848 * TODO: round up to the nearest multiple of write size. Can get away
849 * without that on link right now because its write size is 4 bytes.
852 for (off = offset; off < end; off += burst, data += burst) {
855 /* If the data is empty, there is no point in programming it */
856 todo = min(end - off, burst);
857 if (dev->optimise_flash_write &&
858 cros_ec_data_is_erased((uint32_t *)data, todo))
861 ret = cros_ec_flash_write_block(dev, data, off, todo);
870 * Read a single block from the flash
872 * Read a block of data from the EC flash. The size must not exceed the flash
873 * write block size which you can obtain from cros_ec_flash_write_burst_size().
875 * The offset starts at 0. You can obtain the region information from
876 * cros_ec_flash_offset() to find out where to read for a particular region.
878 * @param dev CROS-EC device
879 * @param data Pointer to data buffer to read into
880 * @param offset Offset within flash to read from
881 * @param size Number of bytes to read
882 * @return 0 if ok, -1 on error
884 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
885 uint32_t offset, uint32_t size)
887 struct ec_params_flash_read p;
892 return ec_command(dev, EC_CMD_FLASH_READ, 0,
893 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
896 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
899 uint32_t burst = cros_ec_flash_write_burst_size(dev);
904 for (off = offset; off < end; off += burst, data += burst) {
905 ret = cros_ec_flash_read_block(dev, data, off,
906 min(end - off, burst));
914 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
915 const uint8_t *image, int image_size)
917 uint32_t rw_offset, rw_size;
920 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
922 if (image_size > (int)rw_size)
925 /* Invalidate the existing hash, just in case the AP reboots
926 * unexpectedly during the update. If that happened, the EC RW firmware
927 * would be invalid, but the EC would still have the original hash.
929 ret = cros_ec_invalidate_hash(dev);
934 * Erase the entire RW section, so that the EC doesn't see any garbage
935 * past the new image if it's smaller than the current image.
937 * TODO: could optimize this to erase just the current image, since
938 * presumably everything past that is 0xff's. But would still need to
939 * round up to the nearest multiple of erase size.
941 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
945 /* Write the image */
946 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
953 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
955 struct ec_params_vbnvcontext p;
958 p.op = EC_VBNV_CONTEXT_OP_READ;
960 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
961 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
962 if (len < EC_VBNV_BLOCK_SIZE)
968 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
970 struct ec_params_vbnvcontext p;
973 p.op = EC_VBNV_CONTEXT_OP_WRITE;
974 memcpy(p.block, block, sizeof(p.block));
976 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
977 &p, sizeof(p), NULL, 0);
984 int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
986 struct ec_params_ldo_set params;
988 params.index = index;
989 params.state = state;
991 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
992 ¶ms, sizeof(params),
999 int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
1001 struct ec_params_ldo_get params;
1002 struct ec_response_ldo_get *resp;
1004 params.index = index;
1006 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
1007 ¶ms, sizeof(params),
1008 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1011 *state = resp->state;
1016 #ifndef CONFIG_DM_CROS_EC
1018 * Decode EC interface details from the device tree and allocate a suitable
1021 * @param blob Device tree blob
1022 * @param node Node to decode from
1023 * @param devp Returns a pointer to the new allocated device
1024 * @return 0 if ok, -1 on error
1026 static int cros_ec_decode_fdt(const void *blob, int node,
1027 struct cros_ec_dev **devp)
1029 enum fdt_compat_id compat;
1030 struct cros_ec_dev *dev;
1033 /* See what type of parent we are inside (this is expensive) */
1034 parent = fdt_parent_offset(blob, node);
1036 debug("%s: Cannot find node parent\n", __func__);
1042 dev->parent_node = parent;
1044 compat = fdtdec_lookup(blob, parent);
1046 #ifdef CONFIG_CROS_EC_SPI
1047 case COMPAT_SAMSUNG_EXYNOS_SPI:
1048 dev->interface = CROS_EC_IF_SPI;
1049 if (cros_ec_spi_decode_fdt(dev, blob))
1053 #ifdef CONFIG_CROS_EC_I2C
1054 case COMPAT_SAMSUNG_S3C2440_I2C:
1055 dev->interface = CROS_EC_IF_I2C;
1056 if (cros_ec_i2c_decode_fdt(dev, blob))
1060 #ifdef CONFIG_CROS_EC_LPC
1061 case COMPAT_INTEL_LPC:
1062 dev->interface = CROS_EC_IF_LPC;
1065 #ifdef CONFIG_CROS_EC_SANDBOX
1066 case COMPAT_SANDBOX_HOST_EMULATION:
1067 dev->interface = CROS_EC_IF_SANDBOX;
1071 debug("%s: Unknown compat id %d\n", __func__, compat);
1075 fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
1076 dev->optimise_flash_write = fdtdec_get_bool(blob, node,
1077 "optimise-flash-write");
1084 #ifdef CONFIG_DM_CROS_EC
1085 int cros_ec_register(struct udevice *dev)
1087 struct cros_ec_dev *cdev = dev->uclass_priv;
1088 const void *blob = gd->fdt_blob;
1089 int node = dev->of_offset;
1093 fdtdec_decode_gpio(blob, node, "ec-interrupt", &cdev->ec_int);
1094 cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
1095 "optimise-flash-write");
1097 /* we will poll the EC interrupt line */
1098 fdtdec_setup_gpio(&cdev->ec_int);
1099 if (fdt_gpio_isvalid(&cdev->ec_int)) {
1100 gpio_request(cdev->ec_int.gpio, "cros-ec-irq");
1101 gpio_direction_input(cdev->ec_int.gpio);
1104 if (cros_ec_check_version(cdev)) {
1105 debug("%s: Could not detect CROS-EC version\n", __func__);
1106 return -CROS_EC_ERR_CHECK_VERSION;
1109 if (cros_ec_read_id(cdev, id, sizeof(id))) {
1110 debug("%s: Could not read KBC ID\n", __func__);
1111 return -CROS_EC_ERR_READ_ID;
1114 /* Remember this device for use by the cros_ec command */
1115 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
1120 int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
1122 struct cros_ec_dev *dev;
1124 #ifdef CONFIG_DM_CROS_EC
1125 struct udevice *udev;
1128 ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
1130 device_remove(udev);
1131 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1134 dev = udev->uclass_priv;
1141 node = fdtdec_next_compatible(blob, node,
1142 COMPAT_GOOGLE_CROS_EC);
1144 debug("%s: Node not found\n", __func__);
1147 } while (!fdtdec_get_is_enabled(blob, node));
1149 if (cros_ec_decode_fdt(blob, node, &dev)) {
1150 debug("%s: Failed to decode device.\n", __func__);
1151 return -CROS_EC_ERR_FDT_DECODE;
1154 switch (dev->interface) {
1155 #ifdef CONFIG_CROS_EC_SPI
1156 case CROS_EC_IF_SPI:
1157 if (cros_ec_spi_init(dev, blob)) {
1158 debug("%s: Could not setup SPI interface\n", __func__);
1159 return -CROS_EC_ERR_DEV_INIT;
1163 #ifdef CONFIG_CROS_EC_I2C
1164 case CROS_EC_IF_I2C:
1165 if (cros_ec_i2c_init(dev, blob))
1166 return -CROS_EC_ERR_DEV_INIT;
1169 #ifdef CONFIG_CROS_EC_LPC
1170 case CROS_EC_IF_LPC:
1171 if (cros_ec_lpc_init(dev, blob))
1172 return -CROS_EC_ERR_DEV_INIT;
1175 #ifdef CONFIG_CROS_EC_SANDBOX
1176 case CROS_EC_IF_SANDBOX:
1177 if (cros_ec_sandbox_init(dev, blob))
1178 return -CROS_EC_ERR_DEV_INIT;
1181 case CROS_EC_IF_NONE:
1187 /* we will poll the EC interrupt line */
1188 fdtdec_setup_gpio(&dev->ec_int);
1189 if (fdt_gpio_isvalid(&dev->ec_int)) {
1190 gpio_request(dev->ec_int.gpio, "cros-ec-irq");
1191 gpio_direction_input(dev->ec_int.gpio);
1194 if (cros_ec_check_version(dev)) {
1195 debug("%s: Could not detect CROS-EC version\n", __func__);
1196 return -CROS_EC_ERR_CHECK_VERSION;
1199 if (cros_ec_read_id(dev, id, sizeof(id))) {
1200 debug("%s: Could not read KBC ID\n", __func__);
1201 return -CROS_EC_ERR_READ_ID;
1204 /* Remember this device for use by the cros_ec command */
1206 #ifndef CONFIG_DM_CROS_EC
1209 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
1215 int cros_ec_decode_region(int argc, char * const argv[])
1218 if (0 == strcmp(*argv, "rw"))
1219 return EC_FLASH_REGION_RW;
1220 else if (0 == strcmp(*argv, "ro"))
1221 return EC_FLASH_REGION_RO;
1223 debug("%s: Invalid region '%s'\n", __func__, *argv);
1225 debug("%s: Missing region parameter\n", __func__);
1231 int cros_ec_decode_ec_flash(const void *blob, int node,
1232 struct fdt_cros_ec *config)
1236 flash_node = fdt_subnode_offset(blob, node, "flash");
1237 if (flash_node < 0) {
1238 debug("Failed to find flash node\n");
1242 if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
1244 debug("Failed to decode flash node in chrome-ec'\n");
1248 config->flash_erase_value = fdtdec_get_int(blob, flash_node,
1250 for (node = fdt_first_subnode(blob, flash_node); node >= 0;
1251 node = fdt_next_subnode(blob, node)) {
1252 const char *name = fdt_get_name(blob, node, NULL);
1253 enum ec_flash_region region;
1255 if (0 == strcmp(name, "ro")) {
1256 region = EC_FLASH_REGION_RO;
1257 } else if (0 == strcmp(name, "rw")) {
1258 region = EC_FLASH_REGION_RW;
1259 } else if (0 == strcmp(name, "wp-ro")) {
1260 region = EC_FLASH_REGION_WP_RO;
1262 debug("Unknown EC flash region name '%s'\n", name);
1266 if (fdtdec_read_fmap_entry(blob, node, "reg",
1267 &config->region[region])) {
1268 debug("Failed to decode flash region in chrome-ec'\n");
1276 int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
1277 int alen, uchar *buffer, int len, int is_read)
1280 struct ec_params_i2c_passthru p;
1281 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1284 struct ec_response_i2c_passthru r;
1285 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1287 struct ec_params_i2c_passthru *p = ¶ms.p;
1288 struct ec_response_i2c_passthru *r = &response.r;
1289 struct ec_params_i2c_passthru_msg *msg = p->msg;
1291 int read_len, write_len;
1298 printf("Unsupported address length %d\n", alen);
1307 write_len = alen + len;
1311 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1312 if (size + write_len > sizeof(params)) {
1313 puts("Params too large for buffer\n");
1316 if (sizeof(*r) + read_len > sizeof(response)) {
1317 puts("Read length too big for buffer\n");
1321 /* Create a message to write the register address and optional data */
1322 pdata = (uint8_t *)p + size;
1323 msg->addr_flags = chip;
1324 msg->len = write_len;
1327 memcpy(pdata + 1, buffer, len);
1331 msg->addr_flags = chip | EC_I2C_FLAG_READ;
1332 msg->len = read_len;
1335 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
1336 r, sizeof(*r) + read_len);
1340 /* Parse response */
1341 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1342 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1346 if (rv < sizeof(*r) + read_len) {
1347 puts("Truncated read response\n");
1352 memcpy(buffer, r->data, read_len);
1357 #ifdef CONFIG_CMD_CROS_EC
1360 * Perform a flash read or write command
1362 * @param dev CROS-EC device to read/write
1363 * @param is_write 1 do to a write, 0 to do a read
1364 * @param argc Number of arguments
1365 * @param argv Arguments (2 is region, 3 is address)
1366 * @return 0 for ok, 1 for a usage error or -ve for ec command error
1367 * (negative EC_RES_...)
1369 static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
1370 char * const argv[])
1372 uint32_t offset, size = -1U, region_size;
1378 region = cros_ec_decode_region(argc - 2, argv + 2);
1383 addr = simple_strtoul(argv[3], &endp, 16);
1384 if (*argv[3] == 0 || *endp != 0)
1387 size = simple_strtoul(argv[4], &endp, 16);
1388 if (*argv[4] == 0 || *endp != 0)
1392 ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size);
1394 debug("%s: Could not read region info\n", __func__);
1401 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1402 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1404 debug("%s: Could not %s region\n", __func__,
1405 is_write ? "write" : "read");
1413 * get_alen() - Small parser helper function to get address length
1415 * Returns the address length.
1417 static uint get_alen(char *arg)
1423 for (j = 0; j < 8; j++) {
1424 if (arg[j] == '.') {
1425 alen = arg[j+1] - '0';
1427 } else if (arg[j] == '\0') {
1434 #define DISP_LINE_LEN 16
1438 * so we can remove it later.
1440 static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
1441 char * const argv[])
1444 uint addr, alen, length = 0x10;
1445 int j, nbytes, linebytes;
1448 return CMD_RET_USAGE;
1450 if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
1452 * New command specified.
1458 chip = simple_strtoul(argv[0], NULL, 16);
1461 * I2C data address within the chip. This can be 1 or
1462 * 2 bytes long. Some day it might be 3 bytes long :-).
1464 addr = simple_strtoul(argv[1], NULL, 16);
1465 alen = get_alen(argv[1]);
1467 return CMD_RET_USAGE;
1470 * If another parameter, it is the length to display.
1471 * Length is the number of objects, not number of bytes.
1474 length = simple_strtoul(argv[2], NULL, 16);
1480 * We buffer all read data, so we can make sure data is read only
1485 unsigned char linebuf[DISP_LINE_LEN];
1488 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
1490 if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
1492 puts("Error reading the chip.\n");
1494 printf("%04x:", addr);
1496 for (j = 0; j < linebytes; j++) {
1497 printf(" %02x", *cp++);
1502 for (j = 0; j < linebytes; j++) {
1503 if ((*cp < 0x20) || (*cp > 0x7e))
1511 nbytes -= linebytes;
1512 } while (nbytes > 0);
1517 static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
1518 char * const argv[])
1526 if ((argc < 3) || (argc > 4))
1527 return CMD_RET_USAGE;
1530 * Chip is always specified.
1532 chip = simple_strtoul(argv[0], NULL, 16);
1535 * Address is always specified.
1537 addr = simple_strtoul(argv[1], NULL, 16);
1538 alen = get_alen(argv[1]);
1540 return CMD_RET_USAGE;
1543 * Value to write is always specified.
1545 byte = simple_strtoul(argv[2], NULL, 16);
1551 count = simple_strtoul(argv[3], NULL, 16);
1555 while (count-- > 0) {
1556 if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
1557 puts("Error writing the chip.\n");
1559 * Wait for the write to complete. The write can take
1560 * up to 10mSec (we allow a little more time).
1563 * No write delay with FRAM devices.
1565 #if !defined(CONFIG_SYS_I2C_FRAM)
1573 /* Temporary code until we have driver model and can use the i2c command */
1574 static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
1575 int argc, char * const argv[])
1580 return CMD_RET_USAGE;
1583 if (0 == strcmp("md", cmd))
1584 cros_ec_i2c_md(dev, flag, argc, argv);
1585 else if (0 == strcmp("mw", cmd))
1586 cros_ec_i2c_mw(dev, flag, argc, argv);
1588 return CMD_RET_USAGE;
1593 static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1595 struct cros_ec_dev *dev;
1596 #ifdef CONFIG_DM_CROS_EC
1597 struct udevice *udev;
1603 return CMD_RET_USAGE;
1606 if (0 == strcmp("init", cmd)) {
1607 #ifndef CONFIG_DM_CROS_EC
1608 ret = cros_ec_init(gd->fdt_blob, &dev);
1610 printf("Could not init cros_ec device (err %d)\n", ret);
1617 #ifdef CONFIG_DM_CROS_EC
1618 ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
1620 printf("Cannot get cros-ec device (err=%d)\n", ret);
1623 dev = udev->uclass_priv;
1625 /* Just use the last allocated device; there should be only one */
1627 printf("No CROS-EC device available\n");
1632 if (0 == strcmp("id", cmd)) {
1635 if (cros_ec_read_id(dev, id, sizeof(id))) {
1636 debug("%s: Could not read KBC ID\n", __func__);
1640 } else if (0 == strcmp("info", cmd)) {
1641 struct ec_response_mkbp_info info;
1643 if (cros_ec_info(dev, &info)) {
1644 debug("%s: Could not read KBC info\n", __func__);
1647 printf("rows = %u\n", info.rows);
1648 printf("cols = %u\n", info.cols);
1649 printf("switches = %#x\n", info.switches);
1650 } else if (0 == strcmp("curimage", cmd)) {
1651 enum ec_current_image image;
1653 if (cros_ec_read_current_image(dev, &image)) {
1654 debug("%s: Could not read KBC image\n", __func__);
1657 printf("%d\n", image);
1658 } else if (0 == strcmp("hash", cmd)) {
1659 struct ec_response_vboot_hash hash;
1662 if (cros_ec_read_hash(dev, &hash)) {
1663 debug("%s: Could not read KBC hash\n", __func__);
1667 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1668 printf("type: SHA-256\n");
1670 printf("type: %d\n", hash.hash_type);
1672 printf("offset: 0x%08x\n", hash.offset);
1673 printf("size: 0x%08x\n", hash.size);
1676 for (i = 0; i < hash.digest_size; i++)
1677 printf("%02x", hash.hash_digest[i]);
1679 } else if (0 == strcmp("reboot", cmd)) {
1681 enum ec_reboot_cmd cmd;
1683 if (argc >= 3 && !strcmp(argv[2], "cold"))
1684 cmd = EC_REBOOT_COLD;
1686 region = cros_ec_decode_region(argc - 2, argv + 2);
1687 if (region == EC_FLASH_REGION_RO)
1688 cmd = EC_REBOOT_JUMP_RO;
1689 else if (region == EC_FLASH_REGION_RW)
1690 cmd = EC_REBOOT_JUMP_RW;
1692 return CMD_RET_USAGE;
1695 if (cros_ec_reboot(dev, cmd, 0)) {
1696 debug("%s: Could not reboot KBC\n", __func__);
1699 } else if (0 == strcmp("events", cmd)) {
1702 if (cros_ec_get_host_events(dev, &events)) {
1703 debug("%s: Could not read host events\n", __func__);
1706 printf("0x%08x\n", events);
1707 } else if (0 == strcmp("clrevents", cmd)) {
1708 uint32_t events = 0x7fffffff;
1711 events = simple_strtol(argv[2], NULL, 0);
1713 if (cros_ec_clear_host_events(dev, events)) {
1714 debug("%s: Could not clear host events\n", __func__);
1717 } else if (0 == strcmp("read", cmd)) {
1718 ret = do_read_write(dev, 0, argc, argv);
1720 return CMD_RET_USAGE;
1721 } else if (0 == strcmp("write", cmd)) {
1722 ret = do_read_write(dev, 1, argc, argv);
1724 return CMD_RET_USAGE;
1725 } else if (0 == strcmp("erase", cmd)) {
1726 int region = cros_ec_decode_region(argc - 2, argv + 2);
1727 uint32_t offset, size;
1730 return CMD_RET_USAGE;
1731 if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1732 debug("%s: Could not read region info\n", __func__);
1735 ret = cros_ec_flash_erase(dev, offset, size);
1737 debug("%s: Could not erase region\n",
1741 } else if (0 == strcmp("regioninfo", cmd)) {
1742 int region = cros_ec_decode_region(argc - 2, argv + 2);
1743 uint32_t offset, size;
1746 return CMD_RET_USAGE;
1747 ret = cros_ec_flash_offset(dev, region, &offset, &size);
1749 debug("%s: Could not read region info\n", __func__);
1751 printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1753 printf("Offset: %x\n", offset);
1754 printf("Size: %x\n", size);
1756 } else if (0 == strcmp("vbnvcontext", cmd)) {
1757 uint8_t block[EC_VBNV_BLOCK_SIZE];
1760 unsigned long result;
1763 ret = cros_ec_read_vbnvcontext(dev, block);
1765 printf("vbnv_block: ");
1766 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1767 printf("%02x", block[i]);
1772 * TODO(clchiou): Move this to a utility function as
1773 * cmd_spi might want to call it.
1775 memset(block, 0, EC_VBNV_BLOCK_SIZE);
1776 len = strlen(argv[2]);
1778 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1781 buf[0] = argv[2][i * 2];
1782 if (i * 2 + 1 >= len)
1785 buf[1] = argv[2][i * 2 + 1];
1786 strict_strtoul(buf, 16, &result);
1789 ret = cros_ec_write_vbnvcontext(dev, block);
1792 debug("%s: Could not %s VbNvContext\n", __func__,
1793 argc <= 2 ? "read" : "write");
1795 } else if (0 == strcmp("test", cmd)) {
1796 int result = cros_ec_test(dev);
1799 printf("Test failed with error %d\n", result);
1801 puts("Test passed\n");
1802 } else if (0 == strcmp("version", cmd)) {
1803 struct ec_response_get_version *p;
1806 ret = cros_ec_read_version(dev, &p);
1808 /* Print versions */
1809 printf("RO version: %1.*s\n",
1810 (int)sizeof(p->version_string_ro),
1811 p->version_string_ro);
1812 printf("RW version: %1.*s\n",
1813 (int)sizeof(p->version_string_rw),
1814 p->version_string_rw);
1815 printf("Firmware copy: %s\n",
1817 ARRAY_SIZE(ec_current_image_name) ?
1818 ec_current_image_name[p->current_image] :
1820 ret = cros_ec_read_build_info(dev, &build_string);
1822 printf("Build info: %s\n", build_string);
1824 } else if (0 == strcmp("ldo", cmd)) {
1825 uint8_t index, state;
1829 return CMD_RET_USAGE;
1830 index = simple_strtoul(argv[2], &endp, 10);
1831 if (*argv[2] == 0 || *endp != 0)
1832 return CMD_RET_USAGE;
1834 state = simple_strtoul(argv[3], &endp, 10);
1835 if (*argv[3] == 0 || *endp != 0)
1836 return CMD_RET_USAGE;
1837 ret = cros_ec_set_ldo(dev, index, state);
1839 ret = cros_ec_get_ldo(dev, index, &state);
1841 printf("LDO%d: %s\n", index,
1842 state == EC_LDO_STATE_ON ?
1848 debug("%s: Could not access LDO%d\n", __func__, index);
1851 } else if (0 == strcmp("i2c", cmd)) {
1852 ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
1854 return CMD_RET_USAGE;
1858 printf("Error: CROS-EC command failed (error %d)\n", ret);
1866 crosec, 6, 1, do_cros_ec,
1867 "CROS-EC utility command",
1868 "init Re-init CROS-EC (done on startup automatically)\n"
1869 "crosec id Read CROS-EC ID\n"
1870 "crosec info Read CROS-EC info\n"
1871 "crosec curimage Read CROS-EC current image\n"
1872 "crosec hash Read CROS-EC hash\n"
1873 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
1874 "crosec events Read CROS-EC host events\n"
1875 "crosec clrevents [mask] Clear CROS-EC host events\n"
1876 "crosec regioninfo <ro|rw> Read image info\n"
1877 "crosec erase <ro|rw> Erase EC image\n"
1878 "crosec read <ro|rw> <addr> [<size>] Read EC image\n"
1879 "crosec write <ro|rw> <addr> [<size>] Write EC image\n"
1880 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
1881 "crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1882 "crosec test run tests on cros_ec\n"
1883 "crosec version Read CROS-EC version\n"
1884 "crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
1885 "crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
1889 #ifdef CONFIG_DM_CROS_EC
1890 UCLASS_DRIVER(cros_ec) = {
1891 .id = UCLASS_CROS_EC,
1893 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev),