1 # SPDX-License-Identifier: GPL-2.0+
3 # (C) Copyright 2000 - 2013
9 This directory contains the source code for U-Boot, a boot loader for
10 Embedded boards based on PowerPC, ARM, MIPS and several other
11 processors, which can be installed in a boot ROM and used to
12 initialize and test the hardware or to download and run application
15 The development of U-Boot is closely related to Linux: some parts of
16 the source code originate in the Linux source tree, we have some
17 header files in common, and special provision has been made to
18 support booting of Linux images.
20 Some attention has been paid to make this software easily
21 configurable and extendable. For instance, all monitor commands are
22 implemented with the same call interface, so that it's very easy to
23 add new commands. Also, instead of permanently adding rarely used
24 code (for instance hardware test utilities) to the monitor, you can
25 load and run it dynamically.
31 In general, all boards for which a configuration option exists in the
32 Makefile have been tested to some extent and can be considered
33 "working". In fact, many of them are used in production systems.
35 In case of problems see the CHANGELOG file to find out who contributed
36 the specific port. In addition, there are various MAINTAINERS files
37 scattered throughout the U-Boot source identifying the people or
38 companies responsible for various boards and subsystems.
40 Note: As of August, 2010, there is no longer a CHANGELOG file in the
41 actual U-Boot source tree; however, it can be created dynamically
42 from the Git log using:
50 In case you have questions about, problems with or contributions for
51 U-Boot, you should send a message to the U-Boot mailing list at
53 on the mailing list - please search the archive before asking FAQ's.
54 Please see https://lists.denx.de/pipermail/u-boot and
55 https://marc.info/?l=u-boot
57 Where to get source code:
58 =========================
60 The U-Boot source code is maintained in the Git repository at
61 https://source.denx.de/u-boot/u-boot.git ; you can browse it online at
62 https://source.denx.de/u-boot/u-boot
64 The "Tags" links on this page allow you to download tarballs of
65 any version you might be interested in. Official releases are also
66 available from the DENX file server through HTTPS or FTP.
67 https://ftp.denx.de/pub/u-boot/
68 ftp://ftp.denx.de/pub/u-boot/
74 - start from 8xxrom sources
75 - create PPCBoot project (https://sourceforge.net/projects/ppcboot)
77 - make it easier to add custom boards
78 - make it possible to add other [PowerPC] CPUs
79 - extend functions, especially:
80 * Provide extended interface to Linux boot loader
83 * ATA disk / SCSI ... boot
84 - create ARMBoot project (https://sourceforge.net/projects/armboot)
85 - add other CPU families (starting with ARM)
86 - create U-Boot project (https://sourceforge.net/projects/u-boot)
87 - current project page: see https://www.denx.de/wiki/U-Boot
93 The "official" name of this project is "Das U-Boot". The spelling
94 "U-Boot" shall be used in all written text (documentation, comments
95 in source files etc.). Example:
97 This is the README file for the U-Boot project.
99 File names etc. shall be based on the string "u-boot". Examples:
101 include/asm-ppc/u-boot.h
103 #include <asm/u-boot.h>
105 Variable names, preprocessor constants etc. shall be either based on
106 the string "u_boot" or on "U_BOOT". Example:
108 U_BOOT_VERSION u_boot_logo
109 IH_OS_U_BOOT u_boot_hush_start
115 Starting with the release in October 2008, the names of the releases
116 were changed from numerical release numbers without deeper meaning
117 into a time stamp based numbering. Regular releases are identified by
118 names consisting of the calendar year and month of the release date.
119 Additional fields (if present) indicate release candidates or bug fix
120 releases in "stable" maintenance trees.
123 U-Boot v2009.11 - Release November 2009
124 U-Boot v2009.11.1 - Release 1 in version November 2009 stable tree
125 U-Boot v2010.09-rc1 - Release candidate 1 for September 2010 release
131 /arch Architecture-specific files
132 /arc Files generic to ARC architecture
133 /arm Files generic to ARM architecture
134 /m68k Files generic to m68k architecture
135 /microblaze Files generic to microblaze architecture
136 /mips Files generic to MIPS architecture
137 /nds32 Files generic to NDS32 architecture
138 /nios2 Files generic to Altera NIOS2 architecture
139 /powerpc Files generic to PowerPC architecture
140 /riscv Files generic to RISC-V architecture
141 /sandbox Files generic to HW-independent "sandbox"
142 /sh Files generic to SH architecture
143 /x86 Files generic to x86 architecture
144 /xtensa Files generic to Xtensa architecture
145 /api Machine/arch-independent API for external apps
146 /board Board-dependent files
147 /boot Support for images and booting
148 /cmd U-Boot commands functions
149 /common Misc architecture-independent functions
150 /configs Board default configuration files
151 /disk Code for disk drive partition handling
152 /doc Documentation (a mix of ReST and READMEs)
153 /drivers Device drivers
154 /dts Makefile for building internal U-Boot fdt.
155 /env Environment support
156 /examples Example code for standalone applications, etc.
157 /fs Filesystem code (cramfs, ext2, jffs2, etc.)
158 /include Header Files
159 /lib Library routines generic to all architectures
160 /Licenses Various license files
162 /post Power On Self Test
163 /scripts Various build scripts and Makefiles
164 /test Various unit test files
165 /tools Tools to build and sign FIT images, etc.
167 Software Configuration:
168 =======================
170 Configuration is usually done using C preprocessor defines; the
171 rationale behind that is to avoid dead code whenever possible.
173 There are two classes of configuration variables:
175 * Configuration _OPTIONS_:
176 These are selectable by the user and have names beginning with
179 * Configuration _SETTINGS_:
180 These depend on the hardware etc. and should not be meddled with if
181 you don't know what you're doing; they have names beginning with
184 Previously, all configuration was done by hand, which involved creating
185 symbolic links and editing configuration files manually. More recently,
186 U-Boot has added the Kbuild infrastructure used by the Linux kernel,
187 allowing you to use the "make menuconfig" command to configure your
191 Selection of Processor Architecture and Board Type:
192 ---------------------------------------------------
194 For all supported boards there are ready-to-use default
195 configurations available; just type "make <board_name>_defconfig".
197 Example: For a TQM823L module type:
200 make TQM823L_defconfig
202 Note: If you're looking for the default configuration file for a board
203 you're sure used to be there but is now missing, check the file
204 doc/README.scrapyard for a list of no longer supported boards.
209 U-Boot can be built natively to run on a Linux host using the 'sandbox'
210 board. This allows feature development which is not board- or architecture-
211 specific to be undertaken on a native platform. The sandbox is also used to
212 run some of U-Boot's tests.
214 See doc/arch/sandbox.rst for more details.
217 Board Initialisation Flow:
218 --------------------------
220 This is the intended start-up flow for boards. This should apply for both
221 SPL and U-Boot proper (i.e. they both follow the same rules).
223 Note: "SPL" stands for "Secondary Program Loader," which is explained in
224 more detail later in this file.
226 At present, SPL mostly uses a separate code path, but the function names
227 and roles of each function are the same. Some boards or architectures
228 may not conform to this. At least most ARM boards which use
229 CONFIG_SPL_FRAMEWORK conform to this.
231 Execution typically starts with an architecture-specific (and possibly
232 CPU-specific) start.S file, such as:
234 - arch/arm/cpu/armv7/start.S
235 - arch/powerpc/cpu/mpc83xx/start.S
236 - arch/mips/cpu/start.S
238 and so on. From there, three functions are called; the purpose and
239 limitations of each of these functions are described below.
242 - purpose: essential init to permit execution to reach board_init_f()
243 - no global_data or BSS
244 - there is no stack (ARMv7 may have one but it will soon be removed)
245 - must not set up SDRAM or use console
246 - must only do the bare minimum to allow execution to continue to
248 - this is almost never needed
249 - return normally from this function
252 - purpose: set up the machine ready for running board_init_r():
253 i.e. SDRAM and serial UART
254 - global_data is available
256 - BSS is not available, so you cannot use global/static variables,
257 only stack variables and global_data
259 Non-SPL-specific notes:
260 - dram_init() is called to set up DRAM. If already done in SPL this
264 - you can override the entire board_init_f() function with your own
266 - preloader_console_init() can be called here in extremis
267 - should set up SDRAM, and anything needed to make the UART work
268 - there is no need to clear BSS, it will be done by crt0.S
269 - for specific scenarios on certain architectures an early BSS *can*
270 be made available (via CONFIG_SPL_EARLY_BSS by moving the clearing
271 of BSS prior to entering board_init_f()) but doing so is discouraged.
272 Instead it is strongly recommended to architect any code changes
273 or additions such to not depend on the availability of BSS during
274 board_init_f() as indicated in other sections of this README to
275 maintain compatibility and consistency across the entire code base.
276 - must return normally from this function (don't call board_init_r()
279 Here the BSS is cleared. For SPL, if CONFIG_SPL_STACK_R is defined, then at
280 this point the stack and global_data are relocated to below
281 CONFIG_SPL_STACK_R_ADDR. For non-SPL, U-Boot is relocated to run at the top of
285 - purpose: main execution, common code
286 - global_data is available
288 - BSS is available, all static/global variables can be used
289 - execution eventually continues to main_loop()
291 Non-SPL-specific notes:
292 - U-Boot is relocated to the top of memory and is now running from
296 - stack is optionally in SDRAM, if CONFIG_SPL_STACK_R is defined and
297 CONFIG_SPL_STACK_R_ADDR points into SDRAM
298 - preloader_console_init() can be called here - typically this is
299 done by selecting CONFIG_SPL_BOARD_INIT and then supplying a
300 spl_board_init() function containing this call
301 - loads U-Boot or (in falcon mode) Linux
304 Configuration Options:
305 ----------------------
307 Configuration depends on the combination of board and CPU type; all
308 such information is kept in a configuration file
309 "include/configs/<board_name>.h".
311 Example: For a TQM823L module, all configuration settings are in
312 "include/configs/TQM823L.h".
315 Many of the options are named exactly as the corresponding Linux
316 kernel configuration options. The intention is to make it easier to
317 build a config tool - later.
319 - ARM Platform Bus Type(CCI):
320 CoreLink Cache Coherent Interconnect (CCI) is ARM BUS which
321 provides full cache coherency between two clusters of multi-core
322 CPUs and I/O coherency for devices and I/O masters
324 CONFIG_SYS_FSL_HAS_CCI400
326 Defined For SoC that has cache coherent interconnect
329 CONFIG_SYS_FSL_HAS_CCN504
331 Defined for SoC that has cache coherent interconnect CCN-504
333 The following options need to be configured:
335 - CPU Type: Define exactly one, e.g. CONFIG_MPC85XX.
337 - Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS.
342 Specifies that the core is a 64-bit PowerPC implementation (implements
343 the "64" category of the Power ISA). This is necessary for ePAPR
344 compliance, among other possible reasons.
346 CONFIG_SYS_FSL_TBCLK_DIV
348 Defines the core time base clock divider ratio compared to the
349 system clock. On most PQ3 devices this is 8, on newer QorIQ
350 devices it can be 16 or 32. The ratio varies from SoC to Soc.
352 CONFIG_SYS_FSL_PCIE_COMPAT
354 Defines the string to utilize when trying to match PCIe device
355 tree nodes for the given platform.
357 CONFIG_SYS_FSL_ERRATUM_A004510
359 Enables a workaround for erratum A004510. If set,
360 then CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV and
361 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY must be set.
363 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV
364 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV2 (optional)
366 Defines one or two SoC revisions (low 8 bits of SVR)
367 for which the A004510 workaround should be applied.
369 The rest of SVR is either not relevant to the decision
370 of whether the erratum is present (e.g. p2040 versus
371 p2041) or is implied by the build target, which controls
372 whether CONFIG_SYS_FSL_ERRATUM_A004510 is set.
374 See Freescale App Note 4493 for more information about
377 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY
379 This is the value to write into CCSR offset 0x18600
380 according to the A004510 workaround.
382 CONFIG_SYS_FSL_DSP_DDR_ADDR
383 This value denotes start offset of DDR memory which is
384 connected exclusively to the DSP cores.
386 CONFIG_SYS_FSL_DSP_M2_RAM_ADDR
387 This value denotes start offset of M2 memory
388 which is directly connected to the DSP core.
390 CONFIG_SYS_FSL_DSP_M3_RAM_ADDR
391 This value denotes start offset of M3 memory which is directly
392 connected to the DSP core.
394 CONFIG_SYS_FSL_DSP_CCSRBAR_DEFAULT
395 This value denotes start offset of DSP CCSR space.
397 CONFIG_SYS_FSL_SINGLE_SOURCE_CLK
398 Single Source Clock is clocking mode present in some of FSL SoC's.
399 In this mode, a single differential clock is used to supply
400 clocks to the sysclock, ddrclock and usbclock.
402 CONFIG_SYS_CPC_REINIT_F
403 This CONFIG is defined when the CPC is configured as SRAM at the
404 time of U-Boot entry and is required to be re-initialized.
407 Indicates this SoC supports deep sleep feature. If deep sleep is
408 supported, core will start to execute uboot when wakes up.
410 - Generic CPU options:
411 CONFIG_SYS_BIG_ENDIAN, CONFIG_SYS_LITTLE_ENDIAN
413 Defines the endianess of the CPU. Implementation of those
414 values is arch specific.
417 Freescale DDR driver in use. This type of DDR controller is
418 found in mpc83xx, mpc85xx as well as some ARM core SoCs.
420 CONFIG_SYS_FSL_DDR_ADDR
421 Freescale DDR memory-mapped register base.
423 CONFIG_SYS_FSL_DDR_EMU
424 Specify emulator support for DDR. Some DDR features such as
425 deskew training are not available.
427 CONFIG_SYS_FSL_DDRC_GEN1
428 Freescale DDR1 controller.
430 CONFIG_SYS_FSL_DDRC_GEN2
431 Freescale DDR2 controller.
433 CONFIG_SYS_FSL_DDRC_GEN3
434 Freescale DDR3 controller.
436 CONFIG_SYS_FSL_DDRC_GEN4
437 Freescale DDR4 controller.
439 CONFIG_SYS_FSL_DDRC_ARM_GEN3
440 Freescale DDR3 controller for ARM-based SoCs.
443 Board config to use DDR1. It can be enabled for SoCs with
444 Freescale DDR1 or DDR2 controllers, depending on the board
448 Board config to use DDR2. It can be enabled for SoCs with
449 Freescale DDR2 or DDR3 controllers, depending on the board
453 Board config to use DDR3. It can be enabled for SoCs with
454 Freescale DDR3 or DDR3L controllers.
457 Board config to use DDR3L. It can be enabled for SoCs with
460 CONFIG_SYS_FSL_IFC_BE
461 Defines the IFC controller register space as Big Endian
463 CONFIG_SYS_FSL_IFC_LE
464 Defines the IFC controller register space as Little Endian
466 CONFIG_SYS_FSL_IFC_CLK_DIV
467 Defines divider of platform clock(clock input to IFC controller).
469 CONFIG_SYS_FSL_LBC_CLK_DIV
470 Defines divider of platform clock(clock input to eLBC controller).
472 CONFIG_SYS_FSL_DDR_BE
473 Defines the DDR controller register space as Big Endian
475 CONFIG_SYS_FSL_DDR_LE
476 Defines the DDR controller register space as Little Endian
478 CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
479 Physical address from the view of DDR controllers. It is the
480 same as CONFIG_SYS_DDR_SDRAM_BASE for all Power SoCs. But
481 it could be different for ARM SoCs.
483 CONFIG_SYS_FSL_DDR_INTLV_256B
484 DDR controller interleaving on 256-byte. This is a special
485 interleaving mode, handled by Dickens for Freescale layerscape
488 CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS
489 Number of controllers used as main memory.
491 CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
492 Number of controllers used for other than main memory.
494 CONFIG_SYS_FSL_HAS_DP_DDR
495 Defines the SoC has DP-DDR used for DPAA.
497 CONFIG_SYS_FSL_SEC_BE
498 Defines the SEC controller register space as Big Endian
500 CONFIG_SYS_FSL_SEC_LE
501 Defines the SEC controller register space as Little Endian
504 CONFIG_SYS_INIT_SP_OFFSET
506 Offset relative to CONFIG_SYS_SDRAM_BASE for initial stack
507 pointer. This is needed for the temporary stack before
510 CONFIG_XWAY_SWAP_BYTES
512 Enable compilation of tools/xway-swap-bytes needed for Lantiq
513 XWAY SoCs for booting from NOR flash. The U-Boot image needs to
514 be swapped if a flash programmer is used.
517 CONFIG_SYS_EXCEPTION_VECTORS_HIGH
519 Select high exception vectors of the ARM core, e.g., do not
520 clear the V bit of the c1 register of CP15.
523 Generic timer clock source frequency.
525 COUNTER_FREQUENCY_REAL
526 Generic timer clock source frequency if the real clock is
527 different from COUNTER_FREQUENCY, and can only be determined
531 CONFIG_TEGRA_SUPPORT_NON_SECURE
533 Support executing U-Boot in non-secure (NS) mode. Certain
534 impossible actions will be skipped if the CPU is in NS mode,
535 such as ARM architectural timer initialization.
537 - Linux Kernel Interface:
538 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only]
540 When transferring memsize parameter to Linux, some versions
541 expect it to be in bytes, others in MB.
542 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
546 New kernel versions are expecting firmware settings to be
547 passed using flattened device trees (based on open firmware
551 * New libfdt-based support
552 * Adds the "fdt" command
553 * The bootm command automatically updates the fdt
555 OF_TBCLK - The timebase frequency.
557 boards with QUICC Engines require OF_QE to set UCC MAC
562 U-Boot can detect if an IDE device is present or not.
563 If not, and this new config option is activated, U-Boot
564 removes the ATA node from the DTS before booting Linux,
565 so the Linux IDE driver does not probe the device and
566 crash. This is needed for buggy hardware (uc101) where
567 no pull down resistor is connected to the signal IDE5V_DD7.
569 - vxWorks boot parameters:
571 bootvx constructs a valid bootline using the following
572 environments variables: bootdev, bootfile, ipaddr, netmask,
573 serverip, gatewayip, hostname, othbootargs.
574 It loads the vxWorks image pointed bootfile.
576 Note: If a "bootargs" environment is defined, it will override
577 the defaults discussed just above.
579 - Cache Configuration for ARM:
580 CONFIG_SYS_L2_PL310 - Enable support for ARM PL310 L2 cache
582 CONFIG_SYS_PL310_BASE - Physical base address of PL310
583 controller register space
588 If you have Amba PrimeCell PL011 UARTs, set this variable to
589 the clock speed of the UARTs.
593 If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
594 define this to a list of base addresses for each (supported)
595 port. See e.g. include/configs/versatile.h
597 CONFIG_SERIAL_HW_FLOW_CONTROL
599 Define this variable to enable hw flow control in serial driver.
600 Current user of this option is drivers/serial/nsl16550.c driver
602 - Serial Download Echo Mode:
604 If defined to 1, all characters received during a
605 serial download (using the "loads" command) are
606 echoed back. This might be needed by some terminal
607 emulations (like "cu"), but may as well just take
608 time on others. This setting #define's the initial
609 value of the "loads_echo" environment variable.
611 - Removal of commands
612 If no commands are needed to boot, you can disable
613 CONFIG_CMDLINE to remove them. In this case, the command line
614 will not be available, and when U-Boot wants to execute the
615 boot command (on start-up) it will call board_run_command()
616 instead. This can reduce image size significantly for very
617 simple boot procedures.
619 - Regular expression support:
621 If this variable is defined, U-Boot is linked against
622 the SLRE (Super Light Regular Expression) library,
623 which adds regex support to some commands, as for
624 example "env grep" and "setexpr".
627 CONFIG_SYS_WATCHDOG_FREQ
628 Some platforms automatically call WATCHDOG_RESET()
629 from the timer interrupt handler every
630 CONFIG_SYS_WATCHDOG_FREQ interrupts. If not set by the
631 board configuration file, a default of CONFIG_SYS_HZ/2
632 (i.e. 500) is used. Setting CONFIG_SYS_WATCHDOG_FREQ
633 to 0 disables calling WATCHDOG_RESET() from the timer
638 When CONFIG_CMD_DATE is selected, the type of the RTC
639 has to be selected, too. Define exactly one of the
642 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
643 CONFIG_RTC_MC13XXX - use MC13783 or MC13892 RTC
644 CONFIG_RTC_MC146818 - use MC146818 RTC
645 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
646 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
647 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
648 CONFIG_RTC_DS1339 - use Maxim, Inc. DS1339 RTC
649 CONFIG_RTC_DS164x - use Dallas DS164x RTC
650 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC
651 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC
652 CONFIG_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337
653 CONFIG_SYS_RV3029_TCR - enable trickle charger on
656 Note that if the RTC uses I2C, then the I2C interface
657 must also be configured. See I2C Support, below.
660 CONFIG_PCA953X - use NXP's PCA953X series I2C GPIO
662 The CONFIG_SYS_I2C_PCA953X_WIDTH option specifies a list of
663 chip-ngpio pairs that tell the PCA953X driver the number of
664 pins supported by a particular chip.
666 Note that if the GPIO device uses I2C, then the I2C interface
667 must also be configured. See I2C Support, below.
670 When CONFIG_IO_TRACE is selected, U-Boot intercepts all I/O
671 accesses and can checksum them or write a list of them out
672 to memory. See the 'iotrace' command for details. This is
673 useful for testing device drivers since it can confirm that
674 the driver behaves the same way before and after a code
675 change. Currently this is supported on sandbox and arm. To
676 add support for your architecture, add '#include <iotrace.h>'
677 to the bottom of arch/<arch>/include/asm/io.h and test.
679 Example output from the 'iotrace stats' command is below.
680 Note that if the trace buffer is exhausted, the checksum will
681 still continue to operate.
684 Start: 10000000 (buffer start address)
685 Size: 00010000 (buffer size)
686 Offset: 00000120 (current buffer offset)
687 Output: 10000120 (start + offset)
688 Count: 00000018 (number of trace records)
689 CRC32: 9526fb66 (CRC32 of all trace records)
693 When CONFIG_TIMESTAMP is selected, the timestamp
694 (date and time) of an image is printed by image
695 commands like bootm or iminfo. This option is
696 automatically enabled when you select CONFIG_CMD_DATE .
698 - Partition Labels (disklabels) Supported:
699 Zero or more of the following:
700 CONFIG_MAC_PARTITION Apple's MacOS partition table.
701 CONFIG_ISO_PARTITION ISO partition table, used on CDROM etc.
702 CONFIG_EFI_PARTITION GPT partition table, common when EFI is the
703 bootloader. Note 2TB partition limit; see
705 CONFIG_SCSI) you must configure support for at
706 least one non-MTD partition type as well.
711 Set this to enable support for disks larger than 137GB
712 Also look at CONFIG_SYS_64BIT_LBA.
713 Whithout these , LBA48 support uses 32bit variables and will 'only'
714 support disks up to 2.1TB.
716 CONFIG_SYS_64BIT_LBA:
717 When enabled, makes the IDE subsystem use 64bit sector addresses.
720 - NETWORK Support (PCI):
722 Utility code for direct access to the SPI bus on Intel 8257x.
723 This does not do anything useful unless you set at least one
724 of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC.
727 Support for National dp83815 chips.
730 Support for National dp8382[01] gigabit chips.
732 - NETWORK Support (other):
734 Support for the Calxeda XGMAC device
737 Support for SMSC's LAN91C96 chips.
739 CONFIG_LAN91C96_USE_32_BIT
740 Define this to enable 32 bit addressing
743 Support for SMSC's LAN91C111 chip
746 Define this to hold the physical address
747 of the device (I/O space)
749 CONFIG_SMC_USE_32_BIT
750 Define this if data bus is 32 bits
752 CONFIG_SMC_USE_IOFUNCS
753 Define this to use i/o functions instead of macros
754 (some hardware wont work with macros)
756 CONFIG_SYS_DAVINCI_EMAC_PHY_COUNT
757 Define this if you have more then 3 PHYs.
760 Support for Faraday's FTGMAC100 Gigabit SoC Ethernet
762 CONFIG_FTGMAC100_EGIGA
763 Define this to use GE link update with gigabit PHY.
764 Define this if FTGMAC100 is connected to gigabit PHY.
765 If your system has 10/100 PHY only, it might not occur
766 wrong behavior. Because PHY usually return timeout or
767 useless data when polling gigabit status and gigabit
768 control registers. This behavior won't affect the
769 correctnessof 10/100 link speed update.
772 Support for Renesas on-chip Ethernet controller
774 CONFIG_SH_ETHER_USE_PORT
775 Define the number of ports to be used
777 CONFIG_SH_ETHER_PHY_ADDR
778 Define the ETH PHY's address
780 CONFIG_SH_ETHER_CACHE_WRITEBACK
781 If this option is set, the driver enables cache flush.
787 CONFIG_TPM_TIS_INFINEON
788 Support for Infineon i2c bus TPM devices. Only one device
789 per system is supported at this time.
791 CONFIG_TPM_TIS_I2C_BURST_LIMITATION
792 Define the burst count bytes upper limit
795 Support for STMicroelectronics TPM devices. Requires DM_TPM support.
797 CONFIG_TPM_ST33ZP24_I2C
798 Support for STMicroelectronics ST33ZP24 I2C devices.
799 Requires TPM_ST33ZP24 and I2C.
801 CONFIG_TPM_ST33ZP24_SPI
802 Support for STMicroelectronics ST33ZP24 SPI devices.
803 Requires TPM_ST33ZP24 and SPI.
806 Support for Atmel TWI TPM device. Requires I2C support.
809 Support for generic parallel port TPM devices. Only one device
810 per system is supported at this time.
812 CONFIG_TPM_TIS_BASE_ADDRESS
813 Base address where the generic TPM device is mapped
814 to. Contemporary x86 systems usually map it at
818 Define this to enable the TPM support library which provides
819 functional interfaces to some TPM commands.
820 Requires support for a TPM device.
822 CONFIG_TPM_AUTH_SESSIONS
823 Define this to enable authorized functions in the TPM library.
824 Requires CONFIG_TPM and CONFIG_SHA1.
827 At the moment only the UHCI host controller is
828 supported (PIP405, MIP405); define
829 CONFIG_USB_UHCI to enable it.
830 define CONFIG_USB_KEYBOARD to enable the USB Keyboard
831 and define CONFIG_USB_STORAGE to enable the USB
834 Supported are USB Keyboards and USB Floppy drives
837 CONFIG_USB_EHCI_TXFIFO_THRESH enables setting of the
838 txfilltuning field in the EHCI controller on reset.
840 CONFIG_USB_DWC2_REG_ADDR the physical CPU address of the DWC2
844 Define the below if you wish to use the USB console.
845 Once firmware is rebuilt from a serial console issue the
846 command "setenv stdin usbtty; setenv stdout usbtty" and
847 attach your USB cable. The Unix command "dmesg" should print
848 it has found a new device. The environment variable usbtty
849 can be set to gserial or cdc_acm to enable your device to
850 appear to a USB host as a Linux gserial device or a
851 Common Device Class Abstract Control Model serial device.
852 If you select usbtty = gserial you should be able to enumerate
854 # modprobe usbserial vendor=0xVendorID product=0xProductID
855 else if using cdc_acm, simply setting the environment
856 variable usbtty to be cdc_acm should suffice. The following
857 might be defined in YourBoardName.h
860 Define this to build a UDC device
863 Define this to have a tty type of device available to
864 talk to the UDC device
867 Define this to enable the high speed support for usb
868 device and usbtty. If this feature is enabled, a routine
869 int is_usbd_high_speed(void)
870 also needs to be defined by the driver to dynamically poll
871 whether the enumeration has succeded at high speed or full
874 If you have a USB-IF assigned VendorID then you may wish to
875 define your own vendor specific values either in BoardName.h
876 or directly in usbd_vendor_info.h. If you don't define
877 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
878 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
879 should pretend to be a Linux device to it's target host.
881 CONFIG_USBD_MANUFACTURER
882 Define this string as the name of your company for
883 - CONFIG_USBD_MANUFACTURER "my company"
885 CONFIG_USBD_PRODUCT_NAME
886 Define this string as the name of your product
887 - CONFIG_USBD_PRODUCT_NAME "acme usb device"
890 Define this as your assigned Vendor ID from the USB
891 Implementors Forum. This *must* be a genuine Vendor ID
892 to avoid polluting the USB namespace.
893 - CONFIG_USBD_VENDORID 0xFFFF
895 CONFIG_USBD_PRODUCTID
896 Define this as the unique Product ID
898 - CONFIG_USBD_PRODUCTID 0xFFFF
900 - ULPI Layer Support:
901 The ULPI (UTMI Low Pin (count) Interface) PHYs are supported via
902 the generic ULPI layer. The generic layer accesses the ULPI PHY
903 via the platform viewport, so you need both the genric layer and
904 the viewport enabled. Currently only Chipidea/ARC based
905 viewport is supported.
906 To enable the ULPI layer support, define CONFIG_USB_ULPI and
907 CONFIG_USB_ULPI_VIEWPORT in your board configuration file.
908 If your ULPI phy needs a different reference clock than the
909 standard 24 MHz then you have to define CONFIG_ULPI_REF_CLK to
910 the appropriate value in Hz.
913 The MMC controller on the Intel PXA is supported. To
914 enable this define CONFIG_MMC. The MMC can be
915 accessed from the boot prompt by mapping the device
916 to physical memory similar to flash. Command line is
917 enabled with CONFIG_CMD_MMC. The MMC driver also works with
918 the FAT fs. This is enabled with CONFIG_CMD_FAT.
921 Support for Renesas on-chip MMCIF controller
924 Define the base address of MMCIF registers
927 Define the clock frequency for MMCIF
929 - USB Device Firmware Update (DFU) class support:
931 This enables the USB portion of the DFU USB class
934 This enables support for exposing NAND devices via DFU.
937 This enables support for exposing RAM via DFU.
938 Note: DFU spec refer to non-volatile memory usage, but
939 allow usages beyond the scope of spec - here RAM usage,
940 one that would help mostly the developer.
942 CONFIG_SYS_DFU_DATA_BUF_SIZE
943 Dfu transfer uses a buffer before writing data to the
944 raw storage device. Make the size (in bytes) of this buffer
945 configurable. The size of this buffer is also configurable
946 through the "dfu_bufsiz" environment variable.
948 CONFIG_SYS_DFU_MAX_FILE_SIZE
949 When updating files rather than the raw storage device,
950 we use a static buffer to copy the file into and then write
951 the buffer once we've been given the whole file. Define
952 this to the maximum filesize (in bytes) for the buffer.
953 Default is 4 MiB if undefined.
955 DFU_DEFAULT_POLL_TIMEOUT
956 Poll timeout [ms], is the timeout a device can send to the
957 host. The host must wait for this timeout before sending
958 a subsequent DFU_GET_STATUS request to the device.
960 DFU_MANIFEST_POLL_TIMEOUT
961 Poll timeout [ms], which the device sends to the host when
962 entering dfuMANIFEST state. Host waits this timeout, before
963 sending again an USB request to the device.
965 - Journaling Flash filesystem support:
966 CONFIG_SYS_JFFS2_FIRST_SECTOR,
967 CONFIG_SYS_JFFS2_FIRST_BANK, CONFIG_SYS_JFFS2_NUM_BANKS
968 Define these for a default partition on a NOR device
971 See Kconfig help for available keyboard drivers.
973 - LCD Support: CONFIG_LCD
975 Define this to enable LCD support (for output to LCD
976 display); also select one of the supported displays
977 by defining one of these:
979 CONFIG_NEC_NL6448AC33:
981 NEC NL6448AC33-18. Active, color, single scan.
983 CONFIG_NEC_NL6448BC20
985 NEC NL6448BC20-08. 6.5", 640x480.
986 Active, color, single scan.
988 CONFIG_NEC_NL6448BC33_54
990 NEC NL6448BC33-54. 10.4", 640x480.
991 Active, color, single scan.
995 Sharp 320x240. Active, color, single scan.
996 It isn't 16x9, and I am not sure what it is.
998 CONFIG_SHARP_LQ64D341
1000 Sharp LQ64D341 display, 640x480.
1001 Active, color, single scan.
1005 HLD1045 display, 640x480.
1006 Active, color, single scan.
1010 Optrex CBL50840-2 NF-FW 99 22 M5
1012 Hitachi LMG6912RPFC-00T
1016 320x240. Black & white.
1018 CONFIG_LCD_ALIGNMENT
1020 Normally the LCD is page-aligned (typically 4KB). If this is
1021 defined then the LCD will be aligned to this value instead.
1022 For ARM it is sometimes useful to use MMU_SECTION_SIZE
1023 here, since it is cheaper to change data cache settings on
1024 a per-section basis.
1029 Sometimes, for example if the display is mounted in portrait
1030 mode or even if it's mounted landscape but rotated by 180degree,
1031 we need to rotate our content of the display relative to the
1032 framebuffer, so that user can read the messages which are
1034 Once CONFIG_LCD_ROTATION is defined, the lcd_console will be
1035 initialized with a given rotation from "vl_rot" out of
1036 "vidinfo_t" which is provided by the board specific code.
1037 The value for vl_rot is coded as following (matching to
1038 fbcon=rotate:<n> linux-kernel commandline):
1039 0 = no rotation respectively 0 degree
1040 1 = 90 degree rotation
1041 2 = 180 degree rotation
1042 3 = 270 degree rotation
1044 If CONFIG_LCD_ROTATION is not defined, the console will be
1045 initialized with 0degree rotation.
1048 CONFIG_PHY_CLOCK_FREQ (ppc4xx)
1050 The clock frequency of the MII bus
1052 CONFIG_PHY_CMD_DELAY (ppc4xx)
1054 Some PHY like Intel LXT971A need extra delay after
1055 command issued before MII status register can be read
1060 Define a default value for the IP address to use for
1061 the default Ethernet interface, in case this is not
1062 determined through e.g. bootp.
1063 (Environment variable "ipaddr")
1065 - Server IP address:
1068 Defines a default value for the IP address of a TFTP
1069 server to contact when using the "tftboot" command.
1070 (Environment variable "serverip")
1072 - Gateway IP address:
1075 Defines a default value for the IP address of the
1076 default router where packets to other networks are
1078 (Environment variable "gatewayip")
1083 Defines a default value for the subnet mask (or
1084 routing prefix) which is used to determine if an IP
1085 address belongs to the local subnet or needs to be
1086 forwarded through a router.
1087 (Environment variable "netmask")
1089 - BOOTP Recovery Mode:
1090 CONFIG_BOOTP_RANDOM_DELAY
1092 If you have many targets in a network that try to
1093 boot using BOOTP, you may want to avoid that all
1094 systems send out BOOTP requests at precisely the same
1095 moment (which would happen for instance at recovery
1096 from a power failure, when all systems will try to
1097 boot, thus flooding the BOOTP server. Defining
1098 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
1099 inserted before sending out BOOTP requests. The
1100 following delays are inserted then:
1102 1st BOOTP request: delay 0 ... 1 sec
1103 2nd BOOTP request: delay 0 ... 2 sec
1104 3rd BOOTP request: delay 0 ... 4 sec
1106 BOOTP requests: delay 0 ... 8 sec
1108 CONFIG_BOOTP_ID_CACHE_SIZE
1110 BOOTP packets are uniquely identified using a 32-bit ID. The
1111 server will copy the ID from client requests to responses and
1112 U-Boot will use this to determine if it is the destination of
1113 an incoming response. Some servers will check that addresses
1114 aren't in use before handing them out (usually using an ARP
1115 ping) and therefore take up to a few hundred milliseconds to
1116 respond. Network congestion may also influence the time it
1117 takes for a response to make it back to the client. If that
1118 time is too long, U-Boot will retransmit requests. In order
1119 to allow earlier responses to still be accepted after these
1120 retransmissions, U-Boot's BOOTP client keeps a small cache of
1121 IDs. The CONFIG_BOOTP_ID_CACHE_SIZE controls the size of this
1122 cache. The default is to keep IDs for up to four outstanding
1123 requests. Increasing this will allow U-Boot to accept offers
1124 from a BOOTP client in networks with unusually high latency.
1126 - DHCP Advanced Options:
1128 - Link-local IP address negotiation:
1129 Negotiate with other link-local clients on the local network
1130 for an address that doesn't require explicit configuration.
1131 This is especially useful if a DHCP server cannot be guaranteed
1132 to exist in all environments that the device must operate.
1134 See doc/README.link-local for more information.
1136 - MAC address from environment variables
1138 FDT_SEQ_MACADDR_FROM_ENV
1140 Fix-up device tree with MAC addresses fetched sequentially from
1141 environment variables. This config work on assumption that
1142 non-usable ethernet node of device-tree are either not present
1143 or their status has been marked as "disabled".
1146 CONFIG_CDP_DEVICE_ID
1148 The device id used in CDP trigger frames.
1150 CONFIG_CDP_DEVICE_ID_PREFIX
1152 A two character string which is prefixed to the MAC address
1157 A printf format string which contains the ascii name of
1158 the port. Normally is set to "eth%d" which sets
1159 eth0 for the first Ethernet, eth1 for the second etc.
1161 CONFIG_CDP_CAPABILITIES
1163 A 32bit integer which indicates the device capabilities;
1164 0x00000010 for a normal host which does not forwards.
1168 An ascii string containing the version of the software.
1172 An ascii string containing the name of the platform.
1176 A 32bit integer sent on the trigger.
1178 CONFIG_CDP_POWER_CONSUMPTION
1180 A 16bit integer containing the power consumption of the
1181 device in .1 of milliwatts.
1183 CONFIG_CDP_APPLIANCE_VLAN_TYPE
1185 A byte containing the id of the VLAN.
1187 - Status LED: CONFIG_LED_STATUS
1189 Several configurations allow to display the current
1190 status using a LED. For instance, the LED will blink
1191 fast while running U-Boot code, stop blinking as
1192 soon as a reply to a BOOTP request was received, and
1193 start blinking slow once the Linux kernel is running
1194 (supported by a status LED driver in the Linux
1195 kernel). Defining CONFIG_LED_STATUS enables this
1200 CONFIG_LED_STATUS_GPIO
1201 The status LED can be connected to a GPIO pin.
1202 In such cases, the gpio_led driver can be used as a
1203 status LED backend implementation. Define CONFIG_LED_STATUS_GPIO
1204 to include the gpio_led driver in the U-Boot binary.
1206 CONFIG_GPIO_LED_INVERTED_TABLE
1207 Some GPIO connected LEDs may have inverted polarity in which
1208 case the GPIO high value corresponds to LED off state and
1209 GPIO low value corresponds to LED on state.
1210 In such cases CONFIG_GPIO_LED_INVERTED_TABLE may be defined
1211 with a list of GPIO LEDs that have inverted polarity.
1214 CONFIG_SYS_NUM_I2C_BUSES
1215 Hold the number of i2c buses you want to use.
1217 CONFIG_SYS_I2C_DIRECT_BUS
1218 define this, if you don't use i2c muxes on your hardware.
1219 if CONFIG_SYS_I2C_MAX_HOPS is not defined or == 0 you can
1222 CONFIG_SYS_I2C_MAX_HOPS
1223 define how many muxes are maximal consecutively connected
1224 on one i2c bus. If you not use i2c muxes, omit this
1227 CONFIG_SYS_I2C_BUSES
1228 hold a list of buses you want to use, only used if
1229 CONFIG_SYS_I2C_DIRECT_BUS is not defined, for example
1230 a board with CONFIG_SYS_I2C_MAX_HOPS = 1 and
1231 CONFIG_SYS_NUM_I2C_BUSES = 9:
1233 CONFIG_SYS_I2C_BUSES {{0, {I2C_NULL_HOP}}, \
1234 {0, {{I2C_MUX_PCA9547, 0x70, 1}}}, \
1235 {0, {{I2C_MUX_PCA9547, 0x70, 2}}}, \
1236 {0, {{I2C_MUX_PCA9547, 0x70, 3}}}, \
1237 {0, {{I2C_MUX_PCA9547, 0x70, 4}}}, \
1238 {0, {{I2C_MUX_PCA9547, 0x70, 5}}}, \
1239 {1, {I2C_NULL_HOP}}, \
1240 {1, {{I2C_MUX_PCA9544, 0x72, 1}}}, \
1241 {1, {{I2C_MUX_PCA9544, 0x72, 2}}}, \
1245 bus 0 on adapter 0 without a mux
1246 bus 1 on adapter 0 with a PCA9547 on address 0x70 port 1
1247 bus 2 on adapter 0 with a PCA9547 on address 0x70 port 2
1248 bus 3 on adapter 0 with a PCA9547 on address 0x70 port 3
1249 bus 4 on adapter 0 with a PCA9547 on address 0x70 port 4
1250 bus 5 on adapter 0 with a PCA9547 on address 0x70 port 5
1251 bus 6 on adapter 1 without a mux
1252 bus 7 on adapter 1 with a PCA9544 on address 0x72 port 1
1253 bus 8 on adapter 1 with a PCA9544 on address 0x72 port 2
1255 If you do not have i2c muxes on your board, omit this define.
1257 - Legacy I2C Support:
1258 If you use the software i2c interface (CONFIG_SYS_I2C_SOFT)
1259 then the following macros need to be defined (examples are
1260 from include/configs/lwmon.h):
1264 (Optional). Any commands necessary to enable the I2C
1265 controller or configure ports.
1267 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL)
1271 The code necessary to make the I2C data line active
1272 (driven). If the data line is open collector, this
1275 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA)
1279 The code necessary to make the I2C data line tri-stated
1280 (inactive). If the data line is open collector, this
1283 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
1287 Code that returns true if the I2C data line is high,
1290 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
1294 If <bit> is true, sets the I2C data line high. If it
1295 is false, it clears it (low).
1297 eg: #define I2C_SDA(bit) \
1298 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \
1299 else immr->im_cpm.cp_pbdat &= ~PB_SDA
1303 If <bit> is true, sets the I2C clock line high. If it
1304 is false, it clears it (low).
1306 eg: #define I2C_SCL(bit) \
1307 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \
1308 else immr->im_cpm.cp_pbdat &= ~PB_SCL
1312 This delay is invoked four times per clock cycle so this
1313 controls the rate of data transfer. The data rate thus
1314 is 1 / (I2C_DELAY * 4). Often defined to be something
1317 #define I2C_DELAY udelay(2)
1319 CONFIG_SOFT_I2C_GPIO_SCL / CONFIG_SOFT_I2C_GPIO_SDA
1321 If your arch supports the generic GPIO framework (asm/gpio.h),
1322 then you may alternatively define the two GPIOs that are to be
1323 used as SCL / SDA. Any of the previous I2C_xxx macros will
1324 have GPIO-based defaults assigned to them as appropriate.
1326 You should define these to the GPIO value as given directly to
1327 the generic GPIO functions.
1329 CONFIG_SYS_I2C_INIT_BOARD
1331 When a board is reset during an i2c bus transfer
1332 chips might think that the current transfer is still
1333 in progress. On some boards it is possible to access
1334 the i2c SCLK line directly, either by using the
1335 processor pin as a GPIO or by having a second pin
1336 connected to the bus. If this option is defined a
1337 custom i2c_init_board() routine in boards/xxx/board.c
1338 is run early in the boot sequence.
1340 CONFIG_I2C_MULTI_BUS
1342 This option allows the use of multiple I2C buses, each of which
1343 must have a controller. At any point in time, only one bus is
1344 active. To switch to a different bus, use the 'i2c dev' command.
1345 Note that bus numbering is zero-based.
1347 CONFIG_SYS_I2C_NOPROBES
1349 This option specifies a list of I2C devices that will be skipped
1350 when the 'i2c probe' command is issued. If CONFIG_I2C_MULTI_BUS
1351 is set, specify a list of bus-device pairs. Otherwise, specify
1352 a 1D array of device addresses
1355 #undef CONFIG_I2C_MULTI_BUS
1356 #define CONFIG_SYS_I2C_NOPROBES {0x50,0x68}
1358 will skip addresses 0x50 and 0x68 on a board with one I2C bus
1360 #define CONFIG_I2C_MULTI_BUS
1361 #define CONFIG_SYS_I2C_NOPROBES {{0,0x50},{0,0x68},{1,0x54}}
1363 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
1365 CONFIG_SYS_SPD_BUS_NUM
1367 If defined, then this indicates the I2C bus number for DDR SPD.
1368 If not defined, then U-Boot assumes that SPD is on I2C bus 0.
1370 CONFIG_SYS_RTC_BUS_NUM
1372 If defined, then this indicates the I2C bus number for the RTC.
1373 If not defined, then U-Boot assumes that RTC is on I2C bus 0.
1375 CONFIG_SOFT_I2C_READ_REPEATED_START
1377 defining this will force the i2c_read() function in
1378 the soft_i2c driver to perform an I2C repeated start
1379 between writing the address pointer and reading the
1380 data. If this define is omitted the default behaviour
1381 of doing a stop-start sequence will be used. Most I2C
1382 devices can use either method, but some require one or
1385 - SPI Support: CONFIG_SPI
1387 Enables SPI driver (so far only tested with
1388 SPI EEPROM, also an instance works with Crystal A/D and
1389 D/As on the SACSng board)
1391 CONFIG_SYS_SPI_MXC_WAIT
1392 Timeout for waiting until spi transfer completed.
1393 default: (CONFIG_SYS_HZ/100) /* 10 ms */
1395 - FPGA Support: CONFIG_FPGA
1397 Enables FPGA subsystem.
1399 CONFIG_FPGA_<vendor>
1401 Enables support for specific chip vendors.
1404 CONFIG_FPGA_<family>
1406 Enables support for FPGA family.
1407 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
1411 Specify the number of FPGA devices to support.
1413 CONFIG_SYS_FPGA_PROG_FEEDBACK
1415 Enable printing of hash marks during FPGA configuration.
1417 CONFIG_SYS_FPGA_CHECK_BUSY
1419 Enable checks on FPGA configuration interface busy
1420 status by the configuration function. This option
1421 will require a board or device specific function to
1426 If defined, a function that provides delays in the FPGA
1427 configuration driver.
1429 CONFIG_SYS_FPGA_CHECK_CTRLC
1430 Allow Control-C to interrupt FPGA configuration
1432 CONFIG_SYS_FPGA_CHECK_ERROR
1434 Check for configuration errors during FPGA bitfile
1435 loading. For example, abort during Virtex II
1436 configuration if the INIT_B line goes low (which
1437 indicated a CRC error).
1439 CONFIG_SYS_FPGA_WAIT_INIT
1441 Maximum time to wait for the INIT_B line to de-assert
1442 after PROB_B has been de-asserted during a Virtex II
1443 FPGA configuration sequence. The default time is 500
1446 CONFIG_SYS_FPGA_WAIT_BUSY
1448 Maximum time to wait for BUSY to de-assert during
1449 Virtex II FPGA configuration. The default is 5 ms.
1451 CONFIG_SYS_FPGA_WAIT_CONFIG
1453 Time to wait after FPGA configuration. The default is
1456 - Vendor Parameter Protection:
1458 U-Boot considers the values of the environment
1459 variables "serial#" (Board Serial Number) and
1460 "ethaddr" (Ethernet Address) to be parameters that
1461 are set once by the board vendor / manufacturer, and
1462 protects these variables from casual modification by
1463 the user. Once set, these variables are read-only,
1464 and write or delete attempts are rejected. You can
1465 change this behaviour:
1467 If CONFIG_ENV_OVERWRITE is #defined in your config
1468 file, the write protection for vendor parameters is
1469 completely disabled. Anybody can change or delete
1472 Alternatively, if you define _both_ an ethaddr in the
1473 default env _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
1474 Ethernet address is installed in the environment,
1475 which can be changed exactly ONCE by the user. [The
1476 serial# is unaffected by this, i. e. it remains
1479 The same can be accomplished in a more flexible way
1480 for any variable by configuring the type of access
1481 to allow for those variables in the ".flags" variable
1482 or define CONFIG_ENV_FLAGS_LIST_STATIC.
1487 Define this variable to enable the reservation of
1488 "protected RAM", i. e. RAM which is not overwritten
1489 by U-Boot. Define CONFIG_PRAM to hold the number of
1490 kB you want to reserve for pRAM. You can overwrite
1491 this default value by defining an environment
1492 variable "pram" to the number of kB you want to
1493 reserve. Note that the board info structure will
1494 still show the full amount of RAM. If pRAM is
1495 reserved, a new environment variable "mem" will
1496 automatically be defined to hold the amount of
1497 remaining RAM in a form that can be passed as boot
1498 argument to Linux, for instance like that:
1500 setenv bootargs ... mem=\${mem}
1503 This way you can tell Linux not to use this memory,
1504 either, which results in a memory region that will
1505 not be affected by reboots.
1507 *WARNING* If your board configuration uses automatic
1508 detection of the RAM size, you must make sure that
1509 this memory test is non-destructive. So far, the
1510 following board configurations are known to be
1513 IVMS8, IVML24, SPD8xx,
1514 HERMES, IP860, RPXlite, LWMON,
1520 In the current implementation, the local variables
1521 space and global environment variables space are
1522 separated. Local variables are those you define by
1523 simply typing `name=value'. To access a local
1524 variable later on, you have write `$name' or
1525 `${name}'; to execute the contents of a variable
1526 directly type `$name' at the command prompt.
1528 Global environment variables are those you use
1529 setenv/printenv to work with. To run a command stored
1530 in such a variable, you need to use the run command,
1531 and you must not use the '$' sign to access them.
1533 To store commands and special characters in a
1534 variable, please use double quotation marks
1535 surrounding the whole text of the variable, instead
1536 of the backslashes before semicolons and special
1539 - Command Line Editing and History:
1540 CONFIG_CMDLINE_PS_SUPPORT
1542 Enable support for changing the command prompt string
1543 at run-time. Only static string is supported so far.
1544 The string is obtained from environment variables PS1
1547 - Default Environment:
1548 CONFIG_EXTRA_ENV_SETTINGS
1550 Define this to contain any number of null terminated
1551 strings (variable = value pairs) that will be part of
1552 the default environment compiled into the boot image.
1554 For example, place something like this in your
1555 board's config file:
1557 #define CONFIG_EXTRA_ENV_SETTINGS \
1561 Warning: This method is based on knowledge about the
1562 internal format how the environment is stored by the
1563 U-Boot code. This is NOT an official, exported
1564 interface! Although it is unlikely that this format
1565 will change soon, there is no guarantee either.
1566 You better know what you are doing here.
1568 Note: overly (ab)use of the default environment is
1569 discouraged. Make sure to check other ways to preset
1570 the environment like the "source" command or the
1573 CONFIG_DELAY_ENVIRONMENT
1575 Normally the environment is loaded when the board is
1576 initialised so that it is available to U-Boot. This inhibits
1577 that so that the environment is not available until
1578 explicitly loaded later by U-Boot code. With CONFIG_OF_CONTROL
1579 this is instead controlled by the value of
1580 /config/load-environment.
1582 CONFIG_STANDALONE_LOAD_ADDR
1584 This option defines a board specific value for the
1585 address where standalone program gets loaded, thus
1586 overwriting the architecture dependent default
1589 - Frame Buffer Address:
1592 Define CONFIG_FB_ADDR if you want to use specific
1593 address for frame buffer. This is typically the case
1594 when using a graphics controller has separate video
1595 memory. U-Boot will then place the frame buffer at
1596 the given address instead of dynamically reserving it
1597 in system RAM by calling lcd_setmem(), which grabs
1598 the memory for the frame buffer depending on the
1599 configured panel size.
1601 Please see board_init_f function.
1603 - Automatic software updates via TFTP server
1605 CONFIG_UPDATE_TFTP_CNT_MAX
1606 CONFIG_UPDATE_TFTP_MSEC_MAX
1608 These options enable and control the auto-update feature;
1609 for a more detailed description refer to doc/README.update.
1611 - MTD Support (mtdparts command, UBI support)
1612 CONFIG_MTD_UBI_WL_THRESHOLD
1613 This parameter defines the maximum difference between the highest
1614 erase counter value and the lowest erase counter value of eraseblocks
1615 of UBI devices. When this threshold is exceeded, UBI starts performing
1616 wear leveling by means of moving data from eraseblock with low erase
1617 counter to eraseblocks with high erase counter.
1619 The default value should be OK for SLC NAND flashes, NOR flashes and
1620 other flashes which have eraseblock life-cycle 100000 or more.
1621 However, in case of MLC NAND flashes which typically have eraseblock
1622 life-cycle less than 10000, the threshold should be lessened (e.g.,
1623 to 128 or 256, although it does not have to be power of 2).
1627 CONFIG_MTD_UBI_BEB_LIMIT
1628 This option specifies the maximum bad physical eraseblocks UBI
1629 expects on the MTD device (per 1024 eraseblocks). If the
1630 underlying flash does not admit of bad eraseblocks (e.g. NOR
1631 flash), this value is ignored.
1633 NAND datasheets often specify the minimum and maximum NVM
1634 (Number of Valid Blocks) for the flashes' endurance lifetime.
1635 The maximum expected bad eraseblocks per 1024 eraseblocks
1636 then can be calculated as "1024 * (1 - MinNVB / MaxNVB)",
1637 which gives 20 for most NANDs (MaxNVB is basically the total
1638 count of eraseblocks on the chip).
1640 To put it differently, if this value is 20, UBI will try to
1641 reserve about 1.9% of physical eraseblocks for bad blocks
1642 handling. And that will be 1.9% of eraseblocks on the entire
1643 NAND chip, not just the MTD partition UBI attaches. This means
1644 that if you have, say, a NAND flash chip admits maximum 40 bad
1645 eraseblocks, and it is split on two MTD partitions of the same
1646 size, UBI will reserve 40 eraseblocks when attaching a
1651 CONFIG_MTD_UBI_FASTMAP
1652 Fastmap is a mechanism which allows attaching an UBI device
1653 in nearly constant time. Instead of scanning the whole MTD device it
1654 only has to locate a checkpoint (called fastmap) on the device.
1655 The on-flash fastmap contains all information needed to attach
1656 the device. Using fastmap makes only sense on large devices where
1657 attaching by scanning takes long. UBI will not automatically install
1658 a fastmap on old images, but you can set the UBI parameter
1659 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note
1660 that fastmap-enabled images are still usable with UBI implementations
1661 without fastmap support. On typical flash devices the whole fastmap
1662 fits into one PEB. UBI will reserve PEBs to hold two fastmaps.
1664 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT
1665 Set this parameter to enable fastmap automatically on images
1669 CONFIG_MTD_UBI_FM_DEBUG
1670 Enable UBI fastmap debug
1675 Enable building of SPL globally.
1677 CONFIG_SPL_MAX_FOOTPRINT
1678 Maximum size in memory allocated to the SPL, BSS included.
1679 When defined, the linker checks that the actual memory
1680 used by SPL from _start to __bss_end does not exceed it.
1681 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
1682 must not be both defined at the same time.
1685 Maximum size of the SPL image (text, data, rodata, and
1686 linker lists sections), BSS excluded.
1687 When defined, the linker checks that the actual size does
1690 CONFIG_SPL_RELOC_TEXT_BASE
1691 Address to relocate to. If unspecified, this is equal to
1692 CONFIG_SPL_TEXT_BASE (i.e. no relocation is done).
1694 CONFIG_SPL_BSS_START_ADDR
1695 Link address for the BSS within the SPL binary.
1697 CONFIG_SPL_BSS_MAX_SIZE
1698 Maximum size in memory allocated to the SPL BSS.
1699 When defined, the linker checks that the actual memory used
1700 by SPL from __bss_start to __bss_end does not exceed it.
1701 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
1702 must not be both defined at the same time.
1705 Adress of the start of the stack SPL will use
1707 CONFIG_SPL_PANIC_ON_RAW_IMAGE
1708 When defined, SPL will panic() if the image it has
1709 loaded does not have a signature.
1710 Defining this is useful when code which loads images
1711 in SPL cannot guarantee that absolutely all read errors
1713 An example is the LPC32XX MLC NAND driver, which will
1714 consider that a completely unreadable NAND block is bad,
1715 and thus should be skipped silently.
1717 CONFIG_SPL_RELOC_STACK
1718 Adress of the start of the stack SPL will use after
1719 relocation. If unspecified, this is equal to
1722 CONFIG_SYS_SPL_MALLOC_START
1723 Starting address of the malloc pool used in SPL.
1724 When this option is set the full malloc is used in SPL and
1725 it is set up by spl_init() and before that, the simple malloc()
1726 can be used if CONFIG_SYS_MALLOC_F is defined.
1728 CONFIG_SYS_SPL_MALLOC_SIZE
1729 The size of the malloc pool used in SPL.
1731 CONFIG_SPL_DISPLAY_PRINT
1732 For ARM, enable an optional function to print more information
1733 about the running system.
1735 CONFIG_SPL_INIT_MINIMAL
1736 Arch init code should be built for a very small image
1738 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR,
1739 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS
1740 Sector and number of sectors to load kernel argument
1741 parameters from when MMC is being used in raw mode
1744 CONFIG_SPL_FS_LOAD_PAYLOAD_NAME
1745 Filename to read to load U-Boot when reading from filesystem
1747 CONFIG_SPL_FS_LOAD_KERNEL_NAME
1748 Filename to read to load kernel uImage when reading
1749 from filesystem (for Falcon mode)
1751 CONFIG_SPL_FS_LOAD_ARGS_NAME
1752 Filename to read to load kernel argument parameters
1753 when reading from filesystem (for Falcon mode)
1755 CONFIG_SPL_MPC83XX_WAIT_FOR_NAND
1756 Set this for NAND SPL on PPC mpc83xx targets, so that
1757 start.S waits for the rest of the SPL to load before
1758 continuing (the hardware starts execution after just
1759 loading the first page rather than the full 4K).
1761 CONFIG_SPL_SKIP_RELOCATE
1762 Avoid SPL relocation
1765 Support for a lightweight UBI (fastmap) scanner and
1768 CONFIG_SPL_NAND_RAW_ONLY
1769 Support to boot only raw u-boot.bin images. Use this only
1770 if you need to save space.
1772 CONFIG_SPL_COMMON_INIT_DDR
1773 Set for common ddr init with serial presence detect in
1776 CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_COUNT,
1777 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE,
1778 CONFIG_SYS_NAND_BLOCK_SIZE, CONFIG_SYS_NAND_BAD_BLOCK_POS,
1779 CONFIG_SYS_NAND_ECCPOS, CONFIG_SYS_NAND_ECCSIZE,
1780 CONFIG_SYS_NAND_ECCBYTES
1781 Defines the size and behavior of the NAND that SPL uses
1784 CONFIG_SYS_NAND_U_BOOT_DST
1785 Location in memory to load U-Boot to
1787 CONFIG_SYS_NAND_U_BOOT_SIZE
1788 Size of image to load
1790 CONFIG_SYS_NAND_U_BOOT_START
1791 Entry point in loaded image to jump to
1793 CONFIG_SYS_NAND_HW_ECC_OOBFIRST
1794 Define this if you need to first read the OOB and then the
1795 data. This is used, for example, on davinci platforms.
1797 CONFIG_SPL_RAM_DEVICE
1798 Support for running image already present in ram, in SPL binary
1801 Image offset to which the SPL should be padded before appending
1802 the SPL payload. By default, this is defined as
1803 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
1804 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
1805 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
1808 Final target image containing SPL and payload. Some SPLs
1809 use an arch-specific makefile fragment instead, for
1810 example if more than one image needs to be produced.
1812 CONFIG_SPL_FIT_PRINT
1813 Printing information about a FIT image adds quite a bit of
1814 code to SPL. So this is normally disabled in SPL. Use this
1815 option to re-enable it. This will affect the output of the
1816 bootm command when booting a FIT image.
1820 Enable building of TPL globally.
1823 Image offset to which the TPL should be padded before appending
1824 the TPL payload. By default, this is defined as
1825 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
1826 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
1827 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
1829 - Interrupt support (PPC):
1831 There are common interrupt_init() and timer_interrupt()
1832 for all PPC archs. interrupt_init() calls interrupt_init_cpu()
1833 for CPU specific initialization. interrupt_init_cpu()
1834 should set decrementer_count to appropriate value. If
1835 CPU resets decrementer automatically after interrupt
1836 (ppc4xx) it should set decrementer_count to zero.
1837 timer_interrupt() calls timer_interrupt_cpu() for CPU
1838 specific handling. If board has watchdog / status_led
1839 / other_activity_monitor it works automatically from
1840 general timer_interrupt().
1843 Board initialization settings:
1844 ------------------------------
1846 During Initialization u-boot calls a number of board specific functions
1847 to allow the preparation of board specific prerequisites, e.g. pin setup
1848 before drivers are initialized. To enable these callbacks the
1849 following configuration macros have to be defined. Currently this is
1850 architecture specific, so please check arch/your_architecture/lib/board.c
1851 typically in board_init_f() and board_init_r().
1853 - CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f()
1854 - CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r()
1855 - CONFIG_BOARD_LATE_INIT: Call board_late_init()
1857 Configuration Settings:
1858 -----------------------
1860 - MEM_SUPPORT_64BIT_DATA: Defined automatically if compiled as 64-bit.
1861 Optionally it can be defined to support 64-bit memory commands.
1863 - CONFIG_SYS_LONGHELP: Defined when you want long help messages included;
1864 undefine this when you're short of memory.
1866 - CONFIG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default
1867 width of the commands listed in the 'help' command output.
1869 - CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to
1870 prompt for user input.
1872 - CONFIG_SYS_CBSIZE: Buffer size for input from the Console
1874 - CONFIG_SYS_PBSIZE: Buffer size for Console output
1876 - CONFIG_SYS_MAXARGS: max. Number of arguments accepted for monitor commands
1878 - CONFIG_SYS_BARGSIZE: Buffer size for Boot Arguments which are passed to
1879 the application (usually a Linux kernel) when it is
1882 - CONFIG_SYS_BAUDRATE_TABLE:
1883 List of legal baudrate settings for this board.
1885 - CONFIG_SYS_MEM_RESERVE_SECURE
1886 Only implemented for ARMv8 for now.
1887 If defined, the size of CONFIG_SYS_MEM_RESERVE_SECURE memory
1888 is substracted from total RAM and won't be reported to OS.
1889 This memory can be used as secure memory. A variable
1890 gd->arch.secure_ram is used to track the location. In systems
1891 the RAM base is not zero, or RAM is divided into banks,
1892 this variable needs to be recalcuated to get the address.
1894 - CONFIG_SYS_MEM_TOP_HIDE:
1895 If CONFIG_SYS_MEM_TOP_HIDE is defined in the board config header,
1896 this specified memory area will get subtracted from the top
1897 (end) of RAM and won't get "touched" at all by U-Boot. By
1898 fixing up gd->ram_size the Linux kernel should gets passed
1899 the now "corrected" memory size and won't touch it either.
1900 This should work for arch/ppc and arch/powerpc. Only Linux
1901 board ports in arch/powerpc with bootwrapper support that
1902 recalculate the memory size from the SDRAM controller setup
1903 will have to get fixed in Linux additionally.
1905 This option can be used as a workaround for the 440EPx/GRx
1906 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't
1909 WARNING: Please make sure that this value is a multiple of
1910 the Linux page size (normally 4k). If this is not the case,
1911 then the end address of the Linux memory will be located at a
1912 non page size aligned address and this could cause major
1915 - CONFIG_SYS_LOADS_BAUD_CHANGE:
1916 Enable temporary baudrate change while serial download
1918 - CONFIG_SYS_SDRAM_BASE:
1919 Physical start address of SDRAM. _Must_ be 0 here.
1921 - CONFIG_SYS_FLASH_BASE:
1922 Physical start address of Flash memory.
1924 - CONFIG_SYS_MONITOR_BASE:
1925 Physical start address of boot monitor code (set by
1926 make config files to be same as the text base address
1927 (CONFIG_SYS_TEXT_BASE) used when linking) - same as
1928 CONFIG_SYS_FLASH_BASE when booting from flash.
1930 - CONFIG_SYS_MONITOR_LEN:
1931 Size of memory reserved for monitor code, used to
1932 determine _at_compile_time_ (!) if the environment is
1933 embedded within the U-Boot image, or in a separate
1936 - CONFIG_SYS_MALLOC_LEN:
1937 Size of DRAM reserved for malloc() use.
1939 - CONFIG_SYS_MALLOC_F_LEN
1940 Size of the malloc() pool for use before relocation. If
1941 this is defined, then a very simple malloc() implementation
1942 will become available before relocation. The address is just
1943 below the global data, and the stack is moved down to make
1946 This feature allocates regions with increasing addresses
1947 within the region. calloc() is supported, but realloc()
1948 is not available. free() is supported but does nothing.
1949 The memory will be freed (or in fact just forgotten) when
1950 U-Boot relocates itself.
1952 - CONFIG_SYS_MALLOC_SIMPLE
1953 Provides a simple and small malloc() and calloc() for those
1954 boards which do not use the full malloc in SPL (which is
1955 enabled with CONFIG_SYS_SPL_MALLOC_START).
1957 - CONFIG_SYS_NONCACHED_MEMORY:
1958 Size of non-cached memory area. This area of memory will be
1959 typically located right below the malloc() area and mapped
1960 uncached in the MMU. This is useful for drivers that would
1961 otherwise require a lot of explicit cache maintenance. For
1962 some drivers it's also impossible to properly maintain the
1963 cache. For example if the regions that need to be flushed
1964 are not a multiple of the cache-line size, *and* padding
1965 cannot be allocated between the regions to align them (i.e.
1966 if the HW requires a contiguous array of regions, and the
1967 size of each region is not cache-aligned), then a flush of
1968 one region may result in overwriting data that hardware has
1969 written to another region in the same cache-line. This can
1970 happen for example in network drivers where descriptors for
1971 buffers are typically smaller than the CPU cache-line (e.g.
1972 16 bytes vs. 32 or 64 bytes).
1974 Non-cached memory is only supported on 32-bit ARM at present.
1976 - CONFIG_SYS_BOOTM_LEN:
1977 Normally compressed uImages are limited to an
1978 uncompressed size of 8 MBytes. If this is not enough,
1979 you can define CONFIG_SYS_BOOTM_LEN in your board config file
1980 to adjust this setting to your needs.
1982 - CONFIG_SYS_BOOTMAPSZ:
1983 Maximum size of memory mapped by the startup code of
1984 the Linux kernel; all data that must be processed by
1985 the Linux kernel (bd_info, boot arguments, FDT blob if
1986 used) must be put below this limit, unless "bootm_low"
1987 environment variable is defined and non-zero. In such case
1988 all data for the Linux kernel must be between "bootm_low"
1989 and "bootm_low" + CONFIG_SYS_BOOTMAPSZ. The environment
1990 variable "bootm_mapsize" will override the value of
1991 CONFIG_SYS_BOOTMAPSZ. If CONFIG_SYS_BOOTMAPSZ is undefined,
1992 then the value in "bootm_size" will be used instead.
1994 - CONFIG_SYS_BOOT_RAMDISK_HIGH:
1995 Enable initrd_high functionality. If defined then the
1996 initrd_high feature is enabled and the bootm ramdisk subcommand
1999 - CONFIG_SYS_BOOT_GET_CMDLINE:
2000 Enables allocating and saving kernel cmdline in space between
2001 "bootm_low" and "bootm_low" + BOOTMAPSZ.
2003 - CONFIG_SYS_BOOT_GET_KBD:
2004 Enables allocating and saving a kernel copy of the bd_info in
2005 space between "bootm_low" and "bootm_low" + BOOTMAPSZ.
2007 - CONFIG_SYS_MAX_FLASH_SECT:
2008 Max number of sectors on a Flash chip
2010 - CONFIG_SYS_FLASH_ERASE_TOUT:
2011 Timeout for Flash erase operations (in ms)
2013 - CONFIG_SYS_FLASH_WRITE_TOUT:
2014 Timeout for Flash write operations (in ms)
2016 - CONFIG_SYS_FLASH_LOCK_TOUT
2017 Timeout for Flash set sector lock bit operation (in ms)
2019 - CONFIG_SYS_FLASH_UNLOCK_TOUT
2020 Timeout for Flash clear lock bits operation (in ms)
2022 - CONFIG_SYS_FLASH_PROTECTION
2023 If defined, hardware flash sectors protection is used
2024 instead of U-Boot software protection.
2026 - CONFIG_SYS_DIRECT_FLASH_TFTP:
2028 Enable TFTP transfers directly to flash memory;
2029 without this option such a download has to be
2030 performed in two steps: (1) download to RAM, and (2)
2031 copy from RAM to flash.
2033 The two-step approach is usually more reliable, since
2034 you can check if the download worked before you erase
2035 the flash, but in some situations (when system RAM is
2036 too limited to allow for a temporary copy of the
2037 downloaded image) this option may be very useful.
2039 - CONFIG_SYS_FLASH_CFI:
2040 Define if the flash driver uses extra elements in the
2041 common flash structure for storing flash geometry.
2043 - CONFIG_FLASH_CFI_DRIVER
2044 This option also enables the building of the cfi_flash driver
2045 in the drivers directory
2047 - CONFIG_FLASH_CFI_MTD
2048 This option enables the building of the cfi_mtd driver
2049 in the drivers directory. The driver exports CFI flash
2052 - CONFIG_SYS_FLASH_USE_BUFFER_WRITE
2053 Use buffered writes to flash.
2055 - CONFIG_FLASH_SPANSION_S29WS_N
2056 s29ws-n MirrorBit flash has non-standard addresses for buffered
2059 - CONFIG_SYS_FLASH_QUIET_TEST
2060 If this option is defined, the common CFI flash doesn't
2061 print it's warning upon not recognized FLASH banks. This
2062 is useful, if some of the configured banks are only
2063 optionally available.
2065 - CONFIG_FLASH_SHOW_PROGRESS
2066 If defined (must be an integer), print out countdown
2067 digits and dots. Recommended value: 45 (9..1) for 80
2068 column displays, 15 (3..1) for 40 column displays.
2070 - CONFIG_FLASH_VERIFY
2071 If defined, the content of the flash (destination) is compared
2072 against the source after the write operation. An error message
2073 will be printed when the contents are not identical.
2074 Please note that this option is useless in nearly all cases,
2075 since such flash programming errors usually are detected earlier
2076 while unprotecting/erasing/programming. Please only enable
2077 this option if you really know what you are doing.
2079 - CONFIG_ENV_MAX_ENTRIES
2081 Maximum number of entries in the hash table that is used
2082 internally to store the environment settings. The default
2083 setting is supposed to be generous and should work in most
2084 cases. This setting can be used to tune behaviour; see
2085 lib/hashtable.c for details.
2087 - CONFIG_ENV_FLAGS_LIST_DEFAULT
2088 - CONFIG_ENV_FLAGS_LIST_STATIC
2089 Enable validation of the values given to environment variables when
2090 calling env set. Variables can be restricted to only decimal,
2091 hexadecimal, or boolean. If CONFIG_CMD_NET is also defined,
2092 the variables can also be restricted to IP address or MAC address.
2094 The format of the list is:
2095 type_attribute = [s|d|x|b|i|m]
2096 access_attribute = [a|r|o|c]
2097 attributes = type_attribute[access_attribute]
2098 entry = variable_name[:attributes]
2101 The type attributes are:
2102 s - String (default)
2105 b - Boolean ([1yYtT|0nNfF])
2109 The access attributes are:
2115 - CONFIG_ENV_FLAGS_LIST_DEFAULT
2116 Define this to a list (string) to define the ".flags"
2117 environment variable in the default or embedded environment.
2119 - CONFIG_ENV_FLAGS_LIST_STATIC
2120 Define this to a list (string) to define validation that
2121 should be done if an entry is not found in the ".flags"
2122 environment variable. To override a setting in the static
2123 list, simply add an entry for the same variable name to the
2126 If CONFIG_REGEX is defined, the variable_name above is evaluated as a
2127 regular expression. This allows multiple variables to define the same
2128 flags without explicitly listing them for each variable.
2130 The following definitions that deal with the placement and management
2131 of environment data (variable area); in general, we support the
2132 following configurations:
2134 - CONFIG_BUILD_ENVCRC:
2136 Builds up envcrc with the target environment so that external utils
2137 may easily extract it and embed it in final U-Boot images.
2139 BE CAREFUL! The first access to the environment happens quite early
2140 in U-Boot initialization (when we try to get the setting of for the
2141 console baudrate). You *MUST* have mapped your NVRAM area then, or
2144 Please note that even with NVRAM we still use a copy of the
2145 environment in RAM: we could work on NVRAM directly, but we want to
2146 keep settings there always unmodified except somebody uses "saveenv"
2147 to save the current settings.
2149 BE CAREFUL! For some special cases, the local device can not use
2150 "saveenv" command. For example, the local device will get the
2151 environment stored in a remote NOR flash by SRIO or PCIE link,
2152 but it can not erase, write this NOR flash by SRIO or PCIE interface.
2154 - CONFIG_NAND_ENV_DST
2156 Defines address in RAM to which the nand_spl code should copy the
2157 environment. If redundant environment is used, it will be copied to
2158 CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE.
2160 Please note that the environment is read-only until the monitor
2161 has been relocated to RAM and a RAM copy of the environment has been
2162 created; also, when using EEPROM you will have to use env_get_f()
2163 until then to read environment variables.
2165 The environment is protected by a CRC32 checksum. Before the monitor
2166 is relocated into RAM, as a result of a bad CRC you will be working
2167 with the compiled-in default environment - *silently*!!! [This is
2168 necessary, because the first environment variable we need is the
2169 "baudrate" setting for the console - if we have a bad CRC, we don't
2170 have any device yet where we could complain.]
2172 Note: once the monitor has been relocated, then it will complain if
2173 the default environment is used; a new CRC is computed as soon as you
2174 use the "saveenv" command to store a valid environment.
2176 - CONFIG_SYS_FAULT_MII_ADDR:
2177 MII address of the PHY to check for the Ethernet link state.
2179 - CONFIG_NS16550_MIN_FUNCTIONS:
2180 Define this if you desire to only have use of the NS16550_init
2181 and NS16550_putc functions for the serial driver located at
2182 drivers/serial/ns16550.c. This option is useful for saving
2183 space for already greatly restricted images, including but not
2184 limited to NAND_SPL configurations.
2186 - CONFIG_DISPLAY_BOARDINFO
2187 Display information about the board that U-Boot is running on
2188 when U-Boot starts up. The board function checkboard() is called
2191 - CONFIG_DISPLAY_BOARDINFO_LATE
2192 Similar to the previous option, but display this information
2193 later, once stdio is running and output goes to the LCD, if
2196 - CONFIG_BOARD_SIZE_LIMIT:
2197 Maximum size of the U-Boot image. When defined, the
2198 build system checks that the actual size does not
2201 Low Level (hardware related) configuration options:
2202 ---------------------------------------------------
2204 - CONFIG_SYS_CACHELINE_SIZE:
2205 Cache Line Size of the CPU.
2207 - CONFIG_SYS_CCSRBAR_DEFAULT:
2208 Default (power-on reset) physical address of CCSR on Freescale
2211 - CONFIG_SYS_CCSRBAR:
2212 Virtual address of CCSR. On a 32-bit build, this is typically
2213 the same value as CONFIG_SYS_CCSRBAR_DEFAULT.
2215 - CONFIG_SYS_CCSRBAR_PHYS:
2216 Physical address of CCSR. CCSR can be relocated to a new
2217 physical address, if desired. In this case, this macro should
2218 be set to that address. Otherwise, it should be set to the
2219 same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR
2220 is typically relocated on 36-bit builds. It is recommended
2221 that this macro be defined via the _HIGH and _LOW macros:
2223 #define CONFIG_SYS_CCSRBAR_PHYS ((CONFIG_SYS_CCSRBAR_PHYS_HIGH
2224 * 1ull) << 32 | CONFIG_SYS_CCSRBAR_PHYS_LOW)
2226 - CONFIG_SYS_CCSRBAR_PHYS_HIGH:
2227 Bits 33-36 of CONFIG_SYS_CCSRBAR_PHYS. This value is typically
2228 either 0 (32-bit build) or 0xF (36-bit build). This macro is
2229 used in assembly code, so it must not contain typecasts or
2230 integer size suffixes (e.g. "ULL").
2232 - CONFIG_SYS_CCSRBAR_PHYS_LOW:
2233 Lower 32-bits of CONFIG_SYS_CCSRBAR_PHYS. This macro is
2234 used in assembly code, so it must not contain typecasts or
2235 integer size suffixes (e.g. "ULL").
2237 - CONFIG_SYS_CCSR_DO_NOT_RELOCATE:
2238 If this macro is defined, then CONFIG_SYS_CCSRBAR_PHYS will be
2239 forced to a value that ensures that CCSR is not relocated.
2241 - CONFIG_SYS_IMMR: Physical address of the Internal Memory.
2242 DO NOT CHANGE unless you know exactly what you're
2243 doing! (11-4) [MPC8xx systems only]
2245 - CONFIG_SYS_INIT_RAM_ADDR:
2247 Start address of memory area that can be used for
2248 initial data and stack; please note that this must be
2249 writable memory that is working WITHOUT special
2250 initialization, i. e. you CANNOT use normal RAM which
2251 will become available only after programming the
2252 memory controller and running certain initialization
2255 U-Boot uses the following memory types:
2256 - MPC8xx: IMMR (internal memory of the CPU)
2258 - CONFIG_SYS_GBL_DATA_OFFSET:
2260 Offset of the initial data structure in the memory
2261 area defined by CONFIG_SYS_INIT_RAM_ADDR. Usually
2262 CONFIG_SYS_GBL_DATA_OFFSET is chosen such that the initial
2263 data is located at the end of the available space
2264 (sometimes written as (CONFIG_SYS_INIT_RAM_SIZE -
2265 GENERATED_GBL_DATA_SIZE), and the initial stack is just
2266 below that area (growing from (CONFIG_SYS_INIT_RAM_ADDR +
2267 CONFIG_SYS_GBL_DATA_OFFSET) downward.
2270 On the MPC824X (or other systems that use the data
2271 cache for initial memory) the address chosen for
2272 CONFIG_SYS_INIT_RAM_ADDR is basically arbitrary - it must
2273 point to an otherwise UNUSED address space between
2274 the top of RAM and the start of the PCI space.
2276 - CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27)
2278 - CONFIG_SYS_OR_TIMING_SDRAM:
2281 - CONFIG_SYS_MAMR_PTA:
2282 periodic timer for refresh
2285 Chip has SRIO or not
2288 Board has SRIO 1 port available
2291 Board has SRIO 2 port available
2293 - CONFIG_SRIO_PCIE_BOOT_MASTER
2294 Board can support master function for Boot from SRIO and PCIE
2296 - CONFIG_SYS_SRIOn_MEM_VIRT:
2297 Virtual Address of SRIO port 'n' memory region
2299 - CONFIG_SYS_SRIOn_MEM_PHYxS:
2300 Physical Address of SRIO port 'n' memory region
2302 - CONFIG_SYS_SRIOn_MEM_SIZE:
2303 Size of SRIO port 'n' memory region
2305 - CONFIG_SYS_NAND_BUSWIDTH_16BIT
2306 Defined to tell the NAND controller that the NAND chip is using
2308 Not all NAND drivers use this symbol.
2309 Example of drivers that use it:
2310 - drivers/mtd/nand/raw/ndfc.c
2311 - drivers/mtd/nand/raw/mxc_nand.c
2313 - CONFIG_SYS_NDFC_EBC0_CFG
2314 Sets the EBC0_CFG register for the NDFC. If not defined
2315 a default value will be used.
2318 Get DDR timing information from an I2C EEPROM. Common
2319 with pluggable memory modules such as SODIMMs
2322 I2C address of the SPD EEPROM
2324 - CONFIG_SYS_SPD_BUS_NUM
2325 If SPD EEPROM is on an I2C bus other than the first
2326 one, specify here. Note that the value must resolve
2327 to something your driver can deal with.
2329 - CONFIG_SYS_DDR_RAW_TIMING
2330 Get DDR timing information from other than SPD. Common with
2331 soldered DDR chips onboard without SPD. DDR raw timing
2332 parameters are extracted from datasheet and hard-coded into
2333 header files or board specific files.
2335 - CONFIG_FSL_DDR_INTERACTIVE
2336 Enable interactive DDR debugging. See doc/README.fsl-ddr.
2338 - CONFIG_FSL_DDR_SYNC_REFRESH
2339 Enable sync of refresh for multiple controllers.
2341 - CONFIG_FSL_DDR_BIST
2342 Enable built-in memory test for Freescale DDR controllers.
2344 - CONFIG_SYS_83XX_DDR_USES_CS0
2345 Only for 83xx systems. If specified, then DDR should
2346 be configured using CS0 and CS1 instead of CS2 and CS3.
2349 Enable RMII mode for all FECs.
2350 Note that this is a global option, we can't
2351 have one FEC in standard MII mode and another in RMII mode.
2353 - CONFIG_CRC32_VERIFY
2354 Add a verify option to the crc32 command.
2357 => crc32 -v <address> <count> <crc32>
2359 Where address/count indicate a memory area
2360 and crc32 is the correct crc32 which the
2364 Add the "loopw" memory command. This only takes effect if
2365 the memory commands are activated globally (CONFIG_CMD_MEMORY).
2367 - CONFIG_CMD_MX_CYCLIC
2368 Add the "mdc" and "mwc" memory commands. These are cyclic
2373 This command will print 4 bytes (10,11,12,13) each 500 ms.
2375 => mwc.l 100 12345678 10
2376 This command will write 12345678 to address 100 all 10 ms.
2378 This only takes effect if the memory commands are activated
2379 globally (CONFIG_CMD_MEMORY).
2382 Set when the currently-running compilation is for an artifact
2383 that will end up in the SPL (as opposed to the TPL or U-Boot
2384 proper). Code that needs stage-specific behavior should check
2388 Set when the currently-running compilation is for an artifact
2389 that will end up in the TPL (as opposed to the SPL or U-Boot
2390 proper). Code that needs stage-specific behavior should check
2393 - CONFIG_SYS_MPC85XX_NO_RESETVEC
2394 Only for 85xx systems. If this variable is specified, the section
2395 .resetvec is not kept and the section .bootpg is placed in the
2396 previous 4k of the .text section.
2398 - CONFIG_ARCH_MAP_SYSMEM
2399 Generally U-Boot (and in particular the md command) uses
2400 effective address. It is therefore not necessary to regard
2401 U-Boot address as virtual addresses that need to be translated
2402 to physical addresses. However, sandbox requires this, since
2403 it maintains its own little RAM buffer which contains all
2404 addressable memory. This option causes some memory accesses
2405 to be mapped through map_sysmem() / unmap_sysmem().
2407 - CONFIG_X86_RESET_VECTOR
2408 If defined, the x86 reset vector code is included. This is not
2409 needed when U-Boot is running from Coreboot.
2411 - CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
2412 Option to disable subpage write in NAND driver
2413 driver that uses this:
2414 drivers/mtd/nand/raw/davinci_nand.c
2416 Freescale QE/FMAN Firmware Support:
2417 -----------------------------------
2419 The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the
2420 loading of "firmware", which is encoded in the QE firmware binary format.
2421 This firmware often needs to be loaded during U-Boot booting, so macros
2422 are used to identify the storage device (NOR flash, SPI, etc) and the address
2425 - CONFIG_SYS_FMAN_FW_ADDR
2426 The address in the storage device where the FMAN microcode is located. The
2427 meaning of this address depends on which CONFIG_SYS_QE_FMAN_FW_IN_xxx macro
2430 - CONFIG_SYS_QE_FW_ADDR
2431 The address in the storage device where the QE microcode is located. The
2432 meaning of this address depends on which CONFIG_SYS_QE_FMAN_FW_IN_xxx macro
2435 - CONFIG_SYS_QE_FMAN_FW_LENGTH
2436 The maximum possible size of the firmware. The firmware binary format
2437 has a field that specifies the actual size of the firmware, but it
2438 might not be possible to read any part of the firmware unless some
2439 local storage is allocated to hold the entire firmware first.
2441 - CONFIG_SYS_QE_FMAN_FW_IN_NOR
2442 Specifies that QE/FMAN firmware is located in NOR flash, mapped as
2443 normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the
2444 virtual address in NOR flash.
2446 - CONFIG_SYS_QE_FMAN_FW_IN_NAND
2447 Specifies that QE/FMAN firmware is located in NAND flash.
2448 CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash.
2450 - CONFIG_SYS_QE_FMAN_FW_IN_MMC
2451 Specifies that QE/FMAN firmware is located on the primary SD/MMC
2452 device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device.
2454 - CONFIG_SYS_QE_FMAN_FW_IN_REMOTE
2455 Specifies that QE/FMAN firmware is located in the remote (master)
2456 memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which
2457 can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound
2458 window->master inbound window->master LAW->the ucode address in
2459 master's memory space.
2461 Freescale Layerscape Management Complex Firmware Support:
2462 ---------------------------------------------------------
2463 The Freescale Layerscape Management Complex (MC) supports the loading of
2465 This firmware often needs to be loaded during U-Boot booting, so macros
2466 are used to identify the storage device (NOR flash, SPI, etc) and the address
2469 - CONFIG_FSL_MC_ENET
2470 Enable the MC driver for Layerscape SoCs.
2472 Freescale Layerscape Debug Server Support:
2473 -------------------------------------------
2474 The Freescale Layerscape Debug Server Support supports the loading of
2475 "Debug Server firmware" and triggering SP boot-rom.
2476 This firmware often needs to be loaded during U-Boot booting.
2478 - CONFIG_SYS_MC_RSV_MEM_ALIGN
2479 Define alignment of reserved memory MC requires
2484 In order to achieve reproducible builds, timestamps used in the U-Boot build
2485 process have to be set to a fixed value.
2487 This is done using the SOURCE_DATE_EPOCH environment variable.
2488 SOURCE_DATE_EPOCH is to be set on the build host's shell, not as a configuration
2489 option for U-Boot or an environment variable in U-Boot.
2491 SOURCE_DATE_EPOCH should be set to a number of seconds since the epoch, in UTC.
2493 Building the Software:
2494 ======================
2496 Building U-Boot has been tested in several native build environments
2497 and in many different cross environments. Of course we cannot support
2498 all possibly existing versions of cross development tools in all
2499 (potentially obsolete) versions. In case of tool chain problems we
2500 recommend to use the ELDK (see https://www.denx.de/wiki/DULG/ELDK)
2501 which is extensively used to build and test U-Boot.
2503 If you are not using a native environment, it is assumed that you
2504 have GNU cross compiling tools available in your path. In this case,
2505 you must set the environment variable CROSS_COMPILE in your shell.
2506 Note that no changes to the Makefile or any other source files are
2507 necessary. For example using the ELDK on a 4xx CPU, please enter:
2509 $ CROSS_COMPILE=ppc_4xx-
2510 $ export CROSS_COMPILE
2512 U-Boot is intended to be simple to build. After installing the
2513 sources you must configure U-Boot for one specific board type. This
2518 where "NAME_defconfig" is the name of one of the existing configu-
2519 rations; see configs/*_defconfig for supported names.
2521 Note: for some boards special configuration names may exist; check if
2522 additional information is available from the board vendor; for
2523 instance, the TQM823L systems are available without (standard)
2524 or with LCD support. You can select such additional "features"
2525 when choosing the configuration, i. e.
2527 make TQM823L_defconfig
2528 - will configure for a plain TQM823L, i. e. no LCD support
2530 make TQM823L_LCD_defconfig
2531 - will configure for a TQM823L with U-Boot console on LCD
2536 Finally, type "make all", and you should get some working U-Boot
2537 images ready for download to / installation on your system:
2539 - "u-boot.bin" is a raw binary image
2540 - "u-boot" is an image in ELF binary format
2541 - "u-boot.srec" is in Motorola S-Record format
2543 By default the build is performed locally and the objects are saved
2544 in the source directory. One of the two methods can be used to change
2545 this behavior and build U-Boot to some external directory:
2547 1. Add O= to the make command line invocations:
2549 make O=/tmp/build distclean
2550 make O=/tmp/build NAME_defconfig
2551 make O=/tmp/build all
2553 2. Set environment variable KBUILD_OUTPUT to point to the desired location:
2555 export KBUILD_OUTPUT=/tmp/build
2560 Note that the command line "O=" setting overrides the KBUILD_OUTPUT environment
2563 User specific CPPFLAGS, AFLAGS and CFLAGS can be passed to the compiler by
2564 setting the according environment variables KCPPFLAGS, KAFLAGS and KCFLAGS.
2565 For example to treat all compiler warnings as errors:
2567 make KCFLAGS=-Werror
2569 Please be aware that the Makefiles assume you are using GNU make, so
2570 for instance on NetBSD you might need to use "gmake" instead of
2574 If the system board that you have is not listed, then you will need
2575 to port U-Boot to your hardware platform. To do this, follow these
2578 1. Create a new directory to hold your board specific code. Add any
2579 files you need. In your board directory, you will need at least
2580 the "Makefile" and a "<board>.c".
2581 2. Create a new configuration file "include/configs/<board>.h" for
2583 3. If you're porting U-Boot to a new CPU, then also create a new
2584 directory to hold your CPU specific code. Add any files you need.
2585 4. Run "make <board>_defconfig" with your new name.
2586 5. Type "make", and you should get a working "u-boot.srec" file
2587 to be installed on your target system.
2588 6. Debug and solve any problems that might arise.
2589 [Of course, this last step is much harder than it sounds.]
2592 Testing of U-Boot Modifications, Ports to New Hardware, etc.:
2593 ==============================================================
2595 If you have modified U-Boot sources (for instance added a new board
2596 or support for new devices, a new CPU, etc.) you are expected to
2597 provide feedback to the other developers. The feedback normally takes
2598 the form of a "patch", i.e. a context diff against a certain (latest
2599 official or latest in the git repository) version of U-Boot sources.
2601 But before you submit such a patch, please verify that your modifi-
2602 cation did not break existing code. At least make sure that *ALL* of
2603 the supported boards compile WITHOUT ANY compiler warnings. To do so,
2604 just run the buildman script (tools/buildman/buildman), which will
2605 configure and build U-Boot for ALL supported system. Be warned, this
2606 will take a while. Please see the buildman README, or run 'buildman -H'
2610 See also "U-Boot Porting Guide" below.
2613 Monitor Commands - Overview:
2614 ============================
2616 go - start application at address 'addr'
2617 run - run commands in an environment variable
2618 bootm - boot application image from memory
2619 bootp - boot image via network using BootP/TFTP protocol
2620 bootz - boot zImage from memory
2621 tftpboot- boot image via network using TFTP protocol
2622 and env variables "ipaddr" and "serverip"
2623 (and eventually "gatewayip")
2624 tftpput - upload a file via network using TFTP protocol
2625 rarpboot- boot image via network using RARP/TFTP protocol
2626 diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
2627 loads - load S-Record file over serial line
2628 loadb - load binary file over serial line (kermit mode)
2630 mm - memory modify (auto-incrementing)
2631 nm - memory modify (constant address)
2632 mw - memory write (fill)
2635 cmp - memory compare
2636 crc32 - checksum calculation
2637 i2c - I2C sub-system
2638 sspi - SPI utility commands
2639 base - print or set address offset
2640 printenv- print environment variables
2641 pwm - control pwm channels
2642 setenv - set environment variables
2643 saveenv - save environment variables to persistent storage
2644 protect - enable or disable FLASH write protection
2645 erase - erase FLASH memory
2646 flinfo - print FLASH memory information
2647 nand - NAND memory operations (see doc/README.nand)
2648 bdinfo - print Board Info structure
2649 iminfo - print header information for application image
2650 coninfo - print console devices and informations
2651 ide - IDE sub-system
2652 loop - infinite loop on address range
2653 loopw - infinite write loop on address range
2654 mtest - simple RAM test
2655 icache - enable or disable instruction cache
2656 dcache - enable or disable data cache
2657 reset - Perform RESET of the CPU
2658 echo - echo args to console
2659 version - print monitor version
2660 help - print online help
2661 ? - alias for 'help'
2664 Monitor Commands - Detailed Description:
2665 ========================================
2669 For now: just type "help <command>".
2672 Note for Redundant Ethernet Interfaces:
2673 =======================================
2675 Some boards come with redundant Ethernet interfaces; U-Boot supports
2676 such configurations and is capable of automatic selection of a
2677 "working" interface when needed. MAC assignment works as follows:
2679 Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
2680 MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
2681 "eth1addr" (=>eth1), "eth2addr", ...
2683 If the network interface stores some valid MAC address (for instance
2684 in SROM), this is used as default address if there is NO correspon-
2685 ding setting in the environment; if the corresponding environment
2686 variable is set, this overrides the settings in the card; that means:
2688 o If the SROM has a valid MAC address, and there is no address in the
2689 environment, the SROM's address is used.
2691 o If there is no valid address in the SROM, and a definition in the
2692 environment exists, then the value from the environment variable is
2695 o If both the SROM and the environment contain a MAC address, and
2696 both addresses are the same, this MAC address is used.
2698 o If both the SROM and the environment contain a MAC address, and the
2699 addresses differ, the value from the environment is used and a
2702 o If neither SROM nor the environment contain a MAC address, an error
2703 is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case
2704 a random, locally-assigned MAC is used.
2706 If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses
2707 will be programmed into hardware as part of the initialization process. This
2708 may be skipped by setting the appropriate 'ethmacskip' environment variable.
2709 The naming convention is as follows:
2710 "ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc.
2715 U-Boot is capable of booting (and performing other auxiliary operations on)
2716 images in two formats:
2718 New uImage format (FIT)
2719 -----------------------
2721 Flexible and powerful format based on Flattened Image Tree -- FIT (similar
2722 to Flattened Device Tree). It allows the use of images with multiple
2723 components (several kernels, ramdisks, etc.), with contents protected by
2724 SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
2730 Old image format is based on binary files which can be basically anything,
2731 preceded by a special header; see the definitions in include/image.h for
2732 details; basically, the header defines the following image properties:
2734 * Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
2735 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
2736 LynxOS, pSOS, QNX, RTEMS, INTEGRITY;
2737 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, INTEGRITY).
2738 * Target CPU Architecture (Provisions for Alpha, ARM, Intel x86,
2739 IA64, MIPS, NDS32, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
2740 Currently supported: ARM, Intel x86, MIPS, NDS32, Nios II, PowerPC).
2741 * Compression Type (uncompressed, gzip, bzip2)
2747 The header is marked by a special Magic Number, and both the header
2748 and the data portions of the image are secured against corruption by
2755 Although U-Boot should support any OS or standalone application
2756 easily, the main focus has always been on Linux during the design of
2759 U-Boot includes many features that so far have been part of some
2760 special "boot loader" code within the Linux kernel. Also, any
2761 "initrd" images to be used are no longer part of one big Linux image;
2762 instead, kernel and "initrd" are separate images. This implementation
2763 serves several purposes:
2765 - the same features can be used for other OS or standalone
2766 applications (for instance: using compressed images to reduce the
2767 Flash memory footprint)
2769 - it becomes much easier to port new Linux kernel versions because
2770 lots of low-level, hardware dependent stuff are done by U-Boot
2772 - the same Linux kernel image can now be used with different "initrd"
2773 images; of course this also means that different kernel images can
2774 be run with the same "initrd". This makes testing easier (you don't
2775 have to build a new "zImage.initrd" Linux image when you just
2776 change a file in your "initrd"). Also, a field-upgrade of the
2777 software is easier now.
2783 Porting Linux to U-Boot based systems:
2784 ---------------------------------------
2786 U-Boot cannot save you from doing all the necessary modifications to
2787 configure the Linux device drivers for use with your target hardware
2788 (no, we don't intend to provide a full virtual machine interface to
2791 But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot).
2793 Just make sure your machine specific header file (for instance
2794 include/asm-ppc/tqm8xx.h) includes the same definition of the Board
2795 Information structure as we define in include/asm-<arch>/u-boot.h,
2796 and make sure that your definition of IMAP_ADDR uses the same value
2797 as your U-Boot configuration in CONFIG_SYS_IMMR.
2799 Note that U-Boot now has a driver model, a unified model for drivers.
2800 If you are adding a new driver, plumb it into driver model. If there
2801 is no uclass available, you are encouraged to create one. See
2805 Configuring the Linux kernel:
2806 -----------------------------
2808 No specific requirements for U-Boot. Make sure you have some root
2809 device (initial ramdisk, NFS) for your target system.
2812 Building a Linux Image:
2813 -----------------------
2815 With U-Boot, "normal" build targets like "zImage" or "bzImage" are
2816 not used. If you use recent kernel source, a new build target
2817 "uImage" will exist which automatically builds an image usable by
2818 U-Boot. Most older kernels also have support for a "pImage" target,
2819 which was introduced for our predecessor project PPCBoot and uses a
2820 100% compatible format.
2824 make TQM850L_defconfig
2829 The "uImage" build target uses a special tool (in 'tools/mkimage') to
2830 encapsulate a compressed Linux kernel image with header information,
2831 CRC32 checksum etc. for use with U-Boot. This is what we are doing:
2833 * build a standard "vmlinux" kernel image (in ELF binary format):
2835 * convert the kernel into a raw binary image:
2837 ${CROSS_COMPILE}-objcopy -O binary \
2838 -R .note -R .comment \
2839 -S vmlinux linux.bin
2841 * compress the binary image:
2845 * package compressed binary image for U-Boot:
2847 mkimage -A ppc -O linux -T kernel -C gzip \
2848 -a 0 -e 0 -n "Linux Kernel Image" \
2849 -d linux.bin.gz uImage
2852 The "mkimage" tool can also be used to create ramdisk images for use
2853 with U-Boot, either separated from the Linux kernel image, or
2854 combined into one file. "mkimage" encapsulates the images with a 64
2855 byte header containing information about target architecture,
2856 operating system, image type, compression method, entry points, time
2857 stamp, CRC32 checksums, etc.
2859 "mkimage" can be called in two ways: to verify existing images and
2860 print the header information, or to build new images.
2862 In the first form (with "-l" option) mkimage lists the information
2863 contained in the header of an existing U-Boot image; this includes
2864 checksum verification:
2866 tools/mkimage -l image
2867 -l ==> list image header information
2869 The second form (with "-d" option) is used to build a U-Boot image
2870 from a "data file" which is used as image payload:
2872 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
2873 -n name -d data_file image
2874 -A ==> set architecture to 'arch'
2875 -O ==> set operating system to 'os'
2876 -T ==> set image type to 'type'
2877 -C ==> set compression type 'comp'
2878 -a ==> set load address to 'addr' (hex)
2879 -e ==> set entry point to 'ep' (hex)
2880 -n ==> set image name to 'name'
2881 -d ==> use image data from 'datafile'
2883 Right now, all Linux kernels for PowerPC systems use the same load
2884 address (0x00000000), but the entry point address depends on the
2887 - 2.2.x kernels have the entry point at 0x0000000C,
2888 - 2.3.x and later kernels have the entry point at 0x00000000.
2890 So a typical call to build a U-Boot image would read:
2892 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
2893 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
2894 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \
2895 > examples/uImage.TQM850L
2896 Image Name: 2.4.4 kernel for TQM850L
2897 Created: Wed Jul 19 02:34:59 2000
2898 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2899 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
2900 Load Address: 0x00000000
2901 Entry Point: 0x00000000
2903 To verify the contents of the image (or check for corruption):
2905 -> tools/mkimage -l examples/uImage.TQM850L
2906 Image Name: 2.4.4 kernel for TQM850L
2907 Created: Wed Jul 19 02:34:59 2000
2908 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2909 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
2910 Load Address: 0x00000000
2911 Entry Point: 0x00000000
2913 NOTE: for embedded systems where boot time is critical you can trade
2914 speed for memory and install an UNCOMPRESSED image instead: this
2915 needs more space in Flash, but boots much faster since it does not
2916 need to be uncompressed:
2918 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz
2919 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
2920 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \
2921 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \
2922 > examples/uImage.TQM850L-uncompressed
2923 Image Name: 2.4.4 kernel for TQM850L
2924 Created: Wed Jul 19 02:34:59 2000
2925 Image Type: PowerPC Linux Kernel Image (uncompressed)
2926 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
2927 Load Address: 0x00000000
2928 Entry Point: 0x00000000
2931 Similar you can build U-Boot images from a 'ramdisk.image.gz' file
2932 when your kernel is intended to use an initial ramdisk:
2934 -> tools/mkimage -n 'Simple Ramdisk Image' \
2935 > -A ppc -O linux -T ramdisk -C gzip \
2936 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
2937 Image Name: Simple Ramdisk Image
2938 Created: Wed Jan 12 14:01:50 2000
2939 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
2940 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
2941 Load Address: 0x00000000
2942 Entry Point: 0x00000000
2944 The "dumpimage" tool can be used to disassemble or list the contents of images
2945 built by mkimage. See dumpimage's help output (-h) for details.
2947 Installing a Linux Image:
2948 -------------------------
2950 To downloading a U-Boot image over the serial (console) interface,
2951 you must convert the image to S-Record format:
2953 objcopy -I binary -O srec examples/image examples/image.srec
2955 The 'objcopy' does not understand the information in the U-Boot
2956 image header, so the resulting S-Record file will be relative to
2957 address 0x00000000. To load it to a given address, you need to
2958 specify the target address as 'offset' parameter with the 'loads'
2961 Example: install the image to address 0x40100000 (which on the
2962 TQM8xxL is in the first Flash bank):
2964 => erase 40100000 401FFFFF
2970 ## Ready for S-Record download ...
2971 ~>examples/image.srec
2972 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
2974 15989 15990 15991 15992
2975 [file transfer complete]
2977 ## Start Addr = 0x00000000
2980 You can check the success of the download using the 'iminfo' command;
2981 this includes a checksum verification so you can be sure no data
2982 corruption happened:
2986 ## Checking Image at 40100000 ...
2987 Image Name: 2.2.13 for initrd on TQM850L
2988 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2989 Data Size: 335725 Bytes = 327 kB = 0 MB
2990 Load Address: 00000000
2991 Entry Point: 0000000c
2992 Verifying Checksum ... OK
2998 The "bootm" command is used to boot an application that is stored in
2999 memory (RAM or Flash). In case of a Linux kernel image, the contents
3000 of the "bootargs" environment variable is passed to the kernel as
3001 parameters. You can check and modify this variable using the
3002 "printenv" and "setenv" commands:
3005 => printenv bootargs
3006 bootargs=root=/dev/ram
3008 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3010 => printenv bootargs
3011 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3014 ## Booting Linux kernel at 40020000 ...
3015 Image Name: 2.2.13 for NFS on TQM850L
3016 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3017 Data Size: 381681 Bytes = 372 kB = 0 MB
3018 Load Address: 00000000
3019 Entry Point: 0000000c
3020 Verifying Checksum ... OK
3021 Uncompressing Kernel Image ... OK
3022 Linux version 2.2.13 (
[email protected]) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
3023 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3024 time_init: decrementer frequency = 187500000/60
3025 Calibrating delay loop... 49.77 BogoMIPS
3026 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
3029 If you want to boot a Linux kernel with initial RAM disk, you pass
3030 the memory addresses of both the kernel and the initrd image (PPBCOOT
3031 format!) to the "bootm" command:
3033 => imi 40100000 40200000
3035 ## Checking Image at 40100000 ...
3036 Image Name: 2.2.13 for initrd on TQM850L
3037 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3038 Data Size: 335725 Bytes = 327 kB = 0 MB
3039 Load Address: 00000000
3040 Entry Point: 0000000c
3041 Verifying Checksum ... OK
3043 ## Checking Image at 40200000 ...
3044 Image Name: Simple Ramdisk Image
3045 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
3046 Data Size: 566530 Bytes = 553 kB = 0 MB
3047 Load Address: 00000000
3048 Entry Point: 00000000
3049 Verifying Checksum ... OK
3051 => bootm 40100000 40200000
3052 ## Booting Linux kernel at 40100000 ...
3053 Image Name: 2.2.13 for initrd on TQM850L
3054 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3055 Data Size: 335725 Bytes = 327 kB = 0 MB
3056 Load Address: 00000000
3057 Entry Point: 0000000c
3058 Verifying Checksum ... OK
3059 Uncompressing Kernel Image ... OK
3060 ## Loading RAMDisk Image at 40200000 ...
3061 Image Name: Simple Ramdisk Image
3062 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
3063 Data Size: 566530 Bytes = 553 kB = 0 MB
3064 Load Address: 00000000
3065 Entry Point: 00000000
3066 Verifying Checksum ... OK
3067 Loading Ramdisk ... OK
3068 Linux version 2.2.13 (
[email protected]) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
3069 Boot arguments: root=/dev/ram
3070 time_init: decrementer frequency = 187500000/60
3071 Calibrating delay loop... 49.77 BogoMIPS
3073 RAMDISK: Compressed image found at block 0
3074 VFS: Mounted root (ext2 filesystem).
3078 Boot Linux and pass a flat device tree:
3081 First, U-Boot must be compiled with the appropriate defines. See the section
3082 titled "Linux Kernel Interface" above for a more in depth explanation. The
3083 following is an example of how to start a kernel and pass an updated
3089 oft=oftrees/mpc8540ads.dtb
3090 => tftp $oftaddr $oft
3091 Speed: 1000, full duplex
3093 TFTP from server 192.168.1.1; our IP address is 192.168.1.101
3094 Filename 'oftrees/mpc8540ads.dtb'.
3095 Load address: 0x300000
3098 Bytes transferred = 4106 (100a hex)
3099 => tftp $loadaddr $bootfile
3100 Speed: 1000, full duplex
3102 TFTP from server 192.168.1.1; our IP address is 192.168.1.2
3104 Load address: 0x200000
3105 Loading:############
3107 Bytes transferred = 1029407 (fb51f hex)
3112 => bootm $loadaddr - $oftaddr
3113 ## Booting image at 00200000 ...
3114 Image Name: Linux-2.6.17-dirty
3115 Image Type: PowerPC Linux Kernel Image (gzip compressed)
3116 Data Size: 1029343 Bytes = 1005.2 kB
3117 Load Address: 00000000
3118 Entry Point: 00000000
3119 Verifying Checksum ... OK
3120 Uncompressing Kernel Image ... OK
3121 Booting using flat device tree at 0x300000
3122 Using MPC85xx ADS machine description
3123 Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
3127 More About U-Boot Image Types:
3128 ------------------------------
3130 U-Boot supports the following image types:
3132 "Standalone Programs" are directly runnable in the environment
3133 provided by U-Boot; it is expected that (if they behave
3134 well) you can continue to work in U-Boot after return from
3135 the Standalone Program.
3136 "OS Kernel Images" are usually images of some Embedded OS which
3137 will take over control completely. Usually these programs
3138 will install their own set of exception handlers, device
3139 drivers, set up the MMU, etc. - this means, that you cannot
3140 expect to re-enter U-Boot except by resetting the CPU.
3141 "RAMDisk Images" are more or less just data blocks, and their
3142 parameters (address, size) are passed to an OS kernel that is
3144 "Multi-File Images" contain several images, typically an OS
3145 (Linux) kernel image and one or more data images like
3146 RAMDisks. This construct is useful for instance when you want
3147 to boot over the network using BOOTP etc., where the boot
3148 server provides just a single image file, but you want to get
3149 for instance an OS kernel and a RAMDisk image.
3151 "Multi-File Images" start with a list of image sizes, each
3152 image size (in bytes) specified by an "uint32_t" in network
3153 byte order. This list is terminated by an "(uint32_t)0".
3154 Immediately after the terminating 0 follow the images, one by
3155 one, all aligned on "uint32_t" boundaries (size rounded up to
3156 a multiple of 4 bytes).
3158 "Firmware Images" are binary images containing firmware (like
3159 U-Boot or FPGA images) which usually will be programmed to
3162 "Script files" are command sequences that will be executed by
3163 U-Boot's command interpreter; this feature is especially
3164 useful when you configure U-Boot to use a real shell (hush)
3165 as command interpreter.
3167 Booting the Linux zImage:
3168 -------------------------
3170 On some platforms, it's possible to boot Linux zImage. This is done
3171 using the "bootz" command. The syntax of "bootz" command is the same
3172 as the syntax of "bootm" command.
3174 Note, defining the CONFIG_SUPPORT_RAW_INITRD allows user to supply
3175 kernel with raw initrd images. The syntax is slightly different, the
3176 address of the initrd must be augmented by it's size, in the following
3177 format: "<initrd addres>:<initrd size>".
3183 One of the features of U-Boot is that you can dynamically load and
3184 run "standalone" applications, which can use some resources of
3185 U-Boot like console I/O functions or interrupt services.
3187 Two simple examples are included with the sources:
3192 'examples/hello_world.c' contains a small "Hello World" Demo
3193 application; it is automatically compiled when you build U-Boot.
3194 It's configured to run at address 0x00040004, so you can play with it
3198 ## Ready for S-Record download ...
3199 ~>examples/hello_world.srec
3200 1 2 3 4 5 6 7 8 9 10 11 ...
3201 [file transfer complete]
3203 ## Start Addr = 0x00040004
3205 => go 40004 Hello World! This is a test.
3206 ## Starting application at 0x00040004 ...
3217 Hit any key to exit ...
3219 ## Application terminated, rc = 0x0
3221 Another example, which demonstrates how to register a CPM interrupt
3222 handler with the U-Boot code, can be found in 'examples/timer.c'.
3223 Here, a CPM timer is set up to generate an interrupt every second.
3224 The interrupt service routine is trivial, just printing a '.'
3225 character, but this is just a demo program. The application can be
3226 controlled by the following keys:
3228 ? - print current values og the CPM Timer registers
3229 b - enable interrupts and start timer
3230 e - stop timer and disable interrupts
3231 q - quit application
3234 ## Ready for S-Record download ...
3235 ~>examples/timer.srec
3236 1 2 3 4 5 6 7 8 9 10 11 ...
3237 [file transfer complete]
3239 ## Start Addr = 0x00040004
3242 ## Starting application at 0x00040004 ...
3245 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
3248 [q, b, e, ?] Set interval 1000000 us
3251 [q, b, e, ?] ........
3252 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
3255 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
3258 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
3261 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
3263 [q, b, e, ?] ...Stopping timer
3265 [q, b, e, ?] ## Application terminated, rc = 0x0
3271 Over time, many people have reported problems when trying to use the
3272 "minicom" terminal emulation program for serial download. I (wd)
3273 consider minicom to be broken, and recommend not to use it. Under
3274 Unix, I recommend to use C-Kermit for general purpose use (and
3275 especially for kermit binary protocol download ("loadb" command), and
3276 use "cu" for S-Record download ("loads" command). See
3277 https://www.denx.de/wiki/view/DULG/SystemSetup#Section_4.3.
3278 for help with kermit.
3281 Nevertheless, if you absolutely want to use it try adding this
3282 configuration to your "File transfer protocols" section:
3284 Name Program Name U/D FullScr IO-Red. Multi
3285 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N
3286 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N
3292 Starting at version 0.9.2, U-Boot supports NetBSD both as host
3293 (build U-Boot) and target system (boots NetBSD/mpc8xx).
3295 Building requires a cross environment; it is known to work on
3296 NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
3297 need gmake since the Makefiles are not compatible with BSD make).
3298 Note that the cross-powerpc package does not install include files;
3299 attempting to build U-Boot will fail because <machine/ansi.h> is
3300 missing. This file has to be installed and patched manually:
3302 # cd /usr/pkg/cross/powerpc-netbsd/include
3304 # ln -s powerpc machine
3305 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
3306 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
3308 Native builds *don't* work due to incompatibilities between native
3309 and U-Boot include files.
3311 Booting assumes that (the first part of) the image booted is a
3312 stage-2 loader which in turn loads and then invokes the kernel
3313 proper. Loader sources will eventually appear in the NetBSD source
3314 tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
3315 meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
3318 Implementation Internals:
3319 =========================
3321 The following is not intended to be a complete description of every
3322 implementation detail. However, it should help to understand the
3323 inner workings of U-Boot and make it easier to port it to custom
3327 Initial Stack, Global Data:
3328 ---------------------------
3330 The implementation of U-Boot is complicated by the fact that U-Boot
3331 starts running out of ROM (flash memory), usually without access to
3332 system RAM (because the memory controller is not initialized yet).
3333 This means that we don't have writable Data or BSS segments, and BSS
3334 is not initialized as zero. To be able to get a C environment working
3335 at all, we have to allocate at least a minimal stack. Implementation
3336 options for this are defined and restricted by the CPU used: Some CPU
3337 models provide on-chip memory (like the IMMR area on MPC8xx and
3338 MPC826x processors), on others (parts of) the data cache can be
3339 locked as (mis-) used as memory, etc.
3341 Chris Hallinan posted a good summary of these issues to the
3342 U-Boot mailing list:
3344 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
3346 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
3349 Correct me if I'm wrong, folks, but the way I understand it
3350 is this: Using DCACHE as initial RAM for Stack, etc, does not
3351 require any physical RAM backing up the cache. The cleverness
3352 is that the cache is being used as a temporary supply of
3353 necessary storage before the SDRAM controller is setup. It's
3354 beyond the scope of this list to explain the details, but you
3355 can see how this works by studying the cache architecture and
3356 operation in the architecture and processor-specific manuals.
3358 OCM is On Chip Memory, which I believe the 405GP has 4K. It
3359 is another option for the system designer to use as an
3360 initial stack/RAM area prior to SDRAM being available. Either
3361 option should work for you. Using CS 4 should be fine if your
3362 board designers haven't used it for something that would
3363 cause you grief during the initial boot! It is frequently not
3366 CONFIG_SYS_INIT_RAM_ADDR should be somewhere that won't interfere
3367 with your processor/board/system design. The default value
3368 you will find in any recent u-boot distribution in
3369 walnut.h should work for you. I'd set it to a value larger
3370 than your SDRAM module. If you have a 64MB SDRAM module, set
3371 it above 400_0000. Just make sure your board has no resources
3372 that are supposed to respond to that address! That code in
3373 start.S has been around a while and should work as is when
3374 you get the config right.
3379 It is essential to remember this, since it has some impact on the C
3380 code for the initialization procedures:
3382 * Initialized global data (data segment) is read-only. Do not attempt
3385 * Do not use any uninitialized global data (or implicitly initialized
3386 as zero data - BSS segment) at all - this is undefined, initiali-
3387 zation is performed later (when relocating to RAM).
3389 * Stack space is very limited. Avoid big data buffers or things like
3392 Having only the stack as writable memory limits means we cannot use
3393 normal global data to share information between the code. But it
3394 turned out that the implementation of U-Boot can be greatly
3395 simplified by making a global data structure (gd_t) available to all
3396 functions. We could pass a pointer to this data as argument to _all_
3397 functions, but this would bloat the code. Instead we use a feature of
3398 the GCC compiler (Global Register Variables) to share the data: we
3399 place a pointer (gd) to the global data into a register which we
3400 reserve for this purpose.
3402 When choosing a register for such a purpose we are restricted by the
3403 relevant (E)ABI specifications for the current architecture, and by
3404 GCC's implementation.
3406 For PowerPC, the following registers have specific use:
3408 R2: reserved for system use
3409 R3-R4: parameter passing and return values
3410 R5-R10: parameter passing
3411 R13: small data area pointer
3415 (U-Boot also uses R12 as internal GOT pointer. r12
3416 is a volatile register so r12 needs to be reset when
3417 going back and forth between asm and C)
3419 ==> U-Boot will use R2 to hold a pointer to the global data
3421 Note: on PPC, we could use a static initializer (since the
3422 address of the global data structure is known at compile time),
3423 but it turned out that reserving a register results in somewhat
3424 smaller code - although the code savings are not that big (on
3425 average for all boards 752 bytes for the whole U-Boot image,
3426 624 text + 127 data).
3428 On ARM, the following registers are used:
3430 R0: function argument word/integer result
3431 R1-R3: function argument word
3432 R9: platform specific
3433 R10: stack limit (used only if stack checking is enabled)
3434 R11: argument (frame) pointer
3435 R12: temporary workspace
3438 R15: program counter
3440 ==> U-Boot will use R9 to hold a pointer to the global data
3442 Note: on ARM, only R_ARM_RELATIVE relocations are supported.
3444 On Nios II, the ABI is documented here:
3445 https://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
3447 ==> U-Boot will use gp to hold a pointer to the global data
3449 Note: on Nios II, we give "-G0" option to gcc and don't use gp
3450 to access small data sections, so gp is free.
3452 On NDS32, the following registers are used:
3454 R0-R1: argument/return
3456 R15: temporary register for assembler
3457 R16: trampoline register
3458 R28: frame pointer (FP)
3459 R29: global pointer (GP)
3460 R30: link register (LP)
3461 R31: stack pointer (SP)
3462 PC: program counter (PC)
3464 ==> U-Boot will use R10 to hold a pointer to the global data
3466 NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
3467 or current versions of GCC may "optimize" the code too much.
3469 On RISC-V, the following registers are used:
3471 x0: hard-wired zero (zero)
3472 x1: return address (ra)
3473 x2: stack pointer (sp)
3474 x3: global pointer (gp)
3475 x4: thread pointer (tp)
3476 x5: link register (t0)
3477 x8: frame pointer (fp)
3478 x10-x11: arguments/return values (a0-1)
3479 x12-x17: arguments (a2-7)
3480 x28-31: temporaries (t3-6)
3481 pc: program counter (pc)
3483 ==> U-Boot will use gp to hold a pointer to the global data
3488 U-Boot runs in system state and uses physical addresses, i.e. the
3489 MMU is not used either for address mapping nor for memory protection.
3491 The available memory is mapped to fixed addresses using the memory
3492 controller. In this process, a contiguous block is formed for each
3493 memory type (Flash, SDRAM, SRAM), even when it consists of several
3494 physical memory banks.
3496 U-Boot is installed in the first 128 kB of the first Flash bank (on
3497 TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
3498 booting and sizing and initializing DRAM, the code relocates itself
3499 to the upper end of DRAM. Immediately below the U-Boot code some
3500 memory is reserved for use by malloc() [see CONFIG_SYS_MALLOC_LEN
3501 configuration setting]. Below that, a structure with global Board
3502 Info data is placed, followed by the stack (growing downward).
3504 Additionally, some exception handler code is copied to the low 8 kB
3505 of DRAM (0x00000000 ... 0x00001FFF).
3507 So a typical memory configuration with 16 MB of DRAM could look like
3510 0x0000 0000 Exception Vector code
3513 0x0000 2000 Free for Application Use
3519 0x00FB FF20 Monitor Stack (Growing downward)
3520 0x00FB FFAC Board Info Data and permanent copy of global data
3521 0x00FC 0000 Malloc Arena
3524 0x00FE 0000 RAM Copy of Monitor Code
3525 ... eventually: LCD or video framebuffer
3526 ... eventually: pRAM (Protected RAM - unchanged by reset)
3527 0x00FF FFFF [End of RAM]
3530 System Initialization:
3531 ----------------------
3533 In the reset configuration, U-Boot starts at the reset entry point
3534 (on most PowerPC systems at address 0x00000100). Because of the reset
3535 configuration for CS0# this is a mirror of the on board Flash memory.
3536 To be able to re-map memory U-Boot then jumps to its link address.
3537 To be able to implement the initialization code in C, a (small!)
3538 initial stack is set up in the internal Dual Ported RAM (in case CPUs
3539 which provide such a feature like), or in a locked part of the data
3540 cache. After that, U-Boot initializes the CPU core, the caches and
3543 Next, all (potentially) available memory banks are mapped using a
3544 preliminary mapping. For example, we put them on 512 MB boundaries
3545 (multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
3546 on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
3547 programmed for SDRAM access. Using the temporary configuration, a
3548 simple memory test is run that determines the size of the SDRAM
3551 When there is more than one SDRAM bank, and the banks are of
3552 different size, the largest is mapped first. For equal size, the first
3553 bank (CS2#) is mapped first. The first mapping is always for address
3554 0x00000000, with any additional banks following immediately to create
3555 contiguous memory starting from 0.
3557 Then, the monitor installs itself at the upper end of the SDRAM area
3558 and allocates memory for use by malloc() and for the global Board
3559 Info data; also, the exception vector code is copied to the low RAM
3560 pages, and the final stack is set up.
3562 Only after this relocation will you have a "normal" C environment;
3563 until that you are restricted in several ways, mostly because you are
3564 running from ROM, and because the code will have to be relocated to a
3568 U-Boot Porting Guide:
3569 ----------------------
3571 [Based on messages by Jerry Van Baren in the U-Boot-Users mailing
3575 int main(int argc, char *argv[])
3577 sighandler_t no_more_time;
3579 signal(SIGALRM, no_more_time);
3580 alarm(PROJECT_DEADLINE - toSec (3 * WEEK));
3582 if (available_money > available_manpower) {
3583 Pay consultant to port U-Boot;
3587 Download latest U-Boot source;
3589 Subscribe to u-boot mailing list;
3592 email("Hi, I am new to U-Boot, how do I get started?");
3595 Read the README file in the top level directory;
3596 Read https://www.denx.de/wiki/bin/view/DULG/Manual;
3597 Read applicable doc/README.*;
3598 Read the source, Luke;
3599 /* find . -name "*.[chS]" | xargs grep -i <keyword> */
3602 if (available_money > toLocalCurrency ($2500))
3605 Add a lot of aggravation and time;
3607 if (a similar board exists) { /* hopefully... */
3608 cp -a board/<similar> board/<myboard>
3609 cp include/configs/<similar>.h include/configs/<myboard>.h
3611 Create your own board support subdirectory;
3612 Create your own board include/configs/<myboard>.h file;
3614 Edit new board/<myboard> files
3615 Edit new include/configs/<myboard>.h
3620 Add / modify source code;
3624 email("Hi, I am having problems...");
3626 Send patch file to the U-Boot email list;
3627 if (reasonable critiques)
3628 Incorporate improvements from email list code review;
3630 Defend code as written;
3636 void no_more_time (int sig)
3645 All contributions to U-Boot should conform to the Linux kernel
3646 coding style; see the kernel coding style guide at
3647 https://www.kernel.org/doc/html/latest/process/coding-style.html, and the
3648 script "scripts/Lindent" in your Linux kernel source directory.
3650 Source files originating from a different project (for example the
3651 MTD subsystem) are generally exempt from these guidelines and are not
3652 reformatted to ease subsequent migration to newer versions of those
3655 Please note that U-Boot is implemented in C (and to some small parts in
3656 Assembler); no C++ is used, so please do not use C++ style comments (//)
3659 Please also stick to the following formatting rules:
3660 - remove any trailing white space
3661 - use TAB characters for indentation and vertical alignment, not spaces
3662 - make sure NOT to use DOS '\r\n' line feeds
3663 - do not add more than 2 consecutive empty lines to source files
3664 - do not add trailing empty lines to source files
3666 Submissions which do not conform to the standards may be returned
3667 with a request to reformat the changes.
3673 Since the number of patches for U-Boot is growing, we need to
3674 establish some rules. Submissions which do not conform to these rules
3675 may be rejected, even when they contain important and valuable stuff.
3677 Please see https://www.denx.de/wiki/U-Boot/Patches for details.
3680 see https://lists.denx.de/listinfo/u-boot
3682 When you send a patch, please include the following information with
3685 * For bug fixes: a description of the bug and how your patch fixes
3686 this bug. Please try to include a way of demonstrating that the
3687 patch actually fixes something.
3689 * For new features: a description of the feature and your
3692 * For major contributions, add a MAINTAINERS file with your
3693 information and associated file and directory references.
3695 * When you add support for a new board, don't forget to add a
3696 maintainer e-mail address to the boards.cfg file, too.
3698 * If your patch adds new configuration options, don't forget to
3699 document these in the README file.
3701 * The patch itself. If you are using git (which is *strongly*
3702 recommended) you can easily generate the patch using the
3703 "git format-patch". If you then use "git send-email" to send it to
3704 the U-Boot mailing list, you will avoid most of the common problems
3705 with some other mail clients.
3707 If you cannot use git, use "diff -purN OLD NEW". If your version of
3708 diff does not support these options, then get the latest version of
3711 The current directory when running this command shall be the parent
3712 directory of the U-Boot source tree (i. e. please make sure that
3713 your patch includes sufficient directory information for the
3716 We prefer patches as plain text. MIME attachments are discouraged,
3717 and compressed attachments must not be used.
3719 * If one logical set of modifications affects or creates several
3720 files, all these changes shall be submitted in a SINGLE patch file.
3722 * Changesets that contain different, unrelated modifications shall be
3723 submitted as SEPARATE patches, one patch per changeset.
3728 * Before sending the patch, run the buildman script on your patched
3729 source tree and make sure that no errors or warnings are reported
3730 for any of the boards.
3732 * Keep your modifications to the necessary minimum: A patch
3733 containing several unrelated changes or arbitrary reformats will be
3734 returned with a request to re-formatting / split it.
3736 * If you modify existing code, make sure that your new code does not
3737 add to the memory footprint of the code ;-) Small is beautiful!
3738 When adding new features, these should compile conditionally only
3739 (using #ifdef), and the resulting code with the new feature
3740 disabled must not need more memory than the old code without your
3743 * Remember that there is a size limit of 100 kB per message on the
3744 u-boot mailing list. Bigger patches will be moderated. If they are
3745 reasonable and not too big, they will be acknowledged. But patches
3746 bigger than the size limit should be avoided.