1 // SPDX-License-Identifier: GPL-2.0+
3 * EFI application memory management
5 * Copyright (c) 2016 Alexander Graf
8 #define LOG_CATEGORY LOGC_EFI
10 #include <efi_loader.h>
16 #include <asm/cache.h>
17 #include <asm/global_data.h>
18 #include <asm/sections.h>
19 #include <linux/list_sort.h>
20 #include <linux/sizes.h>
22 DECLARE_GLOBAL_DATA_PTR;
24 /* Magic number identifying memory allocated from pool */
25 #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
27 efi_uintn_t efi_memory_map_key;
30 struct list_head link;
31 struct efi_mem_desc desc;
34 #define EFI_CARVE_NO_OVERLAP -1
35 #define EFI_CARVE_LOOP_AGAIN -2
36 #define EFI_CARVE_OVERLAPS_NONRAM -3
37 #define EFI_CARVE_OUT_OF_RESOURCES -4
39 /* This list contains all memory map items */
40 static LIST_HEAD(efi_mem);
42 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
43 void *efi_bounce_buffer;
47 * struct efi_pool_allocation - memory block allocated from pool
49 * @num_pages: number of pages allocated
51 * @data: allocated pool memory
53 * U-Boot services each UEFI AllocatePool() request as a separate
54 * (multiple) page allocation. We have to track the number of pages
55 * to be able to free the correct amount later.
57 * The checksum calculated in function checksum() is used in FreePool() to avoid
58 * freeing memory not allocated by AllocatePool() and duplicate freeing.
60 * EFI requires 8 byte alignment for pool allocations, so we can
61 * prepend each allocation with these header fields.
63 struct efi_pool_allocation {
66 char data[] __aligned(ARCH_DMA_MINALIGN);
70 * checksum() - calculate checksum for memory allocated from pool
72 * @alloc: allocation header
73 * Return: checksum, always non-zero
75 static u64 checksum(struct efi_pool_allocation *alloc)
77 u64 addr = (uintptr_t)alloc;
78 u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
86 * efi_mem_cmp() - comparator function for sorting memory map
88 * Sorts the memory list from highest address to lowest address
90 * When allocating memory we should always start from the highest
91 * address chunk, so sort the memory list such that the first list
92 * iterator gets the highest address and goes lower from there.
95 * @a: first memory area
96 * @b: second memory area
97 * Return: 1 if @a is before @b, -1 if @b is before @a, 0 if equal
99 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
101 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
102 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
104 if (mema->desc.physical_start == memb->desc.physical_start)
106 else if (mema->desc.physical_start < memb->desc.physical_start)
113 * desc_get_end() - get end address of memory area
115 * @desc: memory descriptor
116 * Return: end address + 1
118 static uint64_t desc_get_end(struct efi_mem_desc *desc)
120 return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
124 * efi_mem_sort() - sort memory map
126 * Sort the memory map and then try to merge adjacent memory areas.
128 static void efi_mem_sort(void)
130 struct list_head *lhandle;
131 struct efi_mem_list *prevmem = NULL;
132 bool merge_again = true;
134 list_sort(NULL, &efi_mem, efi_mem_cmp);
136 /* Now merge entries that can be merged */
137 while (merge_again) {
139 list_for_each(lhandle, &efi_mem) {
140 struct efi_mem_list *lmem;
141 struct efi_mem_desc *prev = &prevmem->desc;
142 struct efi_mem_desc *cur;
145 lmem = list_entry(lhandle, struct efi_mem_list, link);
153 if ((desc_get_end(cur) == prev->physical_start) &&
154 (prev->type == cur->type) &&
155 (prev->attribute == cur->attribute)) {
156 /* There is an existing map before, reuse it */
157 pages = cur->num_pages;
158 prev->num_pages += pages;
159 prev->physical_start -= pages << EFI_PAGE_SHIFT;
160 prev->virtual_start -= pages << EFI_PAGE_SHIFT;
161 list_del(&lmem->link);
174 * efi_mem_carve_out() - unmap memory region
177 * @carve_desc: memory region to unmap
178 * @overlap_only_ram: the carved out region may only overlap RAM
179 * Return: the number of overlapping pages which have been
180 * removed from the map,
181 * EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
182 * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
183 * and the map contains anything but free ram
184 * (only when overlap_only_ram is true),
185 * EFI_CARVE_LOOP_AGAIN, if the mapping list should be
186 * traversed again, as it has been altered.
188 * Unmaps all memory occupied by the carve_desc region from the list entry
191 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
192 * to re-add the already carved out pages to the mapping.
194 static s64 efi_mem_carve_out(struct efi_mem_list *map,
195 struct efi_mem_desc *carve_desc,
196 bool overlap_only_ram)
198 struct efi_mem_list *newmap;
199 struct efi_mem_desc *map_desc = &map->desc;
200 uint64_t map_start = map_desc->physical_start;
201 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
202 uint64_t carve_start = carve_desc->physical_start;
203 uint64_t carve_end = carve_start +
204 (carve_desc->num_pages << EFI_PAGE_SHIFT);
206 /* check whether we're overlapping */
207 if ((carve_end <= map_start) || (carve_start >= map_end))
208 return EFI_CARVE_NO_OVERLAP;
210 /* We're overlapping with non-RAM, warn the caller if desired */
211 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
212 return EFI_CARVE_OVERLAPS_NONRAM;
214 /* Sanitize carve_start and carve_end to lie within our bounds */
215 carve_start = max(carve_start, map_start);
216 carve_end = min(carve_end, map_end);
218 /* Carving at the beginning of our map? Just move it! */
219 if (carve_start == map_start) {
220 if (map_end == carve_end) {
221 /* Full overlap, just remove map */
222 list_del(&map->link);
225 map->desc.physical_start = carve_end;
226 map->desc.virtual_start = carve_end;
227 map->desc.num_pages = (map_end - carve_end)
231 return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
235 * Overlapping maps, just split the list map at carve_start,
236 * it will get moved or removed in the next iteration.
238 * [ map_desc |__carve_start__| newmap ]
241 /* Create a new map from [ carve_start ... map_end ] */
242 newmap = calloc(1, sizeof(*newmap));
244 return EFI_CARVE_OUT_OF_RESOURCES;
245 newmap->desc = map->desc;
246 newmap->desc.physical_start = carve_start;
247 newmap->desc.virtual_start = carve_start;
248 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
249 /* Insert before current entry (descending address order) */
250 list_add_tail(&newmap->link, &map->link);
252 /* Shrink the map to [ map_start ... carve_start ] */
253 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
255 return EFI_CARVE_LOOP_AGAIN;
259 * efi_add_memory_map_pg() - add pages to the memory map
261 * @start: start address, must be a multiple of EFI_PAGE_SIZE
262 * @pages: number of pages to add
263 * @memory_type: type of memory added
264 * @overlap_only_ram: region may only overlap RAM
265 * Return: status code
267 static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
269 bool overlap_only_ram)
271 struct list_head *lhandle;
272 struct efi_mem_list *newlist;
274 uint64_t carved_pages = 0;
275 struct efi_event *evt;
277 EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
278 start, pages, memory_type, overlap_only_ram ? "yes" : "no");
280 if (memory_type >= EFI_MAX_MEMORY_TYPE)
281 return EFI_INVALID_PARAMETER;
286 ++efi_memory_map_key;
287 newlist = calloc(1, sizeof(*newlist));
289 return EFI_OUT_OF_RESOURCES;
290 newlist->desc.type = memory_type;
291 newlist->desc.physical_start = start;
292 newlist->desc.virtual_start = start;
293 newlist->desc.num_pages = pages;
295 switch (memory_type) {
296 case EFI_RUNTIME_SERVICES_CODE:
297 case EFI_RUNTIME_SERVICES_DATA:
298 newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
301 newlist->desc.attribute = EFI_MEMORY_RUNTIME;
304 newlist->desc.attribute = EFI_MEMORY_WB;
308 /* Add our new map */
311 list_for_each(lhandle, &efi_mem) {
312 struct efi_mem_list *lmem;
315 lmem = list_entry(lhandle, struct efi_mem_list, link);
316 r = efi_mem_carve_out(lmem, &newlist->desc,
319 case EFI_CARVE_OUT_OF_RESOURCES:
321 return EFI_OUT_OF_RESOURCES;
322 case EFI_CARVE_OVERLAPS_NONRAM:
324 * The user requested to only have RAM overlaps,
325 * but we hit a non-RAM region. Error out.
328 return EFI_NO_MAPPING;
329 case EFI_CARVE_NO_OVERLAP:
330 /* Just ignore this list entry */
332 case EFI_CARVE_LOOP_AGAIN:
334 * We split an entry, but need to loop through
335 * the list again to actually carve it.
340 /* We carved a number of pages */
347 /* The list changed, we need to start over */
351 } while (carve_again);
353 if (overlap_only_ram && (carved_pages != pages)) {
355 * The payload wanted to have RAM overlaps, but we overlapped
356 * with an unallocated region. Error out.
359 return EFI_NO_MAPPING;
362 /* Add our new map */
363 list_add_tail(&newlist->link, &efi_mem);
365 /* And make sure memory is listed in descending order */
368 /* Notify that the memory map was changed */
369 list_for_each_entry(evt, &efi_events, link) {
372 &efi_guid_event_group_memory_map_change)) {
373 efi_signal_event(evt);
382 * efi_add_memory_map() - add memory area to the memory map
384 * @start: start address of the memory area
385 * @size: length in bytes of the memory area
386 * @memory_type: type of memory added
388 * Return: status code
390 * This function automatically aligns the start and size of the memory area
393 efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
397 pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
398 start &= ~EFI_PAGE_MASK;
400 return efi_add_memory_map_pg(start, pages, memory_type, false);
404 * efi_check_allocated() - validate address to be freed
406 * Check that the address is within allocated memory:
408 * * The address must be in a range of the memory map.
409 * * The address may not point to EFI_CONVENTIONAL_MEMORY.
411 * Page alignment is not checked as this is not a requirement of
414 * @addr: address of page to be freed
415 * @must_be_allocated: return success if the page is allocated
416 * Return: status code
418 static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
420 struct efi_mem_list *item;
422 list_for_each_entry(item, &efi_mem, link) {
423 u64 start = item->desc.physical_start;
424 u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
426 if (addr >= start && addr < end) {
427 if (must_be_allocated ^
428 (item->desc.type == EFI_CONVENTIONAL_MEMORY))
431 return EFI_NOT_FOUND;
435 return EFI_NOT_FOUND;
439 * efi_find_free_memory() - find free memory pages
441 * @len: size of memory area needed
442 * @max_addr: highest address to allocate
443 * Return: pointer to free memory area or 0
445 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
447 struct list_head *lhandle;
450 * Prealign input max address, so we simplify our matching
451 * logic below and can just reuse it as return pointer.
453 max_addr &= ~EFI_PAGE_MASK;
455 list_for_each(lhandle, &efi_mem) {
456 struct efi_mem_list *lmem = list_entry(lhandle,
457 struct efi_mem_list, link);
458 struct efi_mem_desc *desc = &lmem->desc;
459 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
460 uint64_t desc_end = desc->physical_start + desc_len;
461 uint64_t curmax = min(max_addr, desc_end);
462 uint64_t ret = curmax - len;
464 /* We only take memory from free RAM */
465 if (desc->type != EFI_CONVENTIONAL_MEMORY)
468 /* Out of bounds for max_addr */
469 if ((ret + len) > max_addr)
472 /* Out of bounds for upper map limit */
473 if ((ret + len) > desc_end)
476 /* Out of bounds for lower map limit */
477 if (ret < desc->physical_start)
480 /* Return the highest address in this map within bounds */
488 * efi_allocate_pages - allocate memory pages
490 * @type: type of allocation to be performed
491 * @memory_type: usage type of the allocated memory
492 * @pages: number of pages to be allocated
493 * @memory: allocated memory
494 * Return: status code
496 efi_status_t efi_allocate_pages(enum efi_allocate_type type,
497 enum efi_memory_type memory_type,
498 efi_uintn_t pages, uint64_t *memory)
504 /* Check import parameters */
505 if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
506 memory_type <= 0x6FFFFFFF)
507 return EFI_INVALID_PARAMETER;
509 return EFI_INVALID_PARAMETER;
510 len = (u64)pages << EFI_PAGE_SHIFT;
511 /* Catch possible overflow on 64bit systems */
512 if (sizeof(efi_uintn_t) == sizeof(u64) &&
513 (len >> EFI_PAGE_SHIFT) != (u64)pages)
514 return EFI_OUT_OF_RESOURCES;
517 case EFI_ALLOCATE_ANY_PAGES:
519 addr = efi_find_free_memory(len, -1ULL);
521 return EFI_OUT_OF_RESOURCES;
523 case EFI_ALLOCATE_MAX_ADDRESS:
525 addr = efi_find_free_memory(len, *memory);
527 return EFI_OUT_OF_RESOURCES;
529 case EFI_ALLOCATE_ADDRESS:
530 if (*memory & EFI_PAGE_MASK)
531 return EFI_NOT_FOUND;
532 /* Exact address, reserve it. The addr is already in *memory. */
533 ret = efi_check_allocated(*memory, false);
534 if (ret != EFI_SUCCESS)
535 return EFI_NOT_FOUND;
539 /* UEFI doesn't specify other allocation types */
540 return EFI_INVALID_PARAMETER;
543 /* Reserve that map in our memory maps */
544 ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
545 if (ret != EFI_SUCCESS)
546 /* Map would overlap, bail out */
547 return EFI_OUT_OF_RESOURCES;
555 * efi_free_pages() - free memory pages
557 * @memory: start of the memory area to be freed
558 * @pages: number of pages to be freed
559 * Return: status code
561 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
565 ret = efi_check_allocated(memory, true);
566 if (ret != EFI_SUCCESS)
570 if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
571 printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
573 return EFI_INVALID_PARAMETER;
576 ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
578 if (ret != EFI_SUCCESS)
579 return EFI_NOT_FOUND;
585 * efi_alloc_aligned_pages() - allocate aligned memory pages
588 * @memory_type: usage type of the allocated memory
589 * @align: alignment in bytes
590 * Return: aligned memory or NULL
592 void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
594 u64 req_pages = efi_size_in_pages(len);
595 u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
601 /* align must be zero or a power of two */
602 if (align & (align - 1))
605 /* Check for overflow */
606 if (true_pages < req_pages)
609 if (align < EFI_PAGE_SIZE) {
610 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
612 return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
615 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
617 if (r != EFI_SUCCESS)
620 aligned_mem = ALIGN(mem, align);
621 /* Free pages before alignment */
622 free_pages = efi_size_in_pages(aligned_mem - mem);
624 efi_free_pages(mem, free_pages);
626 /* Free trailing pages */
627 free_pages = true_pages - (req_pages + free_pages);
629 mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
630 efi_free_pages(mem, free_pages);
633 return (void *)(uintptr_t)aligned_mem;
637 * efi_allocate_pool - allocate memory from pool
639 * @pool_type: type of the pool from which memory is to be allocated
640 * @size: number of bytes to be allocated
641 * @buffer: allocated memory
642 * Return: status code
644 efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
648 struct efi_pool_allocation *alloc;
649 u64 num_pages = efi_size_in_pages(size +
650 sizeof(struct efi_pool_allocation));
653 return EFI_INVALID_PARAMETER;
660 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
662 if (r == EFI_SUCCESS) {
663 alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
664 alloc->num_pages = num_pages;
665 alloc->checksum = checksum(alloc);
666 *buffer = alloc->data;
673 * efi_alloc() - allocate boot services data pool memory
675 * Allocate memory from pool and zero it out.
677 * @size: number of bytes to allocate
678 * Return: pointer to allocated memory or NULL
680 void *efi_alloc(size_t size)
684 if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) !=
686 log_err("out of memory");
689 memset(buf, 0, size);
695 * efi_free_pool() - free memory from pool
697 * @buffer: start of memory to be freed
698 * Return: status code
700 efi_status_t efi_free_pool(void *buffer)
703 struct efi_pool_allocation *alloc;
706 return EFI_INVALID_PARAMETER;
708 ret = efi_check_allocated((uintptr_t)buffer, true);
709 if (ret != EFI_SUCCESS)
712 alloc = container_of(buffer, struct efi_pool_allocation, data);
714 /* Check that this memory was allocated by efi_allocate_pool() */
715 if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
716 alloc->checksum != checksum(alloc)) {
717 printf("%s: illegal free 0x%p\n", __func__, buffer);
718 return EFI_INVALID_PARAMETER;
720 /* Avoid double free */
723 ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
729 * efi_get_memory_map() - get map describing memory usage.
731 * @memory_map_size: on entry the size, in bytes, of the memory map buffer,
732 * on exit the size of the copied memory map
733 * @memory_map: buffer to which the memory map is written
734 * @map_key: key for the memory map
735 * @descriptor_size: size of an individual memory descriptor
736 * @descriptor_version: version number of the memory descriptor structure
737 * Return: status code
739 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
740 struct efi_mem_desc *memory_map,
741 efi_uintn_t *map_key,
742 efi_uintn_t *descriptor_size,
743 uint32_t *descriptor_version)
745 efi_uintn_t map_size = 0;
747 struct list_head *lhandle;
748 efi_uintn_t provided_map_size;
750 if (!memory_map_size)
751 return EFI_INVALID_PARAMETER;
753 provided_map_size = *memory_map_size;
755 list_for_each(lhandle, &efi_mem)
758 map_size = map_entries * sizeof(struct efi_mem_desc);
760 *memory_map_size = map_size;
763 *descriptor_size = sizeof(struct efi_mem_desc);
765 if (descriptor_version)
766 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
768 if (provided_map_size < map_size)
769 return EFI_BUFFER_TOO_SMALL;
772 return EFI_INVALID_PARAMETER;
774 /* Copy list into array */
775 /* Return the list in ascending order */
776 memory_map = &memory_map[map_entries - 1];
777 list_for_each(lhandle, &efi_mem) {
778 struct efi_mem_list *lmem;
780 lmem = list_entry(lhandle, struct efi_mem_list, link);
781 *memory_map = lmem->desc;
786 *map_key = efi_memory_map_key;
792 * efi_get_memory_map_alloc() - allocate map describing memory usage
794 * The caller is responsible for calling FreePool() if the call succeeds.
796 * @map_size: size of the memory map
797 * @memory_map: buffer to which the memory map is written
798 * Return: status code
800 efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size,
801 struct efi_mem_desc **memory_map)
807 ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL);
808 if (ret == EFI_BUFFER_TOO_SMALL) {
809 *map_size += sizeof(struct efi_mem_desc); /* for the map */
810 ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size,
811 (void **)memory_map);
812 if (ret != EFI_SUCCESS)
814 ret = efi_get_memory_map(map_size, *memory_map,
816 if (ret != EFI_SUCCESS) {
817 efi_free_pool(*memory_map);
826 * efi_add_conventional_memory_map() - add a RAM memory area to the map
828 * @ram_start: start address of a RAM memory area
829 * @ram_end: end address of a RAM memory area
830 * @ram_top: max address to be used as conventional memory
831 * Return: status code
833 efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
838 /* Remove partial pages */
839 ram_end &= ~EFI_PAGE_MASK;
840 ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
842 if (ram_end <= ram_start) {
843 /* Invalid mapping */
844 return EFI_INVALID_PARAMETER;
847 pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
849 efi_add_memory_map_pg(ram_start, pages,
850 EFI_CONVENTIONAL_MEMORY, false);
853 * Boards may indicate to the U-Boot memory core that they
854 * can not support memory above ram_top. Let's honor this
855 * in the efi_loader subsystem too by declaring any memory
856 * above ram_top as "already occupied by firmware".
858 if (ram_top < ram_start) {
859 /* ram_top is before this region, reserve all */
860 efi_add_memory_map_pg(ram_start, pages,
861 EFI_BOOT_SERVICES_DATA, true);
862 } else if (ram_top < ram_end) {
863 /* ram_top is inside this region, reserve parts */
864 pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
866 efi_add_memory_map_pg(ram_top, pages,
867 EFI_BOOT_SERVICES_DATA, true);
874 * efi_add_known_memory() - add memory banks to map
876 * This function may be overridden for specific architectures.
878 __weak void efi_add_known_memory(void)
880 u64 ram_top = gd->ram_top & ~EFI_PAGE_MASK;
884 * ram_top is just outside mapped memory. So use an offset of one for
885 * mapping the sandbox address.
887 ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
889 /* Fix for 32bit targets with ram_top at 4G */
891 ram_top = 0x100000000ULL;
894 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
895 u64 ram_end, ram_start;
897 ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
898 ram_end = ram_start + gd->bd->bi_dram[i].size;
900 efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
905 * add_u_boot_and_runtime() - add U-Boot code to memory map
907 * Add memory regions for U-Boot's memory and for the runtime services code.
909 static void add_u_boot_and_runtime(void)
911 unsigned long runtime_start, runtime_end, runtime_pages;
912 unsigned long runtime_mask = EFI_PAGE_MASK;
913 unsigned long uboot_start, uboot_pages;
914 unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
917 uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
918 uboot_stack_size) & ~EFI_PAGE_MASK;
919 uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
920 uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
921 efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE,
924 #if defined(__aarch64__)
926 * Runtime Services must be 64KiB aligned according to the
927 * "AArch64 Platforms" section in the UEFI spec (2.7+).
930 runtime_mask = SZ_64K - 1;
934 * Add Runtime Services. We mark surrounding boottime code as runtime as
935 * well to fulfill the runtime alignment constraints but avoid padding.
937 runtime_start = (uintptr_t)__efi_runtime_start & ~runtime_mask;
938 runtime_end = (uintptr_t)__efi_runtime_stop;
939 runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
940 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
941 efi_add_memory_map_pg(runtime_start, runtime_pages,
942 EFI_RUNTIME_SERVICES_CODE, false);
945 int efi_memory_init(void)
947 efi_add_known_memory();
949 add_u_boot_and_runtime();
951 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
952 /* Request a 32bit 64MB bounce buffer region */
953 uint64_t efi_bounce_buffer_addr = 0xffffffff;
955 if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA,
956 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
957 &efi_bounce_buffer_addr) != EFI_SUCCESS)
960 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;