1 // SPDX-License-Identifier: GPL-2.0
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
9 * Synced from Linux v4.19
17 #include <dm/device_compat.h>
18 #include <dm/devres.h>
19 #include <linux/bitops.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/log2.h>
23 #include <linux/math64.h>
24 #include <linux/sizes.h>
25 #include <linux/bitfield.h>
26 #include <linux/delay.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/spi-nor.h>
30 #include <mtd/cfi_flash.h>
34 #include "sf_internal.h"
36 /* Define max times to check status register before we give up. */
39 * For everything but full-chip erase; probably could be much smaller, but kept
40 * around for safety for now
43 #define HZ CONFIG_SYS_HZ
45 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
47 #define ROUND_UP_TO(x, y) (((x) + (y) - 1) / (y) * (y))
49 struct sfdp_parameter_header {
53 u8 length; /* in double words */
54 u8 parameter_table_pointer[3]; /* byte address */
58 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
59 #define SFDP_PARAM_HEADER_PTP(p) \
60 (((p)->parameter_table_pointer[2] << 16) | \
61 ((p)->parameter_table_pointer[1] << 8) | \
62 ((p)->parameter_table_pointer[0] << 0))
64 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
65 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
66 #define SFDP_SST_ID 0x01bf /* Manufacturer specific Table */
67 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 Table */
69 #define SFDP_SIGNATURE 0x50444653U
70 #define SFDP_JESD216_MAJOR 1
71 #define SFDP_JESD216_MINOR 0
72 #define SFDP_JESD216A_MINOR 5
73 #define SFDP_JESD216B_MINOR 6
76 u32 signature; /* Ox50444653U <=> "SFDP" */
79 u8 nph; /* 0-base number of parameter headers */
82 /* Basic Flash Parameter Table. */
83 struct sfdp_parameter_header bfpt_header;
86 /* Basic Flash Parameter Table */
89 * JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs.
90 * They are indexed from 1 but C arrays are indexed from 0.
92 #define BFPT_DWORD(i) ((i) - 1)
93 #define BFPT_DWORD_MAX 20
95 /* The first version of JESB216 defined only 9 DWORDs. */
96 #define BFPT_DWORD_MAX_JESD216 9
97 #define BFPT_DWORD_MAX_JESD216B 16
100 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
101 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
102 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
103 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
104 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
105 #define BFPT_DWORD1_DTR BIT(19)
106 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
107 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
108 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
111 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
112 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
115 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
116 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
121 * (from JESD216 rev B)
122 * Quad Enable Requirements (QER):
123 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
124 * reads based on instruction. DQ3/HOLD# functions are hold during
126 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
127 * two data bytes where bit 1 of the second byte is one.
129 * Writing only one byte to the status register has the side-effect of
130 * clearing status register 2, including the QE bit. The 100b code is
131 * used if writing one byte to the status register does not modify
133 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
134 * one data byte where bit 6 is one.
136 * - 011b: QE is bit 7 of status register 2. It is set via Write status
137 * register 2 instruction 3Eh with one data byte where bit 7 is one.
139 * The status register 2 is read using instruction 3Fh.
140 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
141 * two data bytes where bit 1 of the second byte is one.
143 * In contrast to the 001b code, writing one byte to the status
144 * register does not modify status register 2.
145 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
146 * Read Status instruction 05h. Status register2 is read using
147 * instruction 35h. QE is set via Writ Status instruction 01h with
148 * two data bytes where bit 1 of the second byte is one.
151 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
152 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
153 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
154 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
155 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
156 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
157 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
159 #define BFPT_DWORD16_SOFT_RST BIT(12)
161 #define BFPT_DWORD18_CMD_EXT_MASK GENMASK(30, 29)
162 #define BFPT_DWORD18_CMD_EXT_REP (0x0UL << 29) /* Repeat */
163 #define BFPT_DWORD18_CMD_EXT_INV (0x1UL << 29) /* Invert */
164 #define BFPT_DWORD18_CMD_EXT_RES (0x2UL << 29) /* Reserved */
165 #define BFPT_DWORD18_CMD_EXT_16B (0x3UL << 29) /* 16-bit opcode */
167 /* xSPI Profile 1.0 table (from JESD216D.01). */
168 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
169 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
170 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
171 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
172 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
173 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
174 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
175 #define PROFILE1_DUMMY_DEFAULT 20
178 u32 dwords[BFPT_DWORD_MAX];
182 * struct spi_nor_fixups - SPI NOR fixup hooks
183 * @default_init: called after default flash parameters init. Used to tweak
184 * flash parameters when information provided by the flash_info
185 * table is incomplete or wrong.
186 * @post_bfpt: called after the BFPT table has been parsed
187 * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
188 * that do not support RDSFDP). Typically used to tweak various
189 * parameters that could not be extracted by other means (i.e.
190 * when information provided by the SFDP/flash_info tables are
191 * incomplete or wrong).
193 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
194 * table is broken or not available.
196 struct spi_nor_fixups {
197 void (*default_init)(struct spi_nor *nor);
198 int (*post_bfpt)(struct spi_nor *nor,
199 const struct sfdp_parameter_header *bfpt_header,
200 const struct sfdp_bfpt *bfpt,
201 struct spi_nor_flash_parameter *params);
202 void (*post_sfdp)(struct spi_nor *nor,
203 struct spi_nor_flash_parameter *params);
206 #define SPI_NOR_SRST_SLEEP_LEN 200
209 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
211 * @nor: pointer to a 'struct spi_nor'
212 * @op: pointer to the 'struct spi_mem_op' whose properties
213 * need to be initialized.
215 * Right now, only "repeat" and "invert" are supported.
217 * Return: The opcode extension.
219 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
220 const struct spi_mem_op *op)
222 switch (nor->cmd_ext_type) {
223 case SPI_NOR_EXT_INVERT:
224 return ~op->cmd.opcode;
226 case SPI_NOR_EXT_REPEAT:
227 return op->cmd.opcode;
230 dev_dbg(nor->dev, "Unknown command extension type\n");
236 * spi_nor_setup_op() - Set up common properties of a spi-mem op.
237 * @nor: pointer to a 'struct spi_nor'
238 * @op: pointer to the 'struct spi_mem_op' whose properties
239 * need to be initialized.
240 * @proto: the protocol from which the properties need to be set.
242 static void spi_nor_setup_op(const struct spi_nor *nor,
243 struct spi_mem_op *op,
244 const enum spi_nor_protocol proto)
248 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
251 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
253 if (op->dummy.nbytes)
254 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
257 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
259 if (spi_nor_protocol_is_dtr(proto)) {
261 * spi-mem supports mixed DTR modes, but right now we can only
262 * have all phases either DTR or STR. IOW, spi-mem can have
263 * something like 4S-4D-4D, but spi-nor can't. So, set all 4
264 * phases to either DTR or STR.
266 op->cmd.dtr = op->addr.dtr = op->dummy.dtr =
269 /* 2 bytes per clock cycle in DTR mode. */
270 op->dummy.nbytes *= 2;
272 ext = spi_nor_get_cmd_ext(nor, op);
273 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
278 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
281 if (op->data.dir == SPI_MEM_DATA_IN)
282 op->data.buf.in = buf;
284 op->data.buf.out = buf;
285 return spi_mem_exec_op(nor->spi, op);
288 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
290 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 0),
293 SPI_MEM_OP_DATA_IN(len, NULL, 0));
296 spi_nor_setup_op(nor, &op, nor->reg_proto);
298 ret = spi_nor_read_write_reg(nor, &op, val);
300 dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
305 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
307 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),
310 SPI_MEM_OP_DATA_OUT(len, NULL, 0));
312 spi_nor_setup_op(nor, &op, nor->reg_proto);
315 op.data.dir = SPI_MEM_NO_DATA;
317 return spi_nor_read_write_reg(nor, &op, buf);
320 #ifdef CONFIG_SPI_FLASH_SPANSION
321 static int spansion_read_any_reg(struct spi_nor *nor, u32 addr, u8 dummy,
324 struct spi_mem_op op =
325 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDAR, 1),
326 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
327 SPI_MEM_OP_DUMMY(dummy / 8, 1),
328 SPI_MEM_OP_DATA_IN(1, NULL, 1));
330 return spi_nor_read_write_reg(nor, &op, val);
333 static int spansion_write_any_reg(struct spi_nor *nor, u32 addr, u8 val)
335 struct spi_mem_op op =
336 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRAR, 1),
337 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
339 SPI_MEM_OP_DATA_OUT(1, NULL, 1));
341 return spi_nor_read_write_reg(nor, &op, &val);
345 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
348 struct spi_mem_op op =
349 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
350 SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
351 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
352 SPI_MEM_OP_DATA_IN(len, buf, 0));
353 size_t remaining = len;
356 spi_nor_setup_op(nor, &op, nor->read_proto);
358 /* convert the dummy cycles to the number of bytes */
359 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
360 if (spi_nor_protocol_is_dtr(nor->read_proto))
361 op.dummy.nbytes *= 2;
364 op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
365 ret = spi_mem_adjust_op_size(nor->spi, &op);
369 ret = spi_mem_exec_op(nor->spi, &op);
373 op.addr.val += op.data.nbytes;
374 remaining -= op.data.nbytes;
375 op.data.buf.in += op.data.nbytes;
381 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
384 struct spi_mem_op op =
385 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
386 SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
388 SPI_MEM_OP_DATA_OUT(len, buf, 0));
391 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
394 spi_nor_setup_op(nor, &op, nor->write_proto);
396 ret = spi_mem_adjust_op_size(nor->spi, &op);
399 op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
401 ret = spi_mem_exec_op(nor->spi, &op);
405 return op.data.nbytes;
409 * Read the status register, returning its value in the location
410 * Return the status register value.
411 * Returns negative if error occurred.
413 static int read_sr(struct spi_nor *nor)
415 struct spi_mem_op op;
418 u8 addr_nbytes, dummy;
420 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
421 addr_nbytes = nor->rdsr_addr_nbytes;
422 dummy = nor->rdsr_dummy;
428 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
429 SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
430 SPI_MEM_OP_DUMMY(dummy, 0),
431 SPI_MEM_OP_DATA_IN(1, NULL, 0));
433 spi_nor_setup_op(nor, &op, nor->reg_proto);
436 * We don't want to read only one byte in DTR mode. So, read 2 and then
437 * discard the second byte.
439 if (spi_nor_protocol_is_dtr(nor->reg_proto))
442 ret = spi_nor_read_write_reg(nor, &op, val);
444 pr_debug("error %d reading SR\n", (int)ret);
452 * Read the flag status register, returning its value in the location
453 * Return the status register value.
454 * Returns negative if error occurred.
456 static int read_fsr(struct spi_nor *nor)
458 struct spi_mem_op op;
461 u8 addr_nbytes, dummy;
463 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
464 addr_nbytes = nor->rdsr_addr_nbytes;
465 dummy = nor->rdsr_dummy;
471 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
472 SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
473 SPI_MEM_OP_DUMMY(dummy, 0),
474 SPI_MEM_OP_DATA_IN(1, NULL, 0));
476 spi_nor_setup_op(nor, &op, nor->reg_proto);
479 * We don't want to read only one byte in DTR mode. So, read 2 and then
480 * discard the second byte.
482 if (spi_nor_protocol_is_dtr(nor->reg_proto))
485 ret = spi_nor_read_write_reg(nor, &op, val);
487 pr_debug("error %d reading FSR\n", ret);
495 * Read configuration register, returning its value in the
496 * location. Return the configuration register value.
497 * Returns negative if error occurred.
499 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
500 static int read_cr(struct spi_nor *nor)
505 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
507 dev_dbg(nor->dev, "error %d reading CR\n", ret);
516 * Write status register 1 byte
517 * Returns negative if error occurred.
519 static int write_sr(struct spi_nor *nor, u8 val)
521 nor->cmd_buf[0] = val;
522 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
526 * Set write enable latch with Write Enable command.
527 * Returns negative if error occurred.
529 static int write_enable(struct spi_nor *nor)
531 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
535 * Send write disable instruction to the chip.
537 static int write_disable(struct spi_nor *nor)
539 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
542 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
547 #ifndef CONFIG_SPI_FLASH_BAR
548 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
552 for (i = 0; i < size; i++)
553 if (table[i][0] == opcode)
556 /* No conversion found, keep input op code. */
560 static u8 spi_nor_convert_3to4_read(u8 opcode)
562 static const u8 spi_nor_3to4_read[][2] = {
563 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
564 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
565 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
566 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
567 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
568 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
569 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
570 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
572 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
573 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
574 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
577 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
578 ARRAY_SIZE(spi_nor_3to4_read));
581 static u8 spi_nor_convert_3to4_program(u8 opcode)
583 static const u8 spi_nor_3to4_program[][2] = {
584 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
585 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
586 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
587 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
588 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
591 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
592 ARRAY_SIZE(spi_nor_3to4_program));
595 static u8 spi_nor_convert_3to4_erase(u8 opcode)
597 static const u8 spi_nor_3to4_erase[][2] = {
598 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
599 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
600 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
603 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
604 ARRAY_SIZE(spi_nor_3to4_erase));
607 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
608 const struct flash_info *info)
610 /* Do some manufacturer fixups first */
611 switch (JEDEC_MFR(info)) {
612 case SNOR_MFR_SPANSION:
613 /* No small sector erase for 4-byte command set */
614 nor->erase_opcode = SPINOR_OP_SE;
615 nor->mtd.erasesize = info->sector_size;
622 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
623 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
624 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
626 #endif /* !CONFIG_SPI_FLASH_BAR */
628 /* Enable/disable 4-byte addressing mode. */
629 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
633 bool need_wren = false;
636 switch (JEDEC_MFR(info)) {
638 case SNOR_MFR_MICRON:
639 /* Some Micron need WREN command; all will accept it */
642 case SNOR_MFR_MACRONIX:
643 case SNOR_MFR_WINBOND:
647 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
648 status = nor->write_reg(nor, cmd, NULL, 0);
652 if (!status && !enable &&
653 JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
655 * On Winbond W25Q256FV, leaving 4byte mode causes
656 * the Extended Address Register to be set to 1, so all
657 * 3-byte-address reads come from the second 16M.
658 * We must clear the register to enable normal behavior.
662 nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
667 case SNOR_MFR_CYPRESS:
668 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B_CYPRESS;
669 return nor->write_reg(nor, cmd, NULL, 0);
672 nor->cmd_buf[0] = enable << 7;
673 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
677 #ifdef CONFIG_SPI_FLASH_SPANSION
679 * Read status register 1 by using Read Any Register command to support multi
682 static int spansion_sr_ready(struct spi_nor *nor, u32 addr_base, u8 dummy)
684 u32 reg_addr = addr_base + SPINOR_REG_ADDR_STR1V;
688 ret = spansion_read_any_reg(nor, reg_addr, dummy, &sr);
692 if (sr & (SR_E_ERR | SR_P_ERR)) {
694 dev_dbg(nor->dev, "Erase Error occurred\n");
696 dev_dbg(nor->dev, "Programming Error occurred\n");
698 nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
702 return !(sr & SR_WIP);
706 static int spi_nor_sr_ready(struct spi_nor *nor)
708 int sr = read_sr(nor);
713 if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
715 dev_dbg(nor->dev, "Erase Error occurred\n");
717 dev_dbg(nor->dev, "Programming Error occurred\n");
719 nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
723 return !(sr & SR_WIP);
726 static int spi_nor_fsr_ready(struct spi_nor *nor)
728 int fsr = read_fsr(nor);
733 if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
735 dev_err(nor->dev, "Erase operation failed.\n");
737 dev_err(nor->dev, "Program operation failed.\n");
739 if (fsr & FSR_PT_ERR)
741 "Attempted to modify a protected sector.\n");
743 nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
747 return fsr & FSR_READY;
750 static int spi_nor_default_ready(struct spi_nor *nor)
754 sr = spi_nor_sr_ready(nor);
757 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
763 static int spi_nor_ready(struct spi_nor *nor)
766 return nor->ready(nor);
768 return spi_nor_default_ready(nor);
772 * Service routine to read status register until ready, or timeout occurs.
773 * Returns non-zero if error.
775 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
776 unsigned long timeout)
778 unsigned long timebase;
781 timebase = get_timer(0);
783 while (get_timer(timebase) < timeout) {
784 ret = spi_nor_ready(nor);
791 dev_err(nor->dev, "flash operation timed out\n");
796 static int spi_nor_wait_till_ready(struct spi_nor *nor)
798 return spi_nor_wait_till_ready_with_timeout(nor,
799 DEFAULT_READY_WAIT_JIFFIES);
802 #ifdef CONFIG_SPI_FLASH_BAR
804 * This "clean_bar" is necessary in a situation when one was accessing
805 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
807 * After it the BA24 bit shall be cleared to allow access to correct
808 * memory region after SW reset (by calling "reset" command).
810 * Otherwise, the BA24 bit may be left set and then after reset, the
811 * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
813 static int clean_bar(struct spi_nor *nor)
815 u8 cmd, bank_sel = 0;
817 if (nor->bank_curr == 0)
819 cmd = nor->bank_write_cmd;
823 return nor->write_reg(nor, cmd, &bank_sel, 1);
826 static int write_bar(struct spi_nor *nor, u32 offset)
831 bank_sel = offset / SZ_16M;
832 if (bank_sel == nor->bank_curr)
835 cmd = nor->bank_write_cmd;
837 ret = nor->write_reg(nor, cmd, &bank_sel, 1);
839 debug("SF: fail to write bank register\n");
844 nor->bank_curr = bank_sel;
845 return nor->bank_curr;
848 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
853 switch (JEDEC_MFR(info)) {
854 case SNOR_MFR_SPANSION:
855 nor->bank_read_cmd = SPINOR_OP_BRRD;
856 nor->bank_write_cmd = SPINOR_OP_BRWR;
859 nor->bank_read_cmd = SPINOR_OP_RDEAR;
860 nor->bank_write_cmd = SPINOR_OP_WREAR;
863 ret = nor->read_reg(nor, nor->bank_read_cmd,
866 debug("SF: fail to read bank addr register\n");
869 nor->bank_curr = curr_bank;
876 * Initiate the erasure of a single sector. Returns the number of bytes erased
877 * on success, a negative error code on error.
879 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
881 struct spi_mem_op op =
882 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
883 SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
888 spi_nor_setup_op(nor, &op, nor->write_proto);
891 return nor->erase(nor, addr);
894 * Default implementation, if driver doesn't have a specialized HW
897 ret = spi_mem_exec_op(nor->spi, &op);
901 return nor->mtd.erasesize;
905 * Erase an address range on the nor chip. The address range may extend
906 * one or more erase sectors. Return an error is there is a problem erasing.
908 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
910 struct spi_nor *nor = mtd_to_spi_nor(mtd);
914 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
915 (long long)instr->len);
920 div_u64_rem(instr->len, mtd->erasesize, &rem);
929 #ifdef CONFIG_SPI_FLASH_BAR
930 ret = write_bar(nor, addr);
936 ret = spi_nor_erase_sector(nor, addr);
943 ret = spi_nor_wait_till_ready(nor);
949 #ifdef CONFIG_SPI_FLASH_BAR
950 ret = clean_bar(nor);
957 #ifdef CONFIG_SPI_FLASH_SPANSION
959 * spansion_erase_non_uniform() - erase non-uniform sectors for Spansion/Cypress
961 * @nor: pointer to a 'struct spi_nor'
962 * @addr: address of the sector to erase
963 * @opcode_4k: opcode for 4K sector erase
964 * @ovlsz_top: size of overlaid portion at the top address
965 * @ovlsz_btm: size of overlaid portion at the bottom address
967 * Erase an address range on the nor chip that can contain 4KB sectors overlaid
968 * on top and/or bottom. The appropriate erase opcode and size are chosen by
969 * address to erase and size of overlaid portion.
971 * Return: number of bytes erased on success, -errno otherwise.
973 static int spansion_erase_non_uniform(struct spi_nor *nor, u32 addr,
974 u8 opcode_4k, u32 ovlsz_top,
977 struct spi_mem_op op =
978 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
979 SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
982 struct mtd_info *mtd = &nor->mtd;
987 if (op.addr.val < ovlsz_btm ||
988 op.addr.val >= mtd->size - ovlsz_top) {
989 op.cmd.opcode = opcode_4k;
992 /* Non-overlaid portion in the normal sector at the bottom */
993 } else if (op.addr.val == ovlsz_btm) {
994 op.cmd.opcode = nor->erase_opcode;
995 erasesize = mtd->erasesize - ovlsz_btm;
997 /* Non-overlaid portion in the normal sector at the top */
998 } else if (op.addr.val == mtd->size - mtd->erasesize) {
999 op.cmd.opcode = nor->erase_opcode;
1000 erasesize = mtd->erasesize - ovlsz_top;
1002 /* Normal sectors */
1004 op.cmd.opcode = nor->erase_opcode;
1005 erasesize = mtd->erasesize;
1008 spi_nor_setup_op(nor, &op, nor->write_proto);
1010 ret = spi_mem_exec_op(nor->spi, &op);
1018 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
1019 /* Write status register and ensure bits in mask match written values */
1020 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
1025 ret = write_sr(nor, status_new);
1029 ret = spi_nor_wait_till_ready(nor);
1037 return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
1040 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
1043 struct mtd_info *mtd = &nor->mtd;
1044 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1045 int shift = ffs(mask) - 1;
1053 pow = ((sr & mask) ^ mask) >> shift;
1054 *len = mtd->size >> pow;
1055 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
1058 *ofs = mtd->size - *len;
1063 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1064 * @locked is false); 0 otherwise
1066 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
1075 stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
1078 /* Requested range is a sub-range of locked range */
1079 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1081 /* Requested range does not overlap with locked range */
1082 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1085 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1088 return stm_check_lock_status_sr(nor, ofs, len, sr, true);
1091 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1094 return stm_check_lock_status_sr(nor, ofs, len, sr, false);
1098 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1099 * Supports the block protection bits BP{0,1,2} in the status register
1100 * (SR). Does not support these features found in newer SR bitfields:
1101 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1102 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1104 * Support for the following is provided conditionally for some flash:
1105 * - TB: top/bottom protect
1107 * Sample table portion for 8MB flash (Winbond w25q64fw):
1109 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1110 * --------------------------------------------------------------------------
1111 * X | X | 0 | 0 | 0 | NONE | NONE
1112 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1113 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1114 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1115 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1116 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1117 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1118 * X | X | 1 | 1 | 1 | 8 MB | ALL
1119 * ------|-------|-------|-------|-------|---------------|-------------------
1120 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1121 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1122 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1123 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1124 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1125 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1127 * Returns negative on errors, 0 on success.
1129 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1131 struct mtd_info *mtd = &nor->mtd;
1132 int status_old, status_new;
1133 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1134 u8 shift = ffs(mask) - 1, pow, val;
1136 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1139 status_old = read_sr(nor);
1143 /* If nothing in our range is unlocked, we don't need to do anything */
1144 if (stm_is_locked_sr(nor, ofs, len, status_old))
1147 /* If anything below us is unlocked, we can't use 'bottom' protection */
1148 if (!stm_is_locked_sr(nor, 0, ofs, status_old))
1149 can_be_bottom = false;
1151 /* If anything above us is unlocked, we can't use 'top' protection */
1152 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1156 if (!can_be_bottom && !can_be_top)
1159 /* Prefer top, if both are valid */
1160 use_top = can_be_top;
1162 /* lock_len: length of region that should end up locked */
1164 lock_len = mtd->size - ofs;
1166 lock_len = ofs + len;
1169 * Need smallest pow such that:
1171 * 1 / (2^pow) <= (len / size)
1173 * so (assuming power-of-2 size) we do:
1175 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
1177 pow = ilog2(mtd->size) - ilog2(lock_len);
1178 val = mask - (pow << shift);
1181 /* Don't "lock" with no region! */
1185 status_new = (status_old & ~mask & ~SR_TB) | val;
1187 /* Disallow further writes if WP pin is asserted */
1188 status_new |= SR_SRWD;
1191 status_new |= SR_TB;
1193 /* Don't bother if they're the same */
1194 if (status_new == status_old)
1197 /* Only modify protection if it will not unlock other areas */
1198 if ((status_new & mask) < (status_old & mask))
1201 return write_sr_and_check(nor, status_new, mask);
1205 * Unlock a region of the flash. See stm_lock() for more info
1207 * Returns negative on errors, 0 on success.
1209 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1211 struct mtd_info *mtd = &nor->mtd;
1212 int status_old, status_new;
1213 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1214 u8 shift = ffs(mask) - 1, pow, val;
1216 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1219 status_old = read_sr(nor);
1223 /* If nothing in our range is locked, we don't need to do anything */
1224 if (stm_is_unlocked_sr(nor, ofs, len, status_old))
1227 /* If anything below us is locked, we can't use 'top' protection */
1228 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
1231 /* If anything above us is locked, we can't use 'bottom' protection */
1232 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1234 can_be_bottom = false;
1236 if (!can_be_bottom && !can_be_top)
1239 /* Prefer top, if both are valid */
1240 use_top = can_be_top;
1242 /* lock_len: length of region that should remain locked */
1244 lock_len = mtd->size - (ofs + len);
1249 * Need largest pow such that:
1251 * 1 / (2^pow) >= (len / size)
1253 * so (assuming power-of-2 size) we do:
1255 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
1257 pow = ilog2(mtd->size) - order_base_2(lock_len);
1258 if (lock_len == 0) {
1259 val = 0; /* fully unlocked */
1261 val = mask - (pow << shift);
1262 /* Some power-of-two sizes are not supported */
1267 status_new = (status_old & ~mask & ~SR_TB) | val;
1269 /* Don't protect status register if we're fully unlocked */
1271 status_new &= ~SR_SRWD;
1274 status_new |= SR_TB;
1276 /* Don't bother if they're the same */
1277 if (status_new == status_old)
1280 /* Only modify protection if it will not lock other areas */
1281 if ((status_new & mask) > (status_old & mask))
1284 return write_sr_and_check(nor, status_new, mask);
1288 * Check if a region of the flash is (completely) locked. See stm_lock() for
1291 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1292 * negative on errors.
1294 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1298 status = read_sr(nor);
1302 return stm_is_locked_sr(nor, ofs, len, status);
1304 #endif /* CONFIG_SPI_FLASH_STMICRO */
1306 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1309 u8 id[SPI_NOR_MAX_ID_LEN];
1310 const struct flash_info *info;
1312 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1314 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1315 return ERR_PTR(tmp);
1319 for (; info->name; info++) {
1321 if (!memcmp(info->id, id, info->id_len))
1326 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1327 id[0], id[1], id[2]);
1328 return ERR_PTR(-ENODEV);
1331 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1332 size_t *retlen, u_char *buf)
1334 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1337 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1341 size_t read_len = len;
1343 #ifdef CONFIG_SPI_FLASH_BAR
1346 ret = write_bar(nor, addr);
1348 return log_ret(ret);
1349 remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
1351 if (len < remain_len)
1354 read_len = remain_len;
1357 ret = nor->read(nor, addr, read_len, buf);
1359 /* We shouldn't see 0-length reads */
1374 #ifdef CONFIG_SPI_FLASH_BAR
1375 ret = clean_bar(nor);
1380 #ifdef CONFIG_SPI_FLASH_SST
1382 * sst26 flash series has its own block protection implementation:
1383 * 4x - 8 KByte blocks - read & write protection bits - upper addresses
1384 * 1x - 32 KByte blocks - write protection bits
1385 * rest - 64 KByte blocks - write protection bits
1386 * 1x - 32 KByte blocks - write protection bits
1387 * 4x - 8 KByte blocks - read & write protection bits - lower addresses
1389 * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
1390 * will be treated as single block.
1392 #define SST26_BPR_8K_NUM 4
1393 #define SST26_MAX_BPR_REG_LEN (18 + 1)
1394 #define SST26_BOUND_REG_SIZE ((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
1402 static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
1405 case SST26_CTL_LOCK:
1406 cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
1408 case SST26_CTL_UNLOCK:
1409 cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
1411 case SST26_CTL_CHECK:
1412 return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
1419 * Lock, unlock or check lock status of the flash region of the flash (depending
1420 * on the lock_ctl value)
1422 static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
1424 struct mtd_info *mtd = &nor->mtd;
1425 u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
1426 bool lower_64k = false, upper_64k = false;
1427 u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
1430 /* Check length and offset for 64k alignment */
1431 if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
1432 dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
1436 if (ofs + len > mtd->size) {
1437 dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
1438 ofs, len, mtd->size);
1442 /* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
1443 if (mtd->size != SZ_2M &&
1444 mtd->size != SZ_4M &&
1448 bpr_size = 2 + (mtd->size / SZ_64K / 8);
1450 ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
1452 dev_err(nor->dev, "fail to read block-protection register\n");
1456 rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
1457 lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
1459 upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
1460 lower_64k = (ofs < SST26_BOUND_REG_SIZE);
1462 /* Lower bits in block-protection register are about 64k region */
1463 bpr_ptr = lptr_64k / SZ_64K - 1;
1465 /* Process 64K blocks region */
1466 while (lptr_64k < rptr_64k) {
1467 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1474 /* 32K and 8K region bits in BPR are after 64k region bits */
1475 bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
1477 /* Process lower 32K block region */
1479 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1484 /* Process upper 32K block region */
1486 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1491 /* Process lower 8K block regions */
1492 for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1494 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1497 /* In 8K area BPR has both read and write protection bits */
1501 /* Process upper 8K block regions */
1502 for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1504 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1507 /* In 8K area BPR has both read and write protection bits */
1511 /* If we check region status we don't need to write BPR back */
1512 if (ctl == SST26_CTL_CHECK)
1515 ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
1517 dev_err(nor->dev, "fail to write block-protection register\n");
1524 static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1526 return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
1529 static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1531 return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
1535 * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
1536 * and negative on errors.
1538 static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1541 * is_locked function is used for check before reading or erasing flash
1542 * region, so offset and length might be not 64k allighned, so adjust
1543 * them to be 64k allighned as sst26_lock_ctl works only with 64k
1544 * allighned regions.
1546 ofs -= ofs & (SZ_64K - 1);
1547 len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
1549 return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
1552 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
1553 size_t *retlen, const u_char *buf)
1558 for (actual = 0; actual < len; actual++) {
1559 nor->program_opcode = SPINOR_OP_BP;
1562 /* write one byte. */
1563 ret = nor->write(nor, to, 1, buf + actual);
1566 ret = spi_nor_wait_till_ready(nor);
1577 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1578 size_t *retlen, const u_char *buf)
1580 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1581 struct spi_slave *spi = nor->spi;
1585 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1586 if (spi->mode & SPI_TX_BYTE)
1587 return sst_write_byteprogram(nor, to, len, retlen, buf);
1591 nor->sst_write_second = false;
1594 /* Start write from odd address. */
1596 nor->program_opcode = SPINOR_OP_BP;
1598 /* write one byte. */
1599 ret = nor->write(nor, to, 1, buf);
1602 ret = spi_nor_wait_till_ready(nor);
1608 /* Write out most of the data here. */
1609 for (; actual < len - 1; actual += 2) {
1610 nor->program_opcode = SPINOR_OP_AAI_WP;
1612 /* write two bytes. */
1613 ret = nor->write(nor, to, 2, buf + actual);
1616 ret = spi_nor_wait_till_ready(nor);
1620 nor->sst_write_second = true;
1622 nor->sst_write_second = false;
1625 ret = spi_nor_wait_till_ready(nor);
1629 /* Write out trailing byte if it exists. */
1630 if (actual != len) {
1633 nor->program_opcode = SPINOR_OP_BP;
1634 ret = nor->write(nor, to, 1, buf + actual);
1637 ret = spi_nor_wait_till_ready(nor);
1649 * Write an address range to the nor chip. Data must be written in
1650 * FLASH_PAGESIZE chunks. The address range may be any size provided
1651 * it is within the physical boundaries.
1653 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1654 size_t *retlen, const u_char *buf)
1656 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1657 size_t page_offset, page_remain, i;
1660 #ifdef CONFIG_SPI_FLASH_SST
1661 /* sst nor chips use AAI word program */
1662 if (nor->info->flags & SST_WRITE)
1663 return sst_write(mtd, to, len, retlen, buf);
1666 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1671 for (i = 0; i < len; ) {
1673 loff_t addr = to + i;
1677 * If page_size is a power of two, the offset can be quickly
1678 * calculated with an AND operation. On the other cases we
1679 * need to do a modulus operation (more expensive).
1681 if (is_power_of_2(nor->page_size)) {
1682 page_offset = addr & (nor->page_size - 1);
1686 page_offset = do_div(aux, nor->page_size);
1688 /* the size of data remaining on the first page */
1689 page_remain = min_t(size_t,
1690 nor->page_size - page_offset, len - i);
1692 #ifdef CONFIG_SPI_FLASH_BAR
1693 ret = write_bar(nor, addr);
1698 ret = nor->write(nor, addr, page_remain, buf + i);
1703 ret = spi_nor_wait_till_ready(nor);
1711 #ifdef CONFIG_SPI_FLASH_BAR
1712 ret = clean_bar(nor);
1717 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
1719 * macronix_quad_enable() - set QE bit in Status Register.
1720 * @nor: pointer to a 'struct spi_nor'
1722 * Set the Quad Enable (QE) bit in the Status Register.
1724 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1726 * Return: 0 on success, -errno otherwise.
1728 static int macronix_quad_enable(struct spi_nor *nor)
1735 if (val & SR_QUAD_EN_MX)
1740 write_sr(nor, val | SR_QUAD_EN_MX);
1742 ret = spi_nor_wait_till_ready(nor);
1747 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1748 dev_err(nor->dev, "Macronix Quad bit not set\n");
1756 #ifdef CONFIG_SPI_FLASH_SPANSION
1758 * spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register.
1759 * @nor: pointer to a 'struct spi_nor'
1760 * @addr_base: base address of register (can be >0 in multi-die parts)
1761 * @dummy: number of dummy cycles for register read
1763 * It is recommended to update volatile registers in the field application due
1764 * to a risk of the non-volatile registers corruption by power interrupt. This
1765 * function sets Quad Enable bit in CFR1 volatile.
1767 * Return: 0 on success, -errno otherwise.
1769 static int spansion_quad_enable_volatile(struct spi_nor *nor, u32 addr_base,
1772 u32 addr = addr_base + SPINOR_REG_ADDR_CFR1V;
1777 /* Check current Quad Enable bit value. */
1778 ret = spansion_read_any_reg(nor, addr, dummy, &cr);
1781 "error while reading configuration register\n");
1785 if (cr & CR_QUAD_EN_SPAN)
1788 cr |= CR_QUAD_EN_SPAN;
1792 ret = spansion_write_any_reg(nor, addr, cr);
1796 "error while writing configuration register\n");
1800 /* Read back and check it. */
1801 ret = spansion_read_any_reg(nor, addr, dummy, &cr);
1802 if (ret || !(cr & CR_QUAD_EN_SPAN)) {
1803 dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1811 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1813 * Write status Register and configuration register with 2 bytes
1814 * The first byte will be written to the status register, while the
1815 * second byte will be written to the configuration register.
1816 * Return negative if error occurred.
1818 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1824 ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1827 "error while writing configuration register\n");
1831 ret = spi_nor_wait_till_ready(nor);
1834 "timeout while writing configuration register\n");
1842 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1843 * @nor: pointer to a 'struct spi_nor'
1845 * Set the Quad Enable (QE) bit in the Configuration Register.
1846 * This function should be used with QSPI memories supporting the Read
1847 * Configuration Register (35h) instruction.
1849 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1852 * Return: 0 on success, -errno otherwise.
1854 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1859 /* Check current Quad Enable bit value. */
1863 "error while reading configuration register\n");
1867 if (ret & CR_QUAD_EN_SPAN)
1870 sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1872 /* Keep the current value of the Status Register. */
1875 dev_dbg(nor->dev, "error while reading status register\n");
1880 ret = write_sr_cr(nor, sr_cr);
1884 /* Read back and check it. */
1886 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1887 dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1894 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1896 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1897 * @nor: pointer to a 'struct spi_nor'
1899 * Set the Quad Enable (QE) bit in the Configuration Register.
1900 * This function should be used with QSPI memories not supporting the Read
1901 * Configuration Register (35h) instruction.
1903 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1906 * Return: 0 on success, -errno otherwise.
1908 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1913 /* Keep the current value of the Status Register. */
1916 dev_dbg(nor->dev, "error while reading status register\n");
1920 sr_cr[1] = CR_QUAD_EN_SPAN;
1922 return write_sr_cr(nor, sr_cr);
1925 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1926 #endif /* CONFIG_SPI_FLASH_SPANSION */
1929 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1933 enum spi_nor_protocol proto)
1935 read->num_mode_clocks = num_mode_clocks;
1936 read->num_wait_states = num_wait_states;
1937 read->opcode = opcode;
1938 read->proto = proto;
1942 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1944 enum spi_nor_protocol proto)
1946 pp->opcode = opcode;
1950 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1952 * Serial Flash Discoverable Parameters (SFDP) parsing.
1956 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1957 * @nor: pointer to a 'struct spi_nor'
1958 * @addr: offset in the SFDP area to start reading data from
1959 * @len: number of bytes to read
1960 * @buf: buffer where the SFDP data are copied into (dma-safe memory)
1962 * Whatever the actual numbers of bytes for address and dummy cycles are
1963 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1964 * followed by a 3-byte address and 8 dummy clock cycles.
1966 * Return: 0 on success, -errno otherwise.
1968 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1969 size_t len, void *buf)
1971 u8 addr_width, read_opcode, read_dummy;
1974 read_opcode = nor->read_opcode;
1975 addr_width = nor->addr_width;
1976 read_dummy = nor->read_dummy;
1978 nor->read_opcode = SPINOR_OP_RDSFDP;
1979 nor->addr_width = 3;
1980 nor->read_dummy = 8;
1983 ret = nor->read(nor, addr, len, (u8 *)buf);
1984 if (!ret || ret > len) {
1998 nor->read_opcode = read_opcode;
1999 nor->addr_width = addr_width;
2000 nor->read_dummy = read_dummy;
2005 /* Fast Read settings. */
2008 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
2010 enum spi_nor_protocol proto)
2012 read->num_mode_clocks = (half >> 5) & 0x07;
2013 read->num_wait_states = (half >> 0) & 0x1f;
2014 read->opcode = (half >> 8) & 0xff;
2015 read->proto = proto;
2018 struct sfdp_bfpt_read {
2019 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
2023 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
2024 * whether the Fast Read x-y-z command is supported.
2026 u32 supported_dword;
2030 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
2031 * encodes the op code, the number of mode clocks and the number of wait
2032 * states to be used by Fast Read x-y-z command.
2037 /* The SPI protocol for this Fast Read x-y-z command. */
2038 enum spi_nor_protocol proto;
2041 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
2042 /* Fast Read 1-1-2 */
2044 SNOR_HWCAPS_READ_1_1_2,
2045 BFPT_DWORD(1), BIT(16), /* Supported bit */
2046 BFPT_DWORD(4), 0, /* Settings */
2050 /* Fast Read 1-2-2 */
2052 SNOR_HWCAPS_READ_1_2_2,
2053 BFPT_DWORD(1), BIT(20), /* Supported bit */
2054 BFPT_DWORD(4), 16, /* Settings */
2058 /* Fast Read 2-2-2 */
2060 SNOR_HWCAPS_READ_2_2_2,
2061 BFPT_DWORD(5), BIT(0), /* Supported bit */
2062 BFPT_DWORD(6), 16, /* Settings */
2066 /* Fast Read 1-1-4 */
2068 SNOR_HWCAPS_READ_1_1_4,
2069 BFPT_DWORD(1), BIT(22), /* Supported bit */
2070 BFPT_DWORD(3), 16, /* Settings */
2074 /* Fast Read 1-4-4 */
2076 SNOR_HWCAPS_READ_1_4_4,
2077 BFPT_DWORD(1), BIT(21), /* Supported bit */
2078 BFPT_DWORD(3), 0, /* Settings */
2082 /* Fast Read 4-4-4 */
2084 SNOR_HWCAPS_READ_4_4_4,
2085 BFPT_DWORD(5), BIT(4), /* Supported bit */
2086 BFPT_DWORD(7), 16, /* Settings */
2091 struct sfdp_bfpt_erase {
2093 * The half-word at offset <shift> in DWORD <dwoard> encodes the
2094 * op code and erase sector size to be used by Sector Erase commands.
2100 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
2101 /* Erase Type 1 in DWORD8 bits[15:0] */
2104 /* Erase Type 2 in DWORD8 bits[31:16] */
2105 {BFPT_DWORD(8), 16},
2107 /* Erase Type 3 in DWORD9 bits[15:0] */
2110 /* Erase Type 4 in DWORD9 bits[31:16] */
2111 {BFPT_DWORD(9), 16},
2114 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
2117 spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2118 const struct sfdp_parameter_header *bfpt_header,
2119 const struct sfdp_bfpt *bfpt,
2120 struct spi_nor_flash_parameter *params)
2122 if (nor->fixups && nor->fixups->post_bfpt)
2123 return nor->fixups->post_bfpt(nor, bfpt_header, bfpt, params);
2129 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
2130 * @nor: pointer to a 'struct spi_nor'
2131 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
2132 * the Basic Flash Parameter Table length and version
2133 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
2136 * The Basic Flash Parameter Table is the main and only mandatory table as
2137 * defined by the SFDP (JESD216) specification.
2138 * It provides us with the total size (memory density) of the data array and
2139 * the number of address bytes for Fast Read, Page Program and Sector Erase
2141 * For Fast READ commands, it also gives the number of mode clock cycles and
2142 * wait states (regrouped in the number of dummy clock cycles) for each
2143 * supported instruction op code.
2144 * For Page Program, the page size is now available since JESD216 rev A, however
2145 * the supported instruction op codes are still not provided.
2146 * For Sector Erase commands, this table stores the supported instruction op
2147 * codes and the associated sector sizes.
2148 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
2149 * rev A. The QER bits encode the manufacturer dependent procedure to be
2150 * executed to set the Quad Enable (QE) bit in some internal register of the
2151 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
2152 * sending any Quad SPI command to the memory. Actually, setting the QE bit
2153 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
2154 * and IO3 hence enabling 4 (Quad) I/O lines.
2156 * Return: 0 on success, -errno otherwise.
2158 static int spi_nor_parse_bfpt(struct spi_nor *nor,
2159 const struct sfdp_parameter_header *bfpt_header,
2160 struct spi_nor_flash_parameter *params)
2162 struct mtd_info *mtd = &nor->mtd;
2163 struct sfdp_bfpt bfpt;
2169 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
2170 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
2173 /* Read the Basic Flash Parameter Table. */
2174 len = min_t(size_t, sizeof(bfpt),
2175 bfpt_header->length * sizeof(u32));
2176 addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
2177 memset(&bfpt, 0, sizeof(bfpt));
2178 err = spi_nor_read_sfdp(nor, addr, len, &bfpt);
2182 /* Fix endianness of the BFPT DWORDs. */
2183 for (i = 0; i < BFPT_DWORD_MAX; i++)
2184 bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
2186 /* Number of address bytes. */
2187 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
2188 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
2189 nor->addr_width = 3;
2192 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
2193 nor->addr_width = 4;
2200 /* Flash Memory Density (in bits). */
2201 params->size = bfpt.dwords[BFPT_DWORD(2)];
2202 if (params->size & BIT(31)) {
2203 params->size &= ~BIT(31);
2206 * Prevent overflows on params->size. Anyway, a NOR of 2^64
2207 * bits is unlikely to exist so this error probably means
2208 * the BFPT we are reading is corrupted/wrong.
2210 if (params->size > 63)
2213 params->size = 1ULL << params->size;
2217 params->size >>= 3; /* Convert to bytes. */
2219 /* Fast Read settings. */
2220 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
2221 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
2222 struct spi_nor_read_command *read;
2224 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
2225 params->hwcaps.mask &= ~rd->hwcaps;
2229 params->hwcaps.mask |= rd->hwcaps;
2230 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
2231 read = ¶ms->reads[cmd];
2232 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
2233 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
2236 /* Sector Erase settings. */
2237 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
2238 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
2242 half = bfpt.dwords[er->dword] >> er->shift;
2243 erasesize = half & 0xff;
2245 /* erasesize == 0 means this Erase Type is not supported. */
2249 erasesize = 1U << erasesize;
2250 opcode = (half >> 8) & 0xff;
2251 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2252 if (erasesize == SZ_4K) {
2253 nor->erase_opcode = opcode;
2254 mtd->erasesize = erasesize;
2258 if (!mtd->erasesize || mtd->erasesize < erasesize) {
2259 nor->erase_opcode = opcode;
2260 mtd->erasesize = erasesize;
2264 /* Stop here if not JESD216 rev A or later. */
2265 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
2266 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
2269 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
2270 params->page_size = bfpt.dwords[BFPT_DWORD(11)];
2271 params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
2272 params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
2273 params->page_size = 1U << params->page_size;
2275 /* Quad Enable Requirements. */
2276 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
2277 case BFPT_DWORD15_QER_NONE:
2278 params->quad_enable = NULL;
2280 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2281 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
2282 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
2283 params->quad_enable = spansion_no_read_cr_quad_enable;
2286 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
2287 case BFPT_DWORD15_QER_SR1_BIT6:
2288 params->quad_enable = macronix_quad_enable;
2291 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2292 case BFPT_DWORD15_QER_SR2_BIT1:
2293 params->quad_enable = spansion_read_cr_quad_enable;
2297 dev_dbg(nor->dev, "BFPT QER reserved value used\n");
2301 /* Soft Reset support. */
2302 if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SOFT_RST)
2303 nor->flags |= SNOR_F_SOFT_RESET;
2305 /* Stop here if JESD216 rev B. */
2306 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
2307 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
2310 /* 8D-8D-8D command extension. */
2311 switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
2312 case BFPT_DWORD18_CMD_EXT_REP:
2313 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
2316 case BFPT_DWORD18_CMD_EXT_INV:
2317 nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
2320 case BFPT_DWORD18_CMD_EXT_RES:
2323 case BFPT_DWORD18_CMD_EXT_16B:
2324 dev_err(nor->dev, "16-bit opcodes not supported\n");
2328 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
2332 * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
2334 * @nor: pointer to a 'struct spi_nor'.
2335 * @param_header: pointer to the SFDP parameter header.
2337 * Return: 0 on success, -errno otherwise.
2340 spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
2341 const struct sfdp_parameter_header *param_header)
2347 size = param_header->length * sizeof(u32);
2348 addr = SFDP_PARAM_HEADER_PTP(param_header);
2350 nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
2351 if (!nor->manufacturer_sfdp)
2354 ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
2360 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
2361 * @nor: pointer to a 'struct spi_nor'
2362 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
2363 * the 4-Byte Address Instruction Table length and version.
2364 * @params: pointer to the 'struct spi_nor_flash_parameter' to be.
2366 * Return: 0 on success, -errno otherwise.
2368 static int spi_nor_parse_profile1(struct spi_nor *nor,
2369 const struct sfdp_parameter_header *profile1_header,
2370 struct spi_nor_flash_parameter *params)
2372 u32 *table, opcode, addr;
2377 len = profile1_header->length * sizeof(*table);
2378 table = kmalloc(len, GFP_KERNEL);
2382 addr = SFDP_PARAM_HEADER_PTP(profile1_header);
2383 ret = spi_nor_read_sfdp(nor, addr, len, table);
2387 /* Fix endianness of the table DWORDs. */
2388 for (i = 0; i < profile1_header->length; i++)
2389 table[i] = le32_to_cpu(table[i]);
2391 /* Get 8D-8D-8D fast read opcode and dummy cycles. */
2392 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, table[0]);
2395 * We don't know what speed the controller is running at. Find the
2396 * dummy cycles for the fastest frequency the flash can run at to be
2397 * sure we are never short of dummy cycles. A value of 0 means the
2398 * frequency is not supported.
2400 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
2401 * flashes set the correct value if needed in their fixup hooks.
2403 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, table[3]);
2405 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, table[4]);
2407 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, table[4]);
2409 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, table[4]);
2411 dummy = PROFILE1_DUMMY_DEFAULT;
2413 /* Round up to an even value to avoid tripping controllers up. */
2414 dummy = ROUND_UP_TO(dummy, 2);
2416 /* Update the fast read settings. */
2417 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2419 SNOR_PROTO_8_8_8_DTR);
2422 * Set the Read Status Register dummy cycles and dummy address bytes.
2424 if (table[0] & PROFILE1_DWORD1_RDSR_DUMMY)
2425 params->rdsr_dummy = 8;
2427 params->rdsr_dummy = 4;
2429 if (table[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
2430 params->rdsr_addr_nbytes = 4;
2432 params->rdsr_addr_nbytes = 0;
2440 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2441 * @nor: pointer to a 'struct spi_nor'
2442 * @params: pointer to the 'struct spi_nor_flash_parameter' to be
2445 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2446 * specification. This is a standard which tends to supported by almost all
2447 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2448 * runtime the main parameters needed to perform basic SPI flash operations such
2449 * as Fast Read, Page Program or Sector Erase commands.
2451 * Return: 0 on success, -errno otherwise.
2453 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2454 struct spi_nor_flash_parameter *params)
2456 const struct sfdp_parameter_header *param_header, *bfpt_header;
2457 struct sfdp_parameter_header *param_headers = NULL;
2458 struct sfdp_header header;
2462 /* Get the SFDP header. */
2463 err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
2467 /* Check the SFDP header version. */
2468 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2469 header.major != SFDP_JESD216_MAJOR)
2473 * Verify that the first and only mandatory parameter header is a
2474 * Basic Flash Parameter Table header as specified in JESD216.
2476 bfpt_header = &header.bfpt_header;
2477 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
2478 bfpt_header->major != SFDP_JESD216_MAJOR)
2482 * Allocate memory then read all parameter headers with a single
2483 * Read SFDP command. These parameter headers will actually be parsed
2484 * twice: a first time to get the latest revision of the basic flash
2485 * parameter table, then a second time to handle the supported optional
2487 * Hence we read the parameter headers once for all to reduce the
2488 * processing time. Also we use kmalloc() instead of devm_kmalloc()
2489 * because we don't need to keep these parameter headers: the allocated
2490 * memory is always released with kfree() before exiting this function.
2493 psize = header.nph * sizeof(*param_headers);
2495 param_headers = kmalloc(psize, GFP_KERNEL);
2499 err = spi_nor_read_sfdp(nor, sizeof(header),
2500 psize, param_headers);
2503 "failed to read SFDP parameter headers\n");
2509 * Check other parameter headers to get the latest revision of
2510 * the basic flash parameter table.
2512 for (i = 0; i < header.nph; i++) {
2513 param_header = ¶m_headers[i];
2515 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
2516 param_header->major == SFDP_JESD216_MAJOR &&
2517 (param_header->minor > bfpt_header->minor ||
2518 (param_header->minor == bfpt_header->minor &&
2519 param_header->length > bfpt_header->length)))
2520 bfpt_header = param_header;
2523 err = spi_nor_parse_bfpt(nor, bfpt_header, params);
2527 /* Parse other parameter headers. */
2528 for (i = 0; i < header.nph; i++) {
2529 param_header = ¶m_headers[i];
2531 switch (SFDP_PARAM_HEADER_ID(param_header)) {
2532 case SFDP_SECTOR_MAP_ID:
2534 "non-uniform erase sector maps are not supported yet.\n");
2538 err = spi_nor_parse_microchip_sfdp(nor, param_header);
2541 case SFDP_PROFILE1_ID:
2542 err = spi_nor_parse_profile1(nor, param_header, params);
2551 "Failed to parse optional parameter table: %04x\n",
2552 SFDP_PARAM_HEADER_ID(param_header));
2554 * Let's not drop all information we extracted so far
2555 * if optional table parsers fail. In case of failing,
2556 * each optional parser is responsible to roll back to
2557 * the previously known spi_nor data.
2564 kfree(param_headers);
2568 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2569 struct spi_nor_flash_parameter *params)
2573 #endif /* SPI_FLASH_SFDP_SUPPORT */
2576 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2577 * after SFDP has been parsed (is also called for SPI NORs that do not
2579 * @nor: pointer to a 'struct spi_nor'
2581 * Typically used to tweak various parameters that could not be extracted by
2582 * other means (i.e. when information provided by the SFDP/flash_info tables
2583 * are incomplete or wrong).
2585 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor,
2586 struct spi_nor_flash_parameter *params)
2588 if (nor->fixups && nor->fixups->post_sfdp)
2589 nor->fixups->post_sfdp(nor, params);
2592 static void spi_nor_default_init_fixups(struct spi_nor *nor)
2594 if (nor->fixups && nor->fixups->default_init)
2595 nor->fixups->default_init(nor);
2598 static int spi_nor_init_params(struct spi_nor *nor,
2599 const struct flash_info *info,
2600 struct spi_nor_flash_parameter *params)
2602 /* Set legacy flash parameters as default. */
2603 memset(params, 0, sizeof(*params));
2605 /* Set SPI NOR sizes. */
2606 params->size = info->sector_size * info->n_sectors;
2607 params->page_size = info->page_size;
2609 if (!(info->flags & SPI_NOR_NO_FR)) {
2610 /* Default to Fast Read for DT and non-DT platform devices. */
2611 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2613 /* Mask out Fast Read if not requested at DT instantiation. */
2614 #if CONFIG_IS_ENABLED(DM_SPI)
2615 if (!ofnode_read_bool(dev_ofnode(nor->spi->dev),
2617 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2621 /* (Fast) Read settings. */
2622 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2623 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2624 0, 0, SPINOR_OP_READ,
2627 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2628 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2629 0, 8, SPINOR_OP_READ_FAST,
2632 if (info->flags & SPI_NOR_DUAL_READ) {
2633 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2634 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2635 0, 8, SPINOR_OP_READ_1_1_2,
2639 if (info->flags & SPI_NOR_QUAD_READ) {
2640 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2641 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2642 0, 8, SPINOR_OP_READ_1_1_4,
2646 if (info->flags & SPI_NOR_OCTAL_READ) {
2647 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2648 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2649 0, 8, SPINOR_OP_READ_1_1_8,
2653 if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
2654 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2655 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2656 0, 20, SPINOR_OP_READ_FAST,
2657 SNOR_PROTO_8_8_8_DTR);
2660 /* Page Program settings. */
2661 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2662 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2663 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2666 * Since xSPI Page Program opcode is backward compatible with
2667 * Legacy SPI, use Legacy SPI opcode there as well.
2669 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2670 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2672 if (info->flags & SPI_NOR_QUAD_READ) {
2673 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2674 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
2675 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2678 /* Select the procedure to set the Quad Enable bit. */
2679 if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
2680 SNOR_HWCAPS_PP_QUAD)) {
2681 switch (JEDEC_MFR(info)) {
2682 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
2683 case SNOR_MFR_MACRONIX:
2685 params->quad_enable = macronix_quad_enable;
2689 case SNOR_MFR_MICRON:
2693 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2694 /* Kept only for backward compatibility purpose. */
2695 params->quad_enable = spansion_read_cr_quad_enable;
2701 spi_nor_default_init_fixups(nor);
2703 /* Override the parameters with data read from SFDP tables. */
2704 nor->addr_width = 0;
2705 nor->mtd.erasesize = 0;
2706 if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2707 SPI_NOR_OCTAL_DTR_READ)) &&
2708 !(info->flags & SPI_NOR_SKIP_SFDP)) {
2709 struct spi_nor_flash_parameter sfdp_params;
2711 memcpy(&sfdp_params, params, sizeof(sfdp_params));
2712 if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2713 nor->addr_width = 0;
2714 nor->mtd.erasesize = 0;
2716 memcpy(params, &sfdp_params, sizeof(*params));
2720 spi_nor_post_sfdp_fixups(nor, params);
2725 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2729 for (i = 0; i < size; i++)
2730 if (table[i][0] == (int)hwcaps)
2736 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2738 static const int hwcaps_read2cmd[][2] = {
2739 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2740 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2741 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2742 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2743 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2744 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2745 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2746 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2747 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2748 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2749 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2750 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2751 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2752 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2753 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2754 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2757 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2758 ARRAY_SIZE(hwcaps_read2cmd));
2761 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2763 static const int hwcaps_pp2cmd[][2] = {
2764 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2765 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2766 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2767 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2768 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2769 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2770 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2771 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2774 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2775 ARRAY_SIZE(hwcaps_pp2cmd));
2778 #ifdef CONFIG_SPI_FLASH_SMART_HWCAPS
2780 * spi_nor_check_op - check if the operation is supported by controller
2781 * @nor: pointer to a 'struct spi_nor'
2782 * @op: pointer to op template to be checked
2784 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2786 static int spi_nor_check_op(struct spi_nor *nor,
2787 struct spi_mem_op *op)
2790 * First test with 4 address bytes. The opcode itself might be a 3B
2791 * addressing opcode but we don't care, because SPI controller
2792 * implementation should not check the opcode, but just the sequence.
2794 op->addr.nbytes = 4;
2795 if (!spi_mem_supports_op(nor->spi, op)) {
2796 if (nor->mtd.size > SZ_16M)
2799 /* If flash size <= 16MB, 3 address bytes are sufficient */
2800 op->addr.nbytes = 3;
2801 if (!spi_mem_supports_op(nor->spi, op))
2809 * spi_nor_check_readop - check if the read op is supported by controller
2810 * @nor: pointer to a 'struct spi_nor'
2811 * @read: pointer to op template to be checked
2813 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2815 static int spi_nor_check_readop(struct spi_nor *nor,
2816 const struct spi_nor_read_command *read)
2818 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
2819 SPI_MEM_OP_ADDR(3, 0, 0),
2820 SPI_MEM_OP_DUMMY(1, 0),
2821 SPI_MEM_OP_DATA_IN(2, NULL, 0));
2823 spi_nor_setup_op(nor, &op, read->proto);
2825 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2826 op.dummy.buswidth / 8;
2827 if (spi_nor_protocol_is_dtr(nor->read_proto))
2828 op.dummy.nbytes *= 2;
2830 return spi_nor_check_op(nor, &op);
2834 * spi_nor_check_pp - check if the page program op is supported by controller
2835 * @nor: pointer to a 'struct spi_nor'
2836 * @pp: pointer to op template to be checked
2838 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2840 static int spi_nor_check_pp(struct spi_nor *nor,
2841 const struct spi_nor_pp_command *pp)
2843 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
2844 SPI_MEM_OP_ADDR(3, 0, 0),
2845 SPI_MEM_OP_NO_DUMMY,
2846 SPI_MEM_OP_DATA_OUT(2, NULL, 0));
2848 spi_nor_setup_op(nor, &op, pp->proto);
2850 return spi_nor_check_op(nor, &op);
2854 * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
2855 * controller capabilities
2856 * @nor: pointer to a 'struct spi_nor'
2857 * @params: pointer to the 'struct spi_nor_flash_parameter'
2858 * representing SPI NOR flash capabilities
2859 * @hwcaps: pointer to resulting capabilities after adjusting
2860 * according to controller and flash's capability
2862 * Discard caps based on what the SPI controller actually supports (using
2863 * spi_mem_supports_op()).
2866 spi_nor_adjust_hwcaps(struct spi_nor *nor,
2867 const struct spi_nor_flash_parameter *params,
2873 * Start by assuming the controller supports every capability.
2874 * We will mask them after checking what's really supported
2875 * using spi_mem_supports_op().
2877 *hwcaps = SNOR_HWCAPS_ALL & params->hwcaps.mask;
2879 /* X-X-X modes are not supported yet, mask them all. */
2880 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2883 * If the reset line is broken, we do not want to enter a stateful
2886 if (nor->flags & SNOR_F_BROKEN_RESET)
2887 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2889 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2892 if (!(*hwcaps & BIT(cap)))
2895 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2897 spi_nor_check_readop(nor, ¶ms->reads[rdidx]))
2898 *hwcaps &= ~BIT(cap);
2900 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2904 if (spi_nor_check_pp(nor, ¶ms->page_programs[ppidx]))
2905 *hwcaps &= ~BIT(cap);
2910 * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
2911 * controller capabilities
2912 * @nor: pointer to a 'struct spi_nor'
2913 * @params: pointer to the 'struct spi_nor_flash_parameter'
2914 * representing SPI NOR flash capabilities
2915 * @hwcaps: pointer to resulting capabilities after adjusting
2916 * according to controller and flash's capability
2918 * Select caps based on what the SPI controller and SPI flash both support.
2921 spi_nor_adjust_hwcaps(struct spi_nor *nor,
2922 const struct spi_nor_flash_parameter *params,
2925 struct spi_slave *spi = nor->spi;
2926 u32 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2927 SNOR_HWCAPS_READ_4_4_4 |
2928 SNOR_HWCAPS_READ_8_8_8 |
2929 SNOR_HWCAPS_PP_4_4_4 |
2930 SNOR_HWCAPS_PP_8_8_8);
2931 u32 spi_hwcaps = (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |
2934 /* Get the hardware capabilities the SPI controller supports. */
2935 if (spi->mode & SPI_RX_OCTAL) {
2936 spi_hwcaps |= SNOR_HWCAPS_READ_1_1_8;
2938 if (spi->mode & SPI_TX_OCTAL)
2939 spi_hwcaps |= (SNOR_HWCAPS_READ_1_8_8 |
2940 SNOR_HWCAPS_PP_1_1_8 |
2941 SNOR_HWCAPS_PP_1_8_8);
2942 } else if (spi->mode & SPI_RX_QUAD) {
2943 spi_hwcaps |= SNOR_HWCAPS_READ_1_1_4;
2945 if (spi->mode & SPI_TX_QUAD)
2946 spi_hwcaps |= (SNOR_HWCAPS_READ_1_4_4 |
2947 SNOR_HWCAPS_PP_1_1_4 |
2948 SNOR_HWCAPS_PP_1_4_4);
2949 } else if (spi->mode & SPI_RX_DUAL) {
2950 spi_hwcaps |= SNOR_HWCAPS_READ_1_1_2;
2952 if (spi->mode & SPI_TX_DUAL)
2953 spi_hwcaps |= SNOR_HWCAPS_READ_1_2_2;
2957 * Keep only the hardware capabilities supported by both the SPI
2958 * controller and the SPI flash memory.
2960 *hwcaps = spi_hwcaps & params->hwcaps.mask;
2961 if (*hwcaps & ignored_mask) {
2963 "SPI n-n-n protocols are not supported yet.\n");
2964 *hwcaps &= ~ignored_mask;
2967 #endif /* CONFIG_SPI_FLASH_SMART_HWCAPS */
2969 static int spi_nor_select_read(struct spi_nor *nor,
2970 const struct spi_nor_flash_parameter *params,
2973 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2974 const struct spi_nor_read_command *read;
2979 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2983 read = ¶ms->reads[cmd];
2984 nor->read_opcode = read->opcode;
2985 nor->read_proto = read->proto;
2988 * In the spi-nor framework, we don't need to make the difference
2989 * between mode clock cycles and wait state clock cycles.
2990 * Indeed, the value of the mode clock cycles is used by a QSPI
2991 * flash memory to know whether it should enter or leave its 0-4-4
2992 * (Continuous Read / XIP) mode.
2993 * eXecution In Place is out of the scope of the mtd sub-system.
2994 * Hence we choose to merge both mode and wait state clock cycles
2995 * into the so called dummy clock cycles.
2997 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
3001 static int spi_nor_select_pp(struct spi_nor *nor,
3002 const struct spi_nor_flash_parameter *params,
3005 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
3006 const struct spi_nor_pp_command *pp;
3011 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
3015 pp = ¶ms->page_programs[cmd];
3016 nor->program_opcode = pp->opcode;
3017 nor->write_proto = pp->proto;
3021 static int spi_nor_select_erase(struct spi_nor *nor,
3022 const struct flash_info *info)
3024 struct mtd_info *mtd = &nor->mtd;
3026 /* Do nothing if already configured from SFDP. */
3030 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
3031 /* prefer "small sector" erase if possible */
3032 if (info->flags & SECT_4K) {
3033 nor->erase_opcode = SPINOR_OP_BE_4K;
3034 mtd->erasesize = 4096;
3035 } else if (info->flags & SECT_4K_PMC) {
3036 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
3037 mtd->erasesize = 4096;
3041 nor->erase_opcode = SPINOR_OP_SE;
3042 mtd->erasesize = info->sector_size;
3047 static int spi_nor_default_setup(struct spi_nor *nor,
3048 const struct flash_info *info,
3049 const struct spi_nor_flash_parameter *params)
3052 bool enable_quad_io;
3055 spi_nor_adjust_hwcaps(nor, params, &shared_mask);
3057 /* Select the (Fast) Read command. */
3058 err = spi_nor_select_read(nor, params, shared_mask);
3061 "can't select read settings supported by both the SPI controller and memory.\n");
3065 /* Select the Page Program command. */
3066 err = spi_nor_select_pp(nor, params, shared_mask);
3069 "can't select write settings supported by both the SPI controller and memory.\n");
3073 /* Select the Sector Erase command. */
3074 err = spi_nor_select_erase(nor, info);
3077 "can't select erase settings supported by both the SPI controller and memory.\n");
3081 /* Enable Quad I/O if needed. */
3082 enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3083 spi_nor_get_protocol_width(nor->write_proto) == 4);
3084 if (enable_quad_io && params->quad_enable)
3085 nor->quad_enable = params->quad_enable;
3087 nor->quad_enable = NULL;
3092 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
3093 const struct spi_nor_flash_parameter *params)
3098 return nor->setup(nor, info, params);
3101 #ifdef CONFIG_SPI_FLASH_SPANSION
3102 static int s25hx_t_mdp_ready(struct spi_nor *nor)
3107 for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
3108 ret = spansion_sr_ready(nor, addr, 0);
3116 static int s25hx_t_quad_enable(struct spi_nor *nor)
3121 for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
3122 ret = spansion_quad_enable_volatile(nor, addr, 0);
3130 static int s25hx_t_erase_non_uniform(struct spi_nor *nor, loff_t addr)
3132 /* Support 32 x 4KB sectors at bottom */
3133 return spansion_erase_non_uniform(nor, addr, SPINOR_OP_BE_4K_4B, 0,
3137 static int s25hx_t_setup(struct spi_nor *nor, const struct flash_info *info,
3138 const struct spi_nor_flash_parameter *params)
3143 #ifdef CONFIG_SPI_FLASH_BAR
3144 return -ENOTSUPP; /* Bank Address Register is not supported */
3147 * Read CFR3V to check if uniform sector is selected. If not, assign an
3148 * erase hook that supports non-uniform erase.
3150 ret = spansion_read_any_reg(nor, SPINOR_REG_ADDR_CFR3V, 0, &cfr3v);
3153 if (!(cfr3v & CFR3V_UNHYSA))
3154 nor->erase = s25hx_t_erase_non_uniform;
3157 * For the multi-die package parts, the ready() hook is needed to check
3158 * all dies' status via read any register.
3160 if (nor->mtd.size > SZ_128M)
3161 nor->ready = s25hx_t_mdp_ready;
3163 return spi_nor_default_setup(nor, info, params);
3166 static void s25hx_t_default_init(struct spi_nor *nor)
3168 nor->setup = s25hx_t_setup;
3171 static int s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
3172 const struct sfdp_parameter_header *header,
3173 const struct sfdp_bfpt *bfpt,
3174 struct spi_nor_flash_parameter *params)
3180 /* erase size in case it is set to 4K from BFPT */
3181 nor->erase_opcode = SPINOR_OP_SE_4B;
3182 nor->mtd.erasesize = nor->info->sector_size;
3184 ret = set_4byte(nor, nor->info, 1);
3187 nor->addr_width = 4;
3190 * The page_size is set to 512B from BFPT, but it actually depends on
3191 * the configuration register. Look up the CFR3V and determine the
3192 * page_size. For multi-die package parts, use 512B only when the all
3193 * dies are configured to 512B buffer.
3195 for (addr = 0; addr < params->size; addr += SZ_128M) {
3196 ret = spansion_read_any_reg(nor, addr + SPINOR_REG_ADDR_CFR3V,
3201 if (!(cfr3v & CFR3V_PGMBUF)) {
3202 params->page_size = 256;
3206 params->page_size = 512;
3211 static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor,
3212 struct spi_nor_flash_parameter *params)
3214 /* READ_FAST_4B (0Ch) requires mode cycles*/
3215 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
3216 /* PP_1_1_4 is not supported */
3217 params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4;
3218 /* Use volatile register to enable quad */
3219 params->quad_enable = s25hx_t_quad_enable;
3222 static struct spi_nor_fixups s25hx_t_fixups = {
3223 .default_init = s25hx_t_default_init,
3224 .post_bfpt = s25hx_t_post_bfpt_fixup,
3225 .post_sfdp = s25hx_t_post_sfdp_fixup,
3229 #ifdef CONFIG_SPI_FLASH_S28HS512T
3231 * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
3232 * @nor: pointer to a 'struct spi_nor'
3234 * This also sets the memory access latency cycles to 24 to allow the flash to
3235 * run at up to 200MHz.
3237 * Return: 0 on success, -errno otherwise.
3239 static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor)
3241 struct spi_mem_op op;
3246 /* Use 24 dummy cycles for memory array reads. */
3247 ret = write_enable(nor);
3251 buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
3252 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
3253 SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR2V, 1),
3254 SPI_MEM_OP_NO_DUMMY,
3255 SPI_MEM_OP_DATA_OUT(1, &buf, 1));
3256 ret = spi_mem_exec_op(nor->spi, &op);
3259 "failed to set default memory latency value: %d\n",
3263 ret = spi_nor_wait_till_ready(nor);
3267 nor->read_dummy = 24;
3269 /* Set the octal and DTR enable bits. */
3270 ret = write_enable(nor);
3274 buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
3275 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
3276 SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR5V, 1),
3277 SPI_MEM_OP_NO_DUMMY,
3278 SPI_MEM_OP_DATA_OUT(1, &buf, 1));
3279 ret = spi_mem_exec_op(nor->spi, &op);
3281 dev_warn(nor->dev, "Failed to enable octal DTR mode\n");
3288 static int s28hs512t_erase_non_uniform(struct spi_nor *nor, loff_t addr)
3290 /* Factory default configuration: 32 x 4 KiB sectors at bottom. */
3291 return spansion_erase_non_uniform(nor, addr, SPINOR_OP_S28_SE_4K,
3295 static int s28hs512t_setup(struct spi_nor *nor, const struct flash_info *info,
3296 const struct spi_nor_flash_parameter *params)
3298 struct spi_mem_op op;
3303 ret = spi_nor_wait_till_ready(nor);
3308 * Check CFR3V to check if non-uniform sector mode is selected. If it
3309 * is, set the erase hook to the non-uniform erase procedure.
3311 op = (struct spi_mem_op)
3312 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
3313 SPI_MEM_OP_ADDR(addr_width,
3314 SPINOR_REG_CYPRESS_CFR3V, 1),
3315 SPI_MEM_OP_NO_DUMMY,
3316 SPI_MEM_OP_DATA_IN(1, &buf, 1));
3318 ret = spi_mem_exec_op(nor->spi, &op);
3322 if (!(buf & SPINOR_REG_CYPRESS_CFR3V_UNISECT))
3323 nor->erase = s28hs512t_erase_non_uniform;
3325 return spi_nor_default_setup(nor, info, params);
3328 static void s28hs512t_default_init(struct spi_nor *nor)
3330 nor->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
3331 nor->setup = s28hs512t_setup;
3334 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor,
3335 struct spi_nor_flash_parameter *params)
3338 * On older versions of the flash the xSPI Profile 1.0 table has the
3339 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
3341 if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
3342 params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
3343 SPINOR_OP_CYPRESS_RD_FAST;
3345 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
3347 /* This flash is also missing the 4-byte Page Program opcode bit. */
3348 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
3349 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
3351 * Since xSPI Page Program opcode is backward compatible with
3352 * Legacy SPI, use Legacy SPI opcode there as well.
3354 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
3355 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
3358 * The xSPI Profile 1.0 table advertises the number of additional
3359 * address bytes needed for Read Status Register command as 0 but the
3360 * actual value for that is 4.
3362 params->rdsr_addr_nbytes = 4;
3365 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
3366 const struct sfdp_parameter_header *bfpt_header,
3367 const struct sfdp_bfpt *bfpt,
3368 struct spi_nor_flash_parameter *params)
3370 struct spi_mem_op op;
3376 * The BFPT table advertises a 512B page size but the page size is
3377 * actually configurable (with the default being 256B). Read from
3378 * CFR3V[4] and set the correct size.
3380 op = (struct spi_mem_op)
3381 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
3382 SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR3V, 1),
3383 SPI_MEM_OP_NO_DUMMY,
3384 SPI_MEM_OP_DATA_IN(1, &buf, 1));
3385 ret = spi_mem_exec_op(nor->spi, &op);
3389 if (buf & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
3390 params->page_size = 512;
3392 params->page_size = 256;
3395 * The BFPT advertises that it supports 4k erases, and the datasheet
3396 * says the same. But 4k erases did not work when testing. So, use 256k
3399 nor->erase_opcode = SPINOR_OP_SE_4B;
3400 nor->mtd.erasesize = 0x40000;
3405 static struct spi_nor_fixups s28hs512t_fixups = {
3406 .default_init = s28hs512t_default_init,
3407 .post_sfdp = s28hs512t_post_sfdp_fixup,
3408 .post_bfpt = s28hs512t_post_bfpt_fixup,
3410 #endif /* CONFIG_SPI_FLASH_S28HS512T */
3412 #ifdef CONFIG_SPI_FLASH_MT35XU
3413 static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor)
3415 struct spi_mem_op op;
3420 /* Set dummy cycles for Fast Read to the default of 20. */
3421 ret = write_enable(nor);
3426 op = (struct spi_mem_op)
3427 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
3428 SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR1V, 1),
3429 SPI_MEM_OP_NO_DUMMY,
3430 SPI_MEM_OP_DATA_OUT(1, &buf, 1));
3431 ret = spi_mem_exec_op(nor->spi, &op);
3435 ret = spi_nor_wait_till_ready(nor);
3439 nor->read_dummy = 20;
3441 ret = write_enable(nor);
3445 buf = SPINOR_MT_OCT_DTR;
3446 op = (struct spi_mem_op)
3447 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
3448 SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR0V, 1),
3449 SPI_MEM_OP_NO_DUMMY,
3450 SPI_MEM_OP_DATA_OUT(1, &buf, 1));
3451 ret = spi_mem_exec_op(nor->spi, &op);
3453 dev_err(nor->dev, "Failed to enable octal DTR mode\n");
3460 static void mt35xu512aba_default_init(struct spi_nor *nor)
3462 nor->octal_dtr_enable = spi_nor_micron_octal_dtr_enable;
3465 static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor,
3466 struct spi_nor_flash_parameter *params)
3468 /* Set the Fast Read settings. */
3469 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
3470 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
3471 0, 20, SPINOR_OP_MT_DTR_RD,
3472 SNOR_PROTO_8_8_8_DTR);
3474 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
3476 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
3477 params->rdsr_dummy = 8;
3478 params->rdsr_addr_nbytes = 0;
3481 * The BFPT quad enable field is set to a reserved value so the quad
3482 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
3485 params->quad_enable = NULL;
3488 static struct spi_nor_fixups mt35xu512aba_fixups = {
3489 .default_init = mt35xu512aba_default_init,
3490 .post_sfdp = mt35xu512aba_post_sfdp_fixup,
3492 #endif /* CONFIG_SPI_FLASH_MT35XU */
3494 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
3495 * @nor: pointer to a 'struct spi_nor'
3497 * Return: 0 on success, -errno otherwise.
3499 static int spi_nor_octal_dtr_enable(struct spi_nor *nor)
3503 if (!nor->octal_dtr_enable)
3506 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3507 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3510 ret = nor->octal_dtr_enable(nor);
3514 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3519 static int spi_nor_init(struct spi_nor *nor)
3523 err = spi_nor_octal_dtr_enable(nor);
3525 dev_dbg(nor->dev, "Octal DTR mode not supported\n");
3530 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
3531 * with the software protection bits set
3533 if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) &&
3534 (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
3535 JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
3536 JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
3537 nor->info->flags & SPI_NOR_HAS_LOCK)) {
3540 spi_nor_wait_till_ready(nor);
3543 if (nor->quad_enable) {
3544 err = nor->quad_enable(nor);
3546 dev_dbg(nor->dev, "quad mode not supported\n");
3551 if (nor->addr_width == 4 &&
3552 !(nor->info->flags & SPI_NOR_OCTAL_DTR_READ) &&
3553 (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
3554 !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
3556 * If the RESET# pin isn't hooked up properly, or the system
3557 * otherwise doesn't perform a reset command in the boot
3558 * sequence, it's impossible to 100% protect against unexpected
3559 * reboots (e.g., crashes). Warn the user (or hopefully, system
3560 * designer) that this is bad.
3562 if (nor->flags & SNOR_F_BROKEN_RESET)
3563 debug("enabling reset hack; may not recover from unexpected reboots\n");
3564 set_4byte(nor, nor->info, 1);
3570 #ifdef CONFIG_SPI_FLASH_SOFT_RESET
3572 * spi_nor_soft_reset() - perform the JEDEC Software Reset sequence
3573 * @nor: the spi_nor structure
3575 * This function can be used to switch from Octal DTR mode to legacy mode on a
3576 * flash that supports it. The soft reset is executed in Octal DTR mode.
3578 * Return: 0 for success, -errno for failure.
3580 static int spi_nor_soft_reset(struct spi_nor *nor)
3582 struct spi_mem_op op;
3584 enum spi_nor_cmd_ext ext;
3586 ext = nor->cmd_ext_type;
3587 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
3589 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
3590 SPI_MEM_OP_NO_DUMMY,
3592 SPI_MEM_OP_NO_DATA);
3593 spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
3594 ret = spi_mem_exec_op(nor->spi, &op);
3596 dev_warn(nor->dev, "Software reset enable failed: %d\n", ret);
3600 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
3601 SPI_MEM_OP_NO_DUMMY,
3603 SPI_MEM_OP_NO_DATA);
3604 spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
3605 ret = spi_mem_exec_op(nor->spi, &op);
3607 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3612 * Software Reset is not instant, and the delay varies from flash to
3613 * flash. Looking at a few flashes, most range somewhere below 100
3614 * microseconds. So, wait for 200ms just to be sure.
3616 udelay(SPI_NOR_SRST_SLEEP_LEN);
3619 nor->cmd_ext_type = ext;
3622 #endif /* CONFIG_SPI_FLASH_SOFT_RESET */
3624 int spi_nor_remove(struct spi_nor *nor)
3626 #ifdef CONFIG_SPI_FLASH_SOFT_RESET
3627 if (nor->info->flags & SPI_NOR_OCTAL_DTR_READ &&
3628 nor->flags & SNOR_F_SOFT_RESET)
3629 return spi_nor_soft_reset(nor);
3635 void spi_nor_set_fixups(struct spi_nor *nor)
3637 #ifdef CONFIG_SPI_FLASH_SPANSION
3638 if (JEDEC_MFR(nor->info) == SNOR_MFR_CYPRESS) {
3639 switch (nor->info->id[1]) {
3640 case 0x2a: /* S25HL (QSPI, 3.3V) */
3641 case 0x2b: /* S25HS (QSPI, 1.8V) */
3642 nor->fixups = &s25hx_t_fixups;
3651 #ifdef CONFIG_SPI_FLASH_S28HS512T
3652 if (!strcmp(nor->info->name, "s28hs512t"))
3653 nor->fixups = &s28hs512t_fixups;
3656 #ifdef CONFIG_SPI_FLASH_MT35XU
3657 if (!strcmp(nor->info->name, "mt35xu512aba"))
3658 nor->fixups = &mt35xu512aba_fixups;
3662 int spi_nor_scan(struct spi_nor *nor)
3664 struct spi_nor_flash_parameter params;
3665 const struct flash_info *info = NULL;
3666 struct mtd_info *mtd = &nor->mtd;
3667 struct spi_slave *spi = nor->spi;
3671 #ifdef CONFIG_SYS_MAX_FLASH_BANKS
3672 cfi_mtd_nb = CONFIG_SYS_MAX_FLASH_BANKS;
3675 /* Reset SPI protocol for all commands. */
3676 nor->reg_proto = SNOR_PROTO_1_1_1;
3677 nor->read_proto = SNOR_PROTO_1_1_1;
3678 nor->write_proto = SNOR_PROTO_1_1_1;
3679 nor->read = spi_nor_read_data;
3680 nor->write = spi_nor_write_data;
3681 nor->read_reg = spi_nor_read_reg;
3682 nor->write_reg = spi_nor_write_reg;
3684 nor->setup = spi_nor_default_setup;
3686 #ifdef CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT
3688 * When the flash is handed to us in a stateful mode like 8D-8D-8D, it
3689 * is difficult to detect the mode the flash is in. One option is to
3690 * read SFDP in all modes and see which one gives the correct "SFDP"
3691 * signature, but not all flashes support SFDP in 8D-8D-8D mode.
3693 * Further, even if you detect the mode of the flash via SFDP, you
3694 * still have the problem of actually reading the ID. The Read ID
3695 * command is not standardized across flash vendors. Flashes can have
3696 * different dummy cycles needed for reading the ID. Some flashes even
3697 * expect a 4-byte dummy address with the Read ID command. All this
3698 * information cannot be obtained from the SFDP table.
3700 * So, perform a Software Reset sequence before reading the ID and
3701 * initializing the flash. A Soft Reset will bring back the flash in
3702 * its default protocol mode assuming no non-volatile configuration was
3703 * set. This will let us detect the flash even if ROM hands it to us in
3706 * To accommodate cases where there is more than one flash on a board,
3707 * and only one of them needs a soft reset, failure to reset is not
3708 * made fatal, and we still try to read ID if possible.
3710 spi_nor_soft_reset(nor);
3711 #endif /* CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT */
3713 info = spi_nor_read_id(nor);
3714 if (IS_ERR_OR_NULL(info))
3718 spi_nor_set_fixups(nor);
3720 /* Parse the Serial Flash Discoverable Parameters table. */
3721 ret = spi_nor_init_params(nor, info, ¶ms);
3726 sprintf(nor->mtd_name, "%s%d",
3727 MTD_DEV_TYPE(MTD_DEV_TYPE_NOR),
3728 cfi_mtd_nb + dev_seq(nor->dev));
3729 mtd->name = nor->mtd_name;
3731 mtd->dev = nor->dev;
3733 mtd->type = MTD_NORFLASH;
3735 mtd->flags = MTD_CAP_NORFLASH;
3736 mtd->size = params.size;
3737 mtd->_erase = spi_nor_erase;
3738 mtd->_read = spi_nor_read;
3739 mtd->_write = spi_nor_write;
3741 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
3742 /* NOR protection support for STmicro/Micron chips and similar */
3743 if (JEDEC_MFR(info) == SNOR_MFR_ST ||
3744 JEDEC_MFR(info) == SNOR_MFR_MICRON ||
3745 JEDEC_MFR(info) == SNOR_MFR_SST ||
3746 info->flags & SPI_NOR_HAS_LOCK) {
3747 nor->flash_lock = stm_lock;
3748 nor->flash_unlock = stm_unlock;
3749 nor->flash_is_locked = stm_is_locked;
3753 #ifdef CONFIG_SPI_FLASH_SST
3755 * sst26 series block protection implementation differs from other
3758 if (info->flags & SPI_NOR_HAS_SST26LOCK) {
3759 nor->flash_lock = sst26_lock;
3760 nor->flash_unlock = sst26_unlock;
3761 nor->flash_is_locked = sst26_is_locked;
3765 if (info->flags & USE_FSR)
3766 nor->flags |= SNOR_F_USE_FSR;
3767 if (info->flags & SPI_NOR_HAS_TB)
3768 nor->flags |= SNOR_F_HAS_SR_TB;
3769 if (info->flags & NO_CHIP_ERASE)
3770 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3771 if (info->flags & USE_CLSR)
3772 nor->flags |= SNOR_F_USE_CLSR;
3774 if (info->flags & SPI_NOR_NO_ERASE)
3775 mtd->flags |= MTD_NO_ERASE;
3777 nor->page_size = params.page_size;
3778 mtd->writebufsize = nor->page_size;
3780 /* Some devices cannot do fast-read, no matter what DT tells us */
3781 if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
3782 params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3785 * Configure the SPI memory:
3786 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3787 * - set the number of dummy cycles (mode cycles + wait states).
3788 * - set the SPI protocols for register and memory accesses.
3789 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
3791 ret = spi_nor_setup(nor, info, ¶ms);
3795 if (spi_nor_protocol_is_dtr(nor->read_proto)) {
3796 /* Always use 4-byte addresses in DTR mode. */
3797 nor->addr_width = 4;
3798 } else if (nor->addr_width) {
3799 /* already configured from SFDP */
3800 } else if (info->addr_width) {
3801 nor->addr_width = info->addr_width;
3803 nor->addr_width = 3;
3806 if (nor->addr_width == 3 && mtd->size > SZ_16M) {
3807 #ifndef CONFIG_SPI_FLASH_BAR
3808 /* enable 4-byte addressing if the device exceeds 16MiB */
3809 nor->addr_width = 4;
3810 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
3811 info->flags & SPI_NOR_4B_OPCODES)
3812 spi_nor_set_4byte_opcodes(nor, info);
3814 /* Configure the BAR - discover bank cmds and read current bank */
3815 nor->addr_width = 3;
3816 ret = read_bar(nor, info);
3822 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3823 dev_dbg(nor->dev, "address width is too large: %u\n",
3828 /* Send all the required SPI flash commands to initialize device */
3829 ret = spi_nor_init(nor);
3833 nor->rdsr_dummy = params.rdsr_dummy;
3834 nor->rdsr_addr_nbytes = params.rdsr_addr_nbytes;
3835 nor->name = info->name;
3836 nor->size = mtd->size;
3837 nor->erase_size = mtd->erasesize;
3838 nor->sector_size = mtd->erasesize;
3840 #ifndef CONFIG_SPL_BUILD
3841 printf("SF: Detected %s with page size ", nor->name);
3842 print_size(nor->page_size, ", erase size ");
3843 print_size(nor->erase_size, ", total ");
3844 print_size(nor->size, "");
3851 /* U-Boot specific functions, need to extend MTD to support these */
3852 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
3854 int sr = read_sr(nor);
3859 return (sr >> 2) & 7;