]> Git Repo - u-boot.git/blob - arch/arm/mach-stm32mp/cmd_stm32prog/stm32prog.c
Merge branch 'master' of https://source.denx.de/u-boot/custodians/u-boot-sh
[u-boot.git] / arch / arm / mach-stm32mp / cmd_stm32prog / stm32prog.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5
6 #include <command.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <image.h>
10 #include <malloc.h>
11 #include <misc.h>
12 #include <mmc.h>
13 #include <part.h>
14 #include <tee.h>
15 #include <asm/arch/stm32mp1_smc.h>
16 #include <asm/global_data.h>
17 #include <dm/device_compat.h>
18 #include <dm/uclass.h>
19 #include <jffs2/load_kernel.h>
20 #include <linux/list.h>
21 #include <linux/list_sort.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/printk.h>
24 #include <linux/sizes.h>
25
26 #include "stm32prog.h"
27
28 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
29 #define GPT_HEADER_SZ   34
30
31 #define OPT_SELECT      BIT(0)
32 #define OPT_EMPTY       BIT(1)
33 #define OPT_DELETE      BIT(2)
34
35 #define IS_SELECT(part) ((part)->option & OPT_SELECT)
36 #define IS_EMPTY(part)  ((part)->option & OPT_EMPTY)
37 #define IS_DELETE(part) ((part)->option & OPT_DELETE)
38
39 #define ALT_BUF_LEN                     SZ_1K
40
41 #define ROOTFS_MMC0_UUID \
42         EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
43                  0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
44
45 #define ROOTFS_MMC1_UUID \
46         EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
47                  0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
48
49 #define ROOTFS_MMC2_UUID \
50         EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
51                  0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
52
53 /* RAW partition (binary / bootloader) used Linux - reserved UUID */
54 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
55
56 /*
57  * unique partition guid (uuid) for partition named "rootfs"
58  * on each MMC instance = SD Card or eMMC
59  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
60  */
61 static const efi_guid_t uuid_mmc[3] = {
62         ROOTFS_MMC0_UUID,
63         ROOTFS_MMC1_UUID,
64         ROOTFS_MMC2_UUID
65 };
66
67 /*
68  * GUID value defined in the FWU specification for identification
69  * of the FWU metadata partition.
70  */
71 #define FWU_MDATA_UUID "8a7a84a0-8387-40f6-ab41-a8b9a5a60d23"
72
73 /* FIP type partition UUID used by TF-A*/
74 #define FIP_TYPE_UUID "19D5DF83-11B0-457B-BE2C-7559C13142A5"
75
76 /* unique partition guid (uuid) for FIP partitions A/B */
77 #define FIP_A_UUID \
78         EFI_GUID(0x4FD84C93, 0x54EF, 0x463F, \
79                  0xA7, 0xEF, 0xAE, 0x25, 0xFF, 0x88, 0x70, 0x87)
80
81 #define FIP_B_UUID \
82         EFI_GUID(0x09C54952, 0xD5BF, 0x45AF, \
83                  0xAC, 0xEE, 0x33, 0x53, 0x03, 0x76, 0x6F, 0xB3)
84
85 static const char * const fip_part_name[] = {
86         "fip-a",
87         "fip-b"
88 };
89
90 static const efi_guid_t fip_part_uuid[] = {
91         FIP_A_UUID,
92         FIP_B_UUID
93 };
94
95 /* order of column in flash layout file */
96 enum stm32prog_col_t {
97         COL_OPTION,
98         COL_ID,
99         COL_NAME,
100         COL_TYPE,
101         COL_IP,
102         COL_OFFSET,
103         COL_NB_STM32
104 };
105
106 #define FIP_TOC_HEADER_NAME     0xAA640001
107
108 struct fip_toc_header {
109         u32     name;
110         u32     serial_number;
111         u64     flags;
112 };
113
114 #define TA_NVMEM_UUID { 0x1a8342cc, 0x81a5, 0x4512, \
115                 { 0x99, 0xfe, 0x9e, 0x2b, 0x3e, 0x37, 0xd6, 0x26 } }
116
117 /*
118  * Read NVMEM memory for STM32CubeProgrammer
119  *
120  * [in]         value[0].a:             Type (0 for OTP access)
121  * [out]        memref[1].buffer        Output buffer to return all read values
122  * [out]        memref[1].size          Size of buffer to be read
123  *
124  * Return codes:
125  * TEE_SUCCESS - Invoke command success
126  * TEE_ERROR_BAD_PARAMETERS - Incorrect input param
127  */
128 #define TA_NVMEM_READ           0x0
129
130 /*
131  * Write NVMEM memory for STM32CubeProgrammer
132  *
133  * [in]      value[0].a         Type (0 for OTP access)
134  * [in]      memref[1].buffer   Input buffer with the values to write
135  * [in]      memref[1].size     Size of buffer to be written
136  *
137  * Return codes:
138  * TEE_SUCCESS - Invoke command success
139  * TEE_ERROR_BAD_PARAMETERS - Incorrect input param
140  */
141 #define TA_NVMEM_WRITE          0x1
142
143 /* value of TA_NVMEM type = value[in] a */
144 #define NVMEM_OTP               0
145
146 DECLARE_GLOBAL_DATA_PTR;
147
148 /* OPTEE TA NVMEM open helper */
149 static int optee_ta_open(struct stm32prog_data *data)
150 {
151         const struct tee_optee_ta_uuid uuid = TA_NVMEM_UUID;
152         struct tee_open_session_arg arg;
153         struct udevice *tee = NULL;
154         int rc;
155
156         if (data->tee)
157                 return 0;
158
159         tee = tee_find_device(NULL, NULL, NULL, NULL);
160         if (!tee)
161                 return -ENODEV;
162
163         memset(&arg, 0, sizeof(arg));
164         tee_optee_ta_uuid_to_octets(arg.uuid, &uuid);
165         rc = tee_open_session(tee, &arg, 0, NULL);
166         if (rc < 0)
167                 return -ENODEV;
168
169         data->tee = tee;
170         data->tee_session = arg.session;
171
172         return 0;
173 }
174
175 /* OPTEE TA NVMEM invoke helper */
176 static int optee_ta_invoke(struct stm32prog_data *data, int cmd, int type,
177                            void *buff, ulong size)
178 {
179         struct tee_invoke_arg arg;
180         struct tee_param param[2];
181         struct tee_shm *buff_shm;
182         int rc;
183
184         rc = tee_shm_register(data->tee, buff, size, 0, &buff_shm);
185         if (rc)
186                 return rc;
187
188         memset(&arg, 0, sizeof(arg));
189         arg.func = cmd;
190         arg.session = data->tee_session;
191
192         memset(param, 0, sizeof(param));
193         param[0].attr = TEE_PARAM_ATTR_TYPE_VALUE_INPUT;
194         param[0].u.value.a = type;
195
196         if (cmd == TA_NVMEM_WRITE)
197                 param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT;
198         else
199                 param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT;
200
201         param[1].u.memref.shm = buff_shm;
202         param[1].u.memref.size = size;
203
204         rc = tee_invoke_func(data->tee, &arg, 2, param);
205         if (rc < 0 || arg.ret != 0) {
206                 dev_err(data->tee,
207                         "TA_NVMEM invoke failed TEE err: %x, err:%x\n",
208                         arg.ret, rc);
209                 if (!rc)
210                         rc = -EIO;
211         }
212
213         tee_shm_free(buff_shm);
214
215         return rc;
216 }
217
218 char *stm32prog_get_error(struct stm32prog_data *data)
219 {
220         static const char error_msg[] = "Unspecified";
221
222         if (strlen(data->error) == 0)
223                 strcpy(data->error, error_msg);
224
225         return data->error;
226 }
227
228 static bool stm32prog_is_fip_header(struct fip_toc_header *header)
229 {
230         return (header->name == FIP_TOC_HEADER_NAME) && header->serial_number;
231 }
232
233 static bool stm32prog_is_stm32_header_v1(struct stm32_header_v1 *header)
234 {
235         unsigned int i;
236
237         if (header->magic_number !=
238                 (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
239                 log_debug("%s:invalid magic number : 0x%x\n",
240                           __func__, header->magic_number);
241                 return false;
242         }
243         if (header->header_version != 0x00010000) {
244                 log_debug("%s:invalid header version : 0x%x\n",
245                           __func__, header->header_version);
246                 return false;
247         }
248
249         if (header->reserved1 || header->reserved2) {
250                 log_debug("%s:invalid reserved field\n", __func__);
251                 return false;
252         }
253         for (i = 0; i < sizeof(header->padding); i++) {
254                 if (header->padding[i] != 0) {
255                         log_debug("%s:invalid padding field\n", __func__);
256                         return false;
257                 }
258         }
259
260         return true;
261 }
262
263 static bool stm32prog_is_stm32_header_v2(struct stm32_header_v2 *header)
264 {
265         unsigned int i;
266
267         if (header->magic_number !=
268                 (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
269                 log_debug("%s:invalid magic number : 0x%x\n",
270                           __func__, header->magic_number);
271                 return false;
272         }
273         if (header->header_version != 0x00020000) {
274                 log_debug("%s:invalid header version : 0x%x\n",
275                           __func__, header->header_version);
276                 return false;
277         }
278         if (header->reserved1 || header->reserved2)
279                 return false;
280
281         for (i = 0; i < sizeof(header->padding); i++) {
282                 if (header->padding[i] != 0) {
283                         log_debug("%s:invalid padding field\n", __func__);
284                         return false;
285                 }
286         }
287
288         return true;
289 }
290
291 void stm32prog_header_check(uintptr_t raw_header, struct image_header_s *header)
292 {
293         struct stm32_header_v1 *v1_header = (struct stm32_header_v1 *)raw_header;
294         struct stm32_header_v2 *v2_header = (struct stm32_header_v2 *)raw_header;
295
296         if (!raw_header || !header) {
297                 log_debug("%s:no header data\n", __func__);
298                 return;
299         }
300
301         if (stm32prog_is_fip_header((struct fip_toc_header *)raw_header)) {
302                 header->type = HEADER_FIP;
303                 header->length = 0;
304                 return;
305         }
306         if (stm32prog_is_stm32_header_v1(v1_header)) {
307                 header->type = HEADER_STM32IMAGE;
308                 header->image_checksum = le32_to_cpu(v1_header->image_checksum);
309                 header->image_length = le32_to_cpu(v1_header->image_length);
310                 header->length = sizeof(struct stm32_header_v1);
311                 return;
312         }
313         if (stm32prog_is_stm32_header_v2(v2_header)) {
314                 header->type = HEADER_STM32IMAGE_V2;
315                 header->image_checksum = le32_to_cpu(v2_header->image_checksum);
316                 header->image_length = le32_to_cpu(v2_header->image_length);
317                 header->length = sizeof(struct stm32_header_v1) +
318                                  v2_header->extension_headers_length;
319                 return;
320         }
321
322         header->type = HEADER_NONE;
323         header->image_checksum = 0x0;
324         header->image_length = 0x0;
325 }
326
327 static u32 stm32prog_header_checksum(uintptr_t addr, struct image_header_s *header)
328 {
329         u32 i, checksum;
330         u8 *payload;
331
332         /* compute checksum on payload */
333         payload = (u8 *)addr;
334         checksum = 0;
335         for (i = header->image_length; i > 0; i--)
336                 checksum += *(payload++);
337
338         return checksum;
339 }
340
341 /* FLASHLAYOUT PARSING *****************************************/
342 static int parse_option(struct stm32prog_data *data,
343                         int i, char *p, struct stm32prog_part_t *part)
344 {
345         int result = 0;
346         char *c = p;
347
348         part->option = 0;
349         if (!strcmp(p, "-"))
350                 return 0;
351
352         while (*c) {
353                 switch (*c) {
354                 case 'P':
355                         part->option |= OPT_SELECT;
356                         break;
357                 case 'E':
358                         part->option |= OPT_EMPTY;
359                         break;
360                 case 'D':
361                         part->option |= OPT_DELETE;
362                         break;
363                 default:
364                         result = -EINVAL;
365                         stm32prog_err("Layout line %d: invalid option '%c' in %s)",
366                                       i, *c, p);
367                         return -EINVAL;
368                 }
369                 c++;
370         }
371         if (!(part->option & OPT_SELECT)) {
372                 stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
373                 return -EINVAL;
374         }
375
376         return result;
377 }
378
379 static int parse_id(struct stm32prog_data *data,
380                     int i, char *p, struct stm32prog_part_t *part)
381 {
382         int result = 0;
383         unsigned long value;
384
385         result = strict_strtoul(p, 0, &value);
386         part->id = value;
387         if (result || value > PHASE_LAST_USER) {
388                 stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
389                 result = -EINVAL;
390         }
391
392         return result;
393 }
394
395 static int parse_name(struct stm32prog_data *data,
396                       int i, char *p, struct stm32prog_part_t *part)
397 {
398         int result = 0;
399
400         if (strlen(p) < sizeof(part->name)) {
401                 strcpy(part->name, p);
402         } else {
403                 stm32prog_err("Layout line %d: partition name too long [%zd]: %s",
404                               i, strlen(p), p);
405                 result = -EINVAL;
406         }
407
408         return result;
409 }
410
411 static int parse_type(struct stm32prog_data *data,
412                       int i, char *p, struct stm32prog_part_t *part)
413 {
414         int result = 0;
415         int len = 0;
416
417         part->bin_nb = 0;
418         if (!strncmp(p, "Binary", 6)) {
419                 part->part_type = PART_BINARY;
420
421                 /* search for Binary(X) case */
422                 len = strlen(p);
423                 part->bin_nb = 1;
424                 if (len > 6) {
425                         if (len < 8 ||
426                             (p[6] != '(') ||
427                             (p[len - 1] != ')'))
428                                 result = -EINVAL;
429                         else
430                                 part->bin_nb =
431                                         dectoul(&p[7], NULL);
432                 }
433         } else if (!strcmp(p, "FIP")) {
434                 part->part_type = PART_FIP;
435         } else if (!strcmp(p, "FWU_MDATA")) {
436                 part->part_type = PART_FWU_MDATA;
437         } else if (!strcmp(p, "ENV")) {
438                 part->part_type = PART_ENV;
439         } else if (!strcmp(p, "System")) {
440                 part->part_type = PART_SYSTEM;
441         } else if (!strcmp(p, "ESP")) {
442                 part->part_type = PART_ESP;
443         } else if (!strcmp(p, "FileSystem")) {
444                 part->part_type = PART_FILESYSTEM;
445         } else if (!strcmp(p, "RawImage")) {
446                 part->part_type = RAW_IMAGE;
447         } else {
448                 result = -EINVAL;
449         }
450         if (result)
451                 stm32prog_err("Layout line %d: type parsing error : '%s'",
452                               i, p);
453
454         return result;
455 }
456
457 static int parse_ip(struct stm32prog_data *data,
458                     int i, char *p, struct stm32prog_part_t *part)
459 {
460         int result = 0;
461         unsigned int len = 0;
462
463         part->dev_id = 0;
464         if (!strcmp(p, "none")) {
465                 part->target = STM32PROG_NONE;
466         } else if (!strncmp(p, "mmc", 3)) {
467                 part->target = STM32PROG_MMC;
468                 len = 3;
469         } else if (!strncmp(p, "nor", 3)) {
470                 part->target = STM32PROG_NOR;
471                 len = 3;
472         } else if (!strncmp(p, "nand", 4)) {
473                 part->target = STM32PROG_NAND;
474                 len = 4;
475         } else if (!strncmp(p, "spi-nand", 8)) {
476                 part->target = STM32PROG_SPI_NAND;
477                 len = 8;
478         } else if (!strncmp(p, "ram", 3)) {
479                 part->target = STM32PROG_RAM;
480                 len = 0;
481         } else {
482                 result = -EINVAL;
483         }
484         if (len) {
485                 /* only one digit allowed for device id */
486                 if (strlen(p) != len + 1) {
487                         result = -EINVAL;
488                 } else {
489                         part->dev_id = p[len] - '0';
490                         if (part->dev_id > 9)
491                                 result = -EINVAL;
492                 }
493         }
494         if (result)
495                 stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
496
497         return result;
498 }
499
500 static int parse_offset(struct stm32prog_data *data,
501                         int i, char *p, struct stm32prog_part_t *part)
502 {
503         int result = 0;
504         char *tail;
505
506         part->part_id = 0;
507         part->addr = 0;
508         part->size = 0;
509         /* eMMC boot parttion */
510         if (!strncmp(p, "boot", 4)) {
511                 if (strlen(p) != 5) {
512                         result = -EINVAL;
513                 } else {
514                         if (p[4] == '1')
515                                 part->part_id = -1;
516                         else if (p[4] == '2')
517                                 part->part_id = -2;
518                         else
519                                 result = -EINVAL;
520                 }
521                 if (result)
522                         stm32prog_err("Layout line %d: invalid part '%s'",
523                                       i, p);
524         } else {
525                 part->addr = simple_strtoull(p, &tail, 10);
526                 if (tail == p || *tail != '\0') {
527                         stm32prog_err("Layout line %d: invalid offset '%s'",
528                                       i, p);
529                         result = -EINVAL;
530                 }
531         }
532
533         return result;
534 }
535
536 static
537 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
538                                   struct stm32prog_part_t *part) = {
539         [COL_OPTION] = parse_option,
540         [COL_ID] = parse_id,
541         [COL_NAME] =  parse_name,
542         [COL_TYPE] = parse_type,
543         [COL_IP] = parse_ip,
544         [COL_OFFSET] = parse_offset,
545 };
546
547 static int parse_flash_layout(struct stm32prog_data *data,
548                               uintptr_t addr,
549                               ulong size)
550 {
551         int column = 0, part_nb = 0, ret;
552         bool end_of_line, eof;
553         char *p, *start, *last, *col;
554         struct stm32prog_part_t *part;
555         struct image_header_s header;
556         int part_list_size;
557         int i;
558
559         data->part_nb = 0;
560
561         /* check if STM32image is detected */
562         stm32prog_header_check(addr, &header);
563         if (header.type == HEADER_STM32IMAGE) {
564                 u32 checksum;
565
566                 addr = addr + header.length;
567                 size = header.image_length;
568
569                 checksum = stm32prog_header_checksum(addr, &header);
570                 if (checksum != header.image_checksum) {
571                         stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
572                                       checksum, header.image_checksum);
573                         return -EIO;
574                 }
575         }
576         if (!size)
577                 return -EINVAL;
578
579         start = (char *)addr;
580         last = start + size;
581
582         *last = 0x0; /* force null terminated string */
583         log_debug("flash layout =\n%s\n", start);
584
585         /* calculate expected number of partitions */
586         part_list_size = 1;
587         p = start;
588         while (*p && (p < last)) {
589                 if (*p++ == '\n') {
590                         part_list_size++;
591                         if (p < last && *p == '#')
592                                 part_list_size--;
593                 }
594         }
595         if (part_list_size > PHASE_LAST_USER) {
596                 stm32prog_err("Layout: too many partition (%d)",
597                               part_list_size);
598                 return -1;
599         }
600         part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
601         if (!part) {
602                 stm32prog_err("Layout: alloc failed");
603                 return -ENOMEM;
604         }
605         data->part_array = part;
606
607         /* main parsing loop */
608         i = 1;
609         eof = false;
610         p = start;
611         col = start; /* 1st column */
612         end_of_line = false;
613         while (!eof) {
614                 switch (*p) {
615                 /* CR is ignored and replaced by NULL character */
616                 case '\r':
617                         *p = '\0';
618                         p++;
619                         continue;
620                 case '\0':
621                         end_of_line = true;
622                         eof = true;
623                         break;
624                 case '\n':
625                         end_of_line = true;
626                         break;
627                 case '\t':
628                         break;
629                 case '#':
630                         /* comment line is skipped */
631                         if (column == 0 && p == col) {
632                                 while ((p < last) && *p)
633                                         if (*p++ == '\n')
634                                                 break;
635                                 col = p;
636                                 i++;
637                                 if (p >= last || !*p) {
638                                         eof = true;
639                                         end_of_line = true;
640                                 }
641                                 continue;
642                         }
643                         /* fall through */
644                 /* by default continue with the next character */
645                 default:
646                         p++;
647                         continue;
648                 }
649
650                 /* replace by \0: allow string parsing for each column */
651                 *p = '\0';
652                 p++;
653                 if (p >= last) {
654                         eof = true;
655                         end_of_line = true;
656                 }
657
658                 /* skip empty line and multiple TAB in tsv file */
659                 if (strlen(col) == 0) {
660                         col = p;
661                         /* skip empty line */
662                         if (column == 0 && end_of_line) {
663                                 end_of_line = false;
664                                 i++;
665                         }
666                         continue;
667                 }
668
669                 if (column < COL_NB_STM32) {
670                         ret = parse[column](data, i, col, part);
671                         if (ret)
672                                 return ret;
673                 }
674
675                 /* save the beginning of the next column */
676                 column++;
677                 col = p;
678
679                 if (!end_of_line)
680                         continue;
681
682                 /* end of the line detected */
683                 end_of_line = false;
684
685                 if (column < COL_NB_STM32) {
686                         stm32prog_err("Layout line %d: no enought column", i);
687                         return -EINVAL;
688                 }
689                 column = 0;
690                 part_nb++;
691                 part++;
692                 i++;
693                 if (part_nb >= part_list_size) {
694                         part = NULL;
695                         if (!eof) {
696                                 stm32prog_err("Layout: no enought memory for %d part",
697                                               part_nb);
698                                 return -EINVAL;
699                         }
700                 }
701         }
702         data->part_nb = part_nb;
703         if (data->part_nb == 0) {
704                 stm32prog_err("Layout: no partition found");
705                 return -ENODEV;
706         }
707
708         return 0;
709 }
710
711 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
712 {
713         struct stm32prog_part_t *parta, *partb;
714
715         parta = container_of(a, struct stm32prog_part_t, list);
716         partb = container_of(b, struct stm32prog_part_t, list);
717
718         if (parta->part_id != partb->part_id)
719                 return parta->part_id - partb->part_id;
720         else
721                 return parta->addr > partb->addr ? 1 : -1;
722 }
723
724 static void get_mtd_by_target(char *string, enum stm32prog_target target,
725                               int dev_id)
726 {
727         const char *dev_str;
728
729         switch (target) {
730         case STM32PROG_NOR:
731                 dev_str = "nor";
732                 break;
733         case STM32PROG_NAND:
734                 dev_str = "nand";
735                 break;
736         case STM32PROG_SPI_NAND:
737                 dev_str = "spi-nand";
738                 break;
739         default:
740                 dev_str = "invalid";
741                 break;
742         }
743         sprintf(string, "%s%d", dev_str, dev_id);
744 }
745
746 static int init_device(struct stm32prog_data *data,
747                        struct stm32prog_dev_t *dev)
748 {
749         struct mmc *mmc = NULL;
750         struct blk_desc *block_dev = NULL;
751         struct mtd_info *mtd = NULL;
752         struct mtd_info *partition;
753         char mtd_id[16];
754         int part_id;
755         int ret;
756         u64 first_addr = 0, last_addr = 0;
757         struct stm32prog_part_t *part, *next_part;
758         u64 part_addr, part_size;
759         bool part_found;
760         const char *part_name;
761         u8 i;
762
763         switch (dev->target) {
764         case STM32PROG_MMC:
765                 if (!IS_ENABLED(CONFIG_MMC)) {
766                         stm32prog_err("unknown device type = %d", dev->target);
767                         return -ENODEV;
768                 }
769                 mmc = find_mmc_device(dev->dev_id);
770                 if (!mmc || mmc_init(mmc)) {
771                         stm32prog_err("mmc device %d not found", dev->dev_id);
772                         return -ENODEV;
773                 }
774                 block_dev = mmc_get_blk_desc(mmc);
775                 if (!block_dev) {
776                         stm32prog_err("mmc device %d not probed", dev->dev_id);
777                         return -ENODEV;
778                 }
779                 dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
780                 dev->mmc = mmc;
781
782                 /* reserve a full erase group for each GTP headers */
783                 if (mmc->erase_grp_size > GPT_HEADER_SZ) {
784                         first_addr = dev->erase_size;
785                         last_addr = (u64)(block_dev->lba -
786                                           mmc->erase_grp_size) *
787                                     block_dev->blksz;
788                 } else {
789                         first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
790                         last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
791                                     block_dev->blksz;
792                 }
793                 log_debug("MMC %d: lba=%lld blksz=%ld\n", dev->dev_id,
794                           (u64)block_dev->lba, block_dev->blksz);
795                 log_debug(" available address = 0x%llx..0x%llx\n",
796                           first_addr, last_addr);
797                 log_debug(" full_update = %d\n", dev->full_update);
798                 break;
799         case STM32PROG_NOR:
800         case STM32PROG_NAND:
801         case STM32PROG_SPI_NAND:
802                 if (!IS_ENABLED(CONFIG_MTD)) {
803                         stm32prog_err("unknown device type = %d", dev->target);
804                         return -ENODEV;
805                 }
806                 /* register partitions with MTDIDS/MTDPARTS or OF fallback */
807                 mtd_probe_devices();
808                 get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
809                 log_debug("%s\n", mtd_id);
810
811                 mtd = get_mtd_device_nm(mtd_id);
812                 if (IS_ERR(mtd)) {
813                         stm32prog_err("MTD device %s not found", mtd_id);
814                         return -ENODEV;
815                 }
816                 first_addr = 0;
817                 last_addr = mtd->size;
818                 dev->erase_size = mtd->erasesize;
819                 log_debug("MTD device %s: size=%lld erasesize=%d\n",
820                           mtd_id, mtd->size, mtd->erasesize);
821                 log_debug(" available address = 0x%llx..0x%llx\n",
822                           first_addr, last_addr);
823                 dev->mtd = mtd;
824                 break;
825         case STM32PROG_RAM:
826                 first_addr = gd->bd->bi_dram[0].start;
827                 last_addr = first_addr + gd->bd->bi_dram[0].size;
828                 dev->erase_size = 1;
829                 break;
830         default:
831                 stm32prog_err("unknown device type = %d", dev->target);
832                 return -ENODEV;
833         }
834         log_debug(" erase size = 0x%x\n", dev->erase_size);
835         log_debug(" full_update = %d\n", dev->full_update);
836
837         /* order partition list in offset order */
838         list_sort(NULL, &dev->part_list, &part_cmp);
839         part_id = 1;
840         log_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
841         list_for_each_entry(part, &dev->part_list, list) {
842                 if (part->bin_nb > 1) {
843                         if ((dev->target != STM32PROG_NAND &&
844                              dev->target != STM32PROG_SPI_NAND) ||
845                             part->id >= PHASE_FIRST_USER ||
846                             strncmp(part->name, "fsbl", 4)) {
847                                 stm32prog_err("%s (0x%x): multiple binary %d not supported",
848                                               part->name, part->id,
849                                               part->bin_nb);
850                                 return -EINVAL;
851                         }
852                 }
853                 if (part->part_type == RAW_IMAGE) {
854                         part->part_id = 0x0;
855                         part->addr = 0x0;
856                         if (block_dev)
857                                 part->size = block_dev->lba * block_dev->blksz;
858                         else
859                                 part->size = last_addr;
860                         log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
861                                   part->option, part->id, part->name,
862                                   part->part_type, part->bin_nb, part->target,
863                                   part->dev_id, part->addr, part->size);
864                         continue;
865                 }
866                 if (part->part_id < 0) { /* boot hw partition for eMMC */
867                         if (mmc) {
868                                 part->size = mmc->capacity_boot;
869                         } else {
870                                 stm32prog_err("%s (0x%x): hw partition not expected : %d",
871                                               part->name, part->id,
872                                               part->part_id);
873                                 return -ENODEV;
874                         }
875                 } else {
876                         part->part_id = part_id++;
877
878                         /* last partition : size to the end of the device */
879                         if (part->list.next != &dev->part_list) {
880                                 next_part =
881                                         container_of(part->list.next,
882                                                      struct stm32prog_part_t,
883                                                      list);
884                                 if (part->addr < next_part->addr) {
885                                         part->size = next_part->addr -
886                                                      part->addr;
887                                 } else {
888                                         stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
889                                                       part->name, part->id,
890                                                       part->addr,
891                                                       next_part->name,
892                                                       next_part->id,
893                                                       next_part->addr);
894                                         return -EINVAL;
895                                 }
896                         } else {
897                                 if (part->addr <= last_addr) {
898                                         part->size = last_addr - part->addr;
899                                 } else {
900                                         stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
901                                                       part->name, part->id,
902                                                       part->addr, last_addr);
903                                         return -EINVAL;
904                                 }
905                         }
906                         if (part->addr < first_addr) {
907                                 stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
908                                               part->name, part->id,
909                                               part->addr, first_addr);
910                                 return -EINVAL;
911                         }
912                 }
913                 if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
914                         stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
915                                       part->name, part->id, part->addr,
916                                       part->dev->erase_size);
917                         return -EINVAL;
918                 }
919                 log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
920                           part->part_id, part->option, part->id, part->name,
921                           part->part_type, part->bin_nb, part->target,
922                           part->dev_id, part->addr, part->size);
923
924                 part_addr = 0;
925                 part_size = 0;
926                 part_found = false;
927
928                 /* check coherency with existing partition */
929                 if (block_dev) {
930                         /*
931                          * block devices with GPT: check user partition size
932                          * only for partial update, the GPT partions are be
933                          * created for full update
934                          */
935                         if (dev->full_update || part->part_id < 0) {
936                                 log_debug("\n");
937                                 continue;
938                         }
939                         struct disk_partition partinfo;
940
941                         ret = part_get_info(block_dev, part->part_id,
942                                             &partinfo);
943
944                         if (ret) {
945                                 stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
946                                               part->name, part->id,
947                                               part_id, part->dev_id);
948                                 return -ENODEV;
949                         }
950                         part_addr = (u64)partinfo.start * partinfo.blksz;
951                         part_size = (u64)partinfo.size * partinfo.blksz;
952                         part_name = (char *)partinfo.name;
953                         part_found = true;
954                 }
955
956                 if (IS_ENABLED(CONFIG_MTD) && mtd) {
957                         i = 0;
958                         list_for_each_entry(partition, &mtd->partitions, node) {
959                                 if ((part->part_id - 1) == i) {
960                                         part_found = true;
961                                         break;
962                                 }
963                                 i++;
964                         }
965                         if (part_found) {
966                                 part_addr = partition->offset;
967                                 part_size = partition->size;
968                                 part_name = partition->name;
969                         } else {
970                                 stm32prog_err("%s (0x%x):Couldn't find part %d on device mtd %s",
971                                               part->name, part->id, part->part_id, mtd_id);
972                                 return -ENODEV;
973                         }
974                 }
975
976                 /* no partition for this device */
977                 if (!part_found) {
978                         log_debug("\n");
979                         continue;
980                 }
981
982                 log_debug(" %08llx %08llx\n", part_addr, part_size);
983
984                 if (part->addr != part_addr) {
985                         stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
986                                       part->name, part->id, part->part_id,
987                                       part_name, part->addr, part_addr);
988                         return -ENODEV;
989                 }
990                 if (part->size != part_size) {
991                         stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
992                                       part->name, part->id, part->part_id,
993                                       part_name, part->addr, part->size,
994                                       part_size);
995                         return -ENODEV;
996                 }
997         }
998         return 0;
999 }
1000
1001 static int treat_partition_list(struct stm32prog_data *data)
1002 {
1003         int i, j;
1004         struct stm32prog_part_t *part;
1005
1006         for (j = 0; j < STM32PROG_MAX_DEV; j++) {
1007                 data->dev[j].target = STM32PROG_NONE;
1008                 INIT_LIST_HEAD(&data->dev[j].part_list);
1009         }
1010
1011         data->fsbl_nor_detected = false;
1012         for (i = 0; i < data->part_nb; i++) {
1013                 part = &data->part_array[i];
1014                 part->alt_id = -1;
1015
1016                 /* skip partition with IP="none" */
1017                 if (part->target == STM32PROG_NONE) {
1018                         if (IS_SELECT(part)) {
1019                                 stm32prog_err("Layout: selected none phase = 0x%x for part %s",
1020                                               part->id, part->name);
1021                                 return -EINVAL;
1022                         }
1023                         continue;
1024                 }
1025
1026                 if (part->id == PHASE_FLASHLAYOUT ||
1027                     part->id > PHASE_LAST_USER) {
1028                         stm32prog_err("Layout: invalid phase = 0x%x for part %s",
1029                                       part->id, part->name);
1030                         return -EINVAL;
1031                 }
1032                 for (j = i + 1; j < data->part_nb; j++) {
1033                         if (part->id == data->part_array[j].id) {
1034                                 stm32prog_err("Layout: duplicated phase 0x%x for part %s and %s",
1035                                               part->id, part->name, data->part_array[j].name);
1036                                 return -EINVAL;
1037                         }
1038                 }
1039                 for (j = 0; j < STM32PROG_MAX_DEV; j++) {
1040                         if (data->dev[j].target == STM32PROG_NONE) {
1041                                 /* new device found */
1042                                 data->dev[j].target = part->target;
1043                                 data->dev[j].dev_id = part->dev_id;
1044                                 data->dev[j].full_update = true;
1045                                 data->dev_nb++;
1046                                 break;
1047                         } else if ((part->target == data->dev[j].target) &&
1048                                    (part->dev_id == data->dev[j].dev_id)) {
1049                                 break;
1050                         }
1051                 }
1052                 if (j == STM32PROG_MAX_DEV) {
1053                         stm32prog_err("Layout: too many device");
1054                         return -EINVAL;
1055                 }
1056                 switch (part->target)  {
1057                 case STM32PROG_NOR:
1058                         if (!data->fsbl_nor_detected &&
1059                             !strncmp(part->name, "fsbl", 4))
1060                                 data->fsbl_nor_detected = true;
1061                         /* fallthrough */
1062                 default:
1063                         break;
1064                 }
1065                 part->dev = &data->dev[j];
1066                 if (!IS_SELECT(part))
1067                         part->dev->full_update = false;
1068                 list_add_tail(&part->list, &data->dev[j].part_list);
1069         }
1070
1071         return 0;
1072 }
1073
1074 static int create_gpt_partitions(struct stm32prog_data *data)
1075 {
1076         int offset = 0;
1077         const int buflen = SZ_8K;
1078         char *buf;
1079         char uuid[UUID_STR_LEN + 1];
1080         unsigned char *uuid_bin;
1081         unsigned int mmc_id;
1082         int i, j;
1083         bool rootfs_found;
1084         struct stm32prog_part_t *part;
1085         const char *type_str;
1086
1087         buf = malloc(buflen);
1088         if (!buf)
1089                 return -ENOMEM;
1090
1091         /* initialize the selected device */
1092         for (i = 0; i < data->dev_nb; i++) {
1093                 /* create gpt partition support only for full update on MMC */
1094                 if (data->dev[i].target != STM32PROG_MMC ||
1095                     !data->dev[i].full_update)
1096                         continue;
1097
1098                 printf("partitions on mmc%d: ", data->dev[i].dev_id);
1099                 offset = 0;
1100                 rootfs_found = false;
1101                 memset(buf, 0, buflen);
1102
1103                 list_for_each_entry(part, &data->dev[i].part_list, list) {
1104                         /* skip eMMC boot partitions */
1105                         if (part->part_id < 0)
1106                                 continue;
1107                         /* skip Raw Image */
1108                         if (part->part_type == RAW_IMAGE)
1109                                 continue;
1110
1111                         if (offset + 100 > buflen) {
1112                                 log_debug("\n%s: buffer too small, %s skippped",
1113                                           __func__, part->name);
1114                                 continue;
1115                         }
1116
1117                         if (!offset)
1118                                 offset += sprintf(buf, "gpt write mmc %d \"",
1119                                                   data->dev[i].dev_id);
1120
1121                         offset += snprintf(buf + offset, buflen - offset,
1122                                            "name=%s,start=0x%llx,size=0x%llx",
1123                                            part->name,
1124                                            part->addr,
1125                                            part->size);
1126
1127                         switch (part->part_type) {
1128                         case PART_BINARY:
1129                                 type_str = LINUX_RESERVED_UUID;
1130                                 break;
1131                         case PART_ENV:
1132                                 type_str = "u-boot-env";
1133                                 break;
1134                         case PART_FIP:
1135                                 type_str = FIP_TYPE_UUID;
1136                                 break;
1137                         case PART_FWU_MDATA:
1138                                 type_str = FWU_MDATA_UUID;
1139                                 break;
1140                         case PART_ESP:
1141                                 /* EFI System Partition */
1142                                 type_str = "system";
1143                                 break;
1144                         default: /* PART_FILESYSTEM or PART_SYSTEM for distro */
1145                                 type_str = "linux";
1146                                 break;
1147                         }
1148                         offset += snprintf(buf + offset,
1149                                            buflen - offset,
1150                                            ",type=%s", type_str);
1151
1152                         if (part->part_type == PART_SYSTEM)
1153                                 offset += snprintf(buf + offset,
1154                                                    buflen - offset,
1155                                                    ",bootable");
1156
1157                         /* partition UUID */
1158                         uuid_bin = NULL;
1159                         if (!rootfs_found && !strcmp(part->name, "rootfs")) {
1160                                 mmc_id = part->dev_id;
1161                                 rootfs_found = true;
1162                                 if (mmc_id < ARRAY_SIZE(uuid_mmc))
1163                                         uuid_bin = (unsigned char *)uuid_mmc[mmc_id].b;
1164                         }
1165                         if (part->part_type == PART_FIP) {
1166                                 for (j = 0; j < ARRAY_SIZE(fip_part_name); j++)
1167                                         if (!strcmp(part->name, fip_part_name[j])) {
1168                                                 uuid_bin = (unsigned char *)fip_part_uuid[j].b;
1169                                                 break;
1170                                         }
1171                         }
1172                         if (uuid_bin) {
1173                                 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
1174                                 offset += snprintf(buf + offset,
1175                                                    buflen - offset,
1176                                                    ",uuid=%s", uuid);
1177                         }
1178
1179                         offset += snprintf(buf + offset, buflen - offset, ";");
1180                 }
1181
1182                 if (offset) {
1183                         offset += snprintf(buf + offset, buflen - offset, "\"");
1184                         log_debug("\ncmd: %s\n", buf);
1185                         if (run_command(buf, 0)) {
1186                                 stm32prog_err("GPT partitionning fail: %s",
1187                                               buf);
1188                                 free(buf);
1189
1190                                 return -1;
1191                         }
1192                 }
1193
1194                 if (data->dev[i].mmc)
1195                         part_init(mmc_get_blk_desc(data->dev[i].mmc));
1196
1197 #ifdef DEBUG
1198                 sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
1199                 log_debug("\ncmd: %s", buf);
1200                 if (run_command(buf, 0))
1201                         printf("fail !\n");
1202                 else
1203                         printf("OK\n");
1204
1205                 sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
1206                 run_command(buf, 0);
1207 #endif
1208                 puts("done\n");
1209         }
1210
1211 #ifdef DEBUG
1212         run_command("mtd list", 0);
1213 #endif
1214         free(buf);
1215
1216         return 0;
1217 }
1218
1219 static int stm32prog_alt_add(struct stm32prog_data *data,
1220                              struct dfu_entity *dfu,
1221                              struct stm32prog_part_t *part)
1222 {
1223         int ret = 0;
1224         int offset = 0;
1225         char devstr[10];
1226         char dfustr[10];
1227         char buf[ALT_BUF_LEN];
1228         u32 size;
1229         char multiplier,  type;
1230
1231         /* max 3 digit for sector size */
1232         if (part->size > SZ_1G) {
1233                 size = (u32)(part->size / SZ_1G);
1234                 multiplier = 'G';
1235         } else if (part->size > SZ_1M) {
1236                 size = (u32)(part->size / SZ_1M);
1237                 multiplier = 'M';
1238         } else if (part->size > SZ_1K) {
1239                 size = (u32)(part->size / SZ_1K);
1240                 multiplier = 'K';
1241         } else {
1242                 size = (u32)part->size;
1243                 multiplier = 'B';
1244         }
1245         if (IS_SELECT(part) && !IS_EMPTY(part))
1246                 type = 'e'; /*Readable and Writeable*/
1247         else
1248                 type = 'a';/*Readable*/
1249
1250         memset(buf, 0, sizeof(buf));
1251         offset = snprintf(buf, ALT_BUF_LEN - offset,
1252                           "@%s/0x%02x/1*%d%c%c ",
1253                           part->name, part->id,
1254                           size, multiplier, type);
1255
1256         if (part->target == STM32PROG_RAM) {
1257                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1258                                    "ram 0x%llx 0x%llx",
1259                                    part->addr, part->size);
1260         } else if (part->part_type == RAW_IMAGE) {
1261                 u64 dfu_size;
1262
1263                 if (part->dev->target == STM32PROG_MMC)
1264                         dfu_size = part->size / part->dev->mmc->read_bl_len;
1265                 else
1266                         dfu_size = part->size;
1267                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1268                                    "raw 0x0 0x%llx", dfu_size);
1269         } else if (part->part_id < 0) {
1270                 u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1271
1272                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1273                                    "raw 0x%llx 0x%llx",
1274                                    part->addr, nb_blk);
1275                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1276                                    " mmcpart %d", -(part->part_id));
1277         } else {
1278                 if (part->part_type == PART_SYSTEM &&
1279                     (part->target == STM32PROG_NAND ||
1280                      part->target == STM32PROG_NOR ||
1281                      part->target == STM32PROG_SPI_NAND))
1282                         offset += snprintf(buf + offset,
1283                                            ALT_BUF_LEN - offset,
1284                                            "partubi");
1285                 else
1286                         offset += snprintf(buf + offset,
1287                                            ALT_BUF_LEN - offset,
1288                                            "part");
1289                 /* dev_id requested by DFU MMC */
1290                 if (part->target == STM32PROG_MMC)
1291                         offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1292                                            " %d", part->dev_id);
1293                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1294                                    " %d", part->part_id);
1295         }
1296         ret = -ENODEV;
1297         switch (part->target) {
1298         case STM32PROG_MMC:
1299                 if (IS_ENABLED(CONFIG_MMC)) {
1300                         ret = 0;
1301                         sprintf(dfustr, "mmc");
1302                         sprintf(devstr, "%d", part->dev_id);
1303                 }
1304                 break;
1305         case STM32PROG_NAND:
1306         case STM32PROG_NOR:
1307         case STM32PROG_SPI_NAND:
1308                 if (IS_ENABLED(CONFIG_MTD)) {
1309                         ret = 0;
1310                         sprintf(dfustr, "mtd");
1311                         get_mtd_by_target(devstr, part->target, part->dev_id);
1312                 }
1313                 break;
1314         case STM32PROG_RAM:
1315                 ret = 0;
1316                 sprintf(dfustr, "ram");
1317                 sprintf(devstr, "0");
1318                 break;
1319         default:
1320                 break;
1321         }
1322         if (ret) {
1323                 stm32prog_err("invalid target: %d", part->target);
1324                 return ret;
1325         }
1326         log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1327         ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1328         log_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1329                   dfustr, devstr, buf, ret);
1330
1331         return ret;
1332 }
1333
1334 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1335                                   char *name, int phase, int size)
1336 {
1337         int ret = 0;
1338         char devstr[4];
1339         char buf[ALT_BUF_LEN];
1340
1341         sprintf(devstr, "%d", phase);
1342         sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1343         ret = dfu_alt_add(dfu, "virt", devstr, buf);
1344         log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1345
1346         return ret;
1347 }
1348
1349 static int dfu_init_entities(struct stm32prog_data *data)
1350 {
1351         int ret = 0;
1352         int phase, i, alt_id;
1353         struct stm32prog_part_t *part;
1354         struct dfu_entity *dfu;
1355         int alt_nb;
1356         u32 otp_size = 0;
1357
1358         alt_nb = 1; /* number of virtual = CMD*/
1359
1360         if (IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1361                 /* OTP_SIZE_SMC = 0 if SMC is not supported */
1362                 otp_size = OTP_SIZE_SMC;
1363                 /* check if PTA BSEC is supported */
1364                 ret = optee_ta_open(data);
1365                 log_debug("optee_ta_open(PTA_NVMEM) result %d\n", ret);
1366                 if (!ret && data->tee)
1367                         otp_size = OTP_SIZE_TA;
1368                 if (otp_size)
1369                         alt_nb++; /* OTP*/
1370         }
1371
1372         if (CONFIG_IS_ENABLED(DM_PMIC))
1373                 alt_nb++; /* PMIC NVMEM*/
1374
1375         if (data->part_nb == 0)
1376                 alt_nb++;  /* +1 for FlashLayout */
1377         else
1378                 for (i = 0; i < data->part_nb; i++) {
1379                         if (data->part_array[i].target != STM32PROG_NONE)
1380                                 alt_nb++;
1381                 }
1382
1383         if (dfu_alt_init(alt_nb, &dfu))
1384                 return -ENODEV;
1385
1386         puts("DFU alt info setting: ");
1387         if (data->part_nb) {
1388                 alt_id = 0;
1389                 ret = 0;
1390                 for (phase = 1;
1391                      (phase <= PHASE_LAST_USER) &&
1392                      (alt_id < alt_nb) && !ret;
1393                      phase++) {
1394                         /* ordering alt setting by phase id */
1395                         part = NULL;
1396                         for (i = 0; i < data->part_nb; i++) {
1397                                 if (phase == data->part_array[i].id) {
1398                                         part = &data->part_array[i];
1399                                         break;
1400                                 }
1401                         }
1402                         if (!part)
1403                                 continue;
1404                         if (part->target == STM32PROG_NONE)
1405                                 continue;
1406                         part->alt_id = alt_id;
1407                         alt_id++;
1408
1409                         ret = stm32prog_alt_add(data, dfu, part);
1410                 }
1411         } else {
1412                 char buf[ALT_BUF_LEN];
1413
1414                 sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1415                         PHASE_FLASHLAYOUT, CONFIG_SYS_LOAD_ADDR);
1416                 ret = dfu_alt_add(dfu, "ram", NULL, buf);
1417                 log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1418         }
1419
1420         if (!ret)
1421                 ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, CMD_SIZE);
1422
1423         if (!ret && IS_ENABLED(CONFIG_CMD_STM32PROG_OTP) && otp_size)
1424                 ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, otp_size);
1425
1426         if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1427                 ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, PMIC_SIZE);
1428
1429         if (ret)
1430                 stm32prog_err("dfu init failed: %d", ret);
1431         puts("done\n");
1432
1433 #ifdef DEBUG
1434         dfu_show_entities();
1435 #endif
1436         return ret;
1437 }
1438
1439 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1440                         long *size)
1441 {
1442         u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC;
1443         log_debug("%s: %x %lx\n", __func__, offset, *size);
1444
1445         if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1446                 stm32prog_err("OTP update not supported");
1447
1448                 return -EOPNOTSUPP;
1449         }
1450
1451         if (!data->otp_part) {
1452                 data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size);
1453                 if (!data->otp_part) {
1454                         stm32prog_err("OTP write issue %d", -ENOMEM);
1455
1456                         return -ENOMEM;
1457                 }
1458         }
1459
1460         if (!offset)
1461                 memset(data->otp_part, 0, otp_size);
1462
1463         if (offset + *size > otp_size)
1464                 *size = otp_size - offset;
1465
1466         memcpy((void *)((uintptr_t)data->otp_part + offset), buffer, *size);
1467
1468         return 0;
1469 }
1470
1471 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1472                        long *size)
1473 {
1474         u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC;
1475         int result = 0;
1476
1477         if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1478                 stm32prog_err("OTP update not supported");
1479
1480                 return -EOPNOTSUPP;
1481         }
1482
1483         log_debug("%s: %x %lx\n", __func__, offset, *size);
1484         /* alway read for first packet */
1485         if (!offset) {
1486                 if (!data->otp_part)
1487                         data->otp_part =
1488                                 memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size);
1489
1490                 if (!data->otp_part) {
1491                         result = -ENOMEM;
1492                         goto end_otp_read;
1493                 }
1494
1495                 /* init struct with 0 */
1496                 memset(data->otp_part, 0, otp_size);
1497
1498                 /* call the service */
1499                 result = -EOPNOTSUPP;
1500                 if (data->tee && CONFIG_IS_ENABLED(OPTEE))
1501                         result = optee_ta_invoke(data, TA_NVMEM_READ, NVMEM_OTP,
1502                                                  data->otp_part, OTP_SIZE_TA);
1503                 else if (IS_ENABLED(CONFIG_ARM_SMCCC))
1504                         result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1505                                                 (unsigned long)data->otp_part, 0);
1506                 if (result)
1507                         goto end_otp_read;
1508         }
1509
1510         if (!data->otp_part) {
1511                 result = -ENOMEM;
1512                 goto end_otp_read;
1513         }
1514
1515         if (offset + *size > otp_size)
1516                 *size = otp_size - offset;
1517         memcpy(buffer, (void *)((uintptr_t)data->otp_part + offset), *size);
1518
1519 end_otp_read:
1520         if (result)
1521                 stm32prog_err("OTP read issue %d", result);
1522         log_debug("%s: result %i\n", __func__, result);
1523
1524         return result;
1525 }
1526
1527 int stm32prog_otp_start(struct stm32prog_data *data)
1528 {
1529         int result = 0;
1530         struct arm_smccc_res res;
1531
1532         if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) {
1533                 stm32prog_err("OTP update not supported");
1534
1535                 return -EOPNOTSUPP;
1536         }
1537
1538         if (!data->otp_part) {
1539                 stm32prog_err("start OTP without data");
1540                 return -1;
1541         }
1542
1543         result = -EOPNOTSUPP;
1544         if (data->tee && CONFIG_IS_ENABLED(OPTEE)) {
1545                 result = optee_ta_invoke(data, TA_NVMEM_WRITE, NVMEM_OTP,
1546                                          data->otp_part, OTP_SIZE_TA);
1547         } else if (IS_ENABLED(CONFIG_ARM_SMCCC)) {
1548                 arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1549                               (uintptr_t)data->otp_part, 0, 0, 0, 0, 0, &res);
1550
1551                 if (!res.a0) {
1552                         switch (res.a1) {
1553                         case 0:
1554                                 result = 0;
1555                                 break;
1556                         case 1:
1557                                 stm32prog_err("Provisioning");
1558                                 result = 0;
1559                                 break;
1560                         default:
1561                                 log_err("%s: OTP incorrect value (err = %ld)\n",
1562                                         __func__, res.a1);
1563                                 result = -EINVAL;
1564                                 break;
1565                         }
1566                 } else {
1567                         log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1568                                 __func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1569                         result = -EINVAL;
1570                 }
1571         }
1572
1573         free(data->otp_part);
1574         data->otp_part = NULL;
1575         if (result)
1576                 stm32prog_err("OTP write issue %d", result);
1577         log_debug("%s: result %i\n", __func__, result);
1578
1579         return result;
1580 }
1581
1582 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1583                          long *size)
1584 {
1585         log_debug("%s: %x %lx\n", __func__, offset, *size);
1586
1587         if (!offset)
1588                 memset(data->pmic_part, 0, PMIC_SIZE);
1589
1590         if (offset + *size > PMIC_SIZE)
1591                 *size = PMIC_SIZE - offset;
1592
1593         memcpy(&data->pmic_part[offset], buffer, *size);
1594
1595         return 0;
1596 }
1597
1598 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1599                         long *size)
1600 {
1601         int result = 0, ret;
1602         struct udevice *dev;
1603
1604         if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) {
1605                 stm32prog_err("PMIC update not supported");
1606
1607                 return -EOPNOTSUPP;
1608         }
1609
1610         log_debug("%s: %x %lx\n", __func__, offset, *size);
1611         ret = uclass_get_device_by_driver(UCLASS_MISC,
1612                                           DM_DRIVER_GET(stpmic1_nvm),
1613                                           &dev);
1614         if (ret)
1615                 return ret;
1616
1617         /* alway request PMIC for first packet */
1618         if (!offset) {
1619                 /* init struct with 0 */
1620                 memset(data->pmic_part, 0, PMIC_SIZE);
1621
1622                 ret = uclass_get_device_by_driver(UCLASS_MISC,
1623                                                   DM_DRIVER_GET(stpmic1_nvm),
1624                                                   &dev);
1625                 if (ret)
1626                         return ret;
1627
1628                 ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1629                 if (ret < 0) {
1630                         result = ret;
1631                         goto end_pmic_read;
1632                 }
1633                 if (ret != PMIC_SIZE) {
1634                         result = -EACCES;
1635                         goto end_pmic_read;
1636                 }
1637         }
1638
1639         if (offset + *size > PMIC_SIZE)
1640                 *size = PMIC_SIZE - offset;
1641
1642         memcpy(buffer, &data->pmic_part[offset], *size);
1643
1644 end_pmic_read:
1645         log_debug("%s: result %i\n", __func__, result);
1646         return result;
1647 }
1648
1649 int stm32prog_pmic_start(struct stm32prog_data *data)
1650 {
1651         int ret;
1652         struct udevice *dev;
1653
1654         if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) {
1655                 stm32prog_err("PMIC update not supported");
1656
1657                 return -EOPNOTSUPP;
1658         }
1659
1660         ret = uclass_get_device_by_driver(UCLASS_MISC,
1661                                           DM_DRIVER_GET(stpmic1_nvm),
1662                                           &dev);
1663         if (ret)
1664                 return ret;
1665
1666         return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1667 }
1668
1669 /* copy FSBL on NAND to improve reliability on NAND */
1670 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1671 {
1672         int ret, i;
1673         void *fsbl;
1674         struct image_header_s header;
1675         struct stm32_header_v2 raw_header; /* V2 size > v1 size */
1676         struct dfu_entity *dfu;
1677         long size, offset;
1678
1679         if (part->target != STM32PROG_NAND &&
1680             part->target != STM32PROG_SPI_NAND)
1681                 return -EINVAL;
1682
1683         dfu = dfu_get_entity(part->alt_id);
1684
1685         /* read header */
1686         dfu_transaction_cleanup(dfu);
1687         size = sizeof(raw_header);
1688         ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1689         if (ret)
1690                 return ret;
1691
1692         stm32prog_header_check((ulong)&raw_header, &header);
1693         if (header.type != HEADER_STM32IMAGE &&
1694             header.type != HEADER_STM32IMAGE_V2)
1695                 return -ENOENT;
1696
1697         /* read header + payload */
1698         size = header.image_length + header.length;
1699         size = round_up(size, part->dev->mtd->erasesize);
1700         fsbl = calloc(1, size);
1701         if (!fsbl)
1702                 return -ENOMEM;
1703         ret = dfu->read_medium(dfu, 0, fsbl, &size);
1704         log_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1705         if (ret)
1706                 goto error;
1707
1708         dfu_transaction_cleanup(dfu);
1709         offset = 0;
1710         for (i = part->bin_nb - 1; i > 0; i--) {
1711                 offset += size;
1712                 /* write to the next erase block */
1713                 ret = dfu->write_medium(dfu, offset, fsbl, &size);
1714                 log_debug("%s copy at ofset=%lx size=%lx ret=%d",
1715                           __func__, offset, size, ret);
1716                 if (ret)
1717                         goto error;
1718         }
1719
1720 error:
1721         free(fsbl);
1722         return ret;
1723 }
1724
1725 static void stm32prog_end_phase(struct stm32prog_data *data, u64 offset)
1726 {
1727         if (data->phase == PHASE_FLASHLAYOUT) {
1728 #if defined(CONFIG_LEGACY_IMAGE_FORMAT)
1729                 if (genimg_get_format((void *)CONFIG_SYS_LOAD_ADDR) == IMAGE_FORMAT_LEGACY) {
1730                         data->script = CONFIG_SYS_LOAD_ADDR;
1731                         data->phase = PHASE_END;
1732                         log_notice("U-Boot script received\n");
1733                         return;
1734                 }
1735 #endif
1736                 log_notice("\nFlashLayout received, size = %lld\n", offset);
1737                 if (parse_flash_layout(data, CONFIG_SYS_LOAD_ADDR, offset))
1738                         stm32prog_err("Layout: invalid FlashLayout");
1739                 return;
1740         }
1741
1742         if (!data->cur_part)
1743                 return;
1744
1745         if (data->cur_part->target == STM32PROG_RAM) {
1746                 if (data->cur_part->part_type == PART_SYSTEM)
1747                         data->uimage = data->cur_part->addr;
1748                 if (data->cur_part->part_type == PART_FILESYSTEM)
1749                         data->dtb = data->cur_part->addr;
1750                 if (data->cur_part->part_type == PART_BINARY) {
1751                         data->initrd = data->cur_part->addr;
1752                         data->initrd_size = offset;
1753                 }
1754         }
1755
1756         if (CONFIG_IS_ENABLED(MMC) &&
1757             data->cur_part->part_id < 0) {
1758                 char cmdbuf[60];
1759
1760                 sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1761                         data->cur_part->dev_id, data->cur_part->dev_id,
1762                         -(data->cur_part->part_id));
1763                 if (run_command(cmdbuf, 0)) {
1764                         stm32prog_err("commands '%s' failed", cmdbuf);
1765                         return;
1766                 }
1767         }
1768
1769         if (IS_ENABLED(CONFIG_MTD) &&
1770             data->cur_part->bin_nb > 1) {
1771                 if (stm32prog_copy_fsbl(data->cur_part)) {
1772                         stm32prog_err("%s (0x%x): copy of fsbl failed",
1773                                       data->cur_part->name, data->cur_part->id);
1774                         return;
1775                 }
1776         }
1777 }
1778
1779 void stm32prog_do_reset(struct stm32prog_data *data)
1780 {
1781         if (data->phase == PHASE_RESET) {
1782                 data->phase = PHASE_DO_RESET;
1783                 puts("Reset requested\n");
1784         }
1785 }
1786
1787 void stm32prog_next_phase(struct stm32prog_data *data)
1788 {
1789         int phase, i;
1790         struct stm32prog_part_t *part;
1791         bool found;
1792
1793         phase = data->phase;
1794         switch (phase) {
1795         case PHASE_RESET:
1796         case PHASE_END:
1797         case PHASE_DO_RESET:
1798                 return;
1799         }
1800
1801         /* found next selected partition */
1802         data->dfu_seq = 0;
1803         data->cur_part = NULL;
1804         data->phase = PHASE_END;
1805         found = false;
1806         do {
1807                 phase++;
1808                 if (phase > PHASE_LAST_USER)
1809                         break;
1810                 for (i = 0; i < data->part_nb; i++) {
1811                         part = &data->part_array[i];
1812                         if (part->id == phase) {
1813                                 if (IS_SELECT(part) && !IS_EMPTY(part)) {
1814                                         data->cur_part = part;
1815                                         data->phase = phase;
1816                                         found = true;
1817                                 }
1818                                 break;
1819                         }
1820                 }
1821         } while (!found);
1822
1823         if (data->phase == PHASE_END)
1824                 puts("Phase=END\n");
1825 }
1826
1827 static int part_delete(struct stm32prog_data *data,
1828                        struct stm32prog_part_t *part)
1829 {
1830         int ret = 0;
1831         unsigned long blks, blks_offset, blks_size;
1832         struct blk_desc *block_dev = NULL;
1833         char cmdbuf[40];
1834         char devstr[10];
1835
1836         printf("Erasing %s ", part->name);
1837         switch (part->target) {
1838         case STM32PROG_MMC:
1839                 if (!IS_ENABLED(CONFIG_MMC)) {
1840                         ret = -1;
1841                         stm32prog_err("%s (0x%x): erase invalid",
1842                                       part->name, part->id);
1843                         break;
1844                 }
1845                 printf("on mmc %d: ", part->dev->dev_id);
1846                 block_dev = mmc_get_blk_desc(part->dev->mmc);
1847                 blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1848                 blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1849                 /* -1 or -2 : delete boot partition of MMC
1850                  * need to switch to associated hwpart 1 or 2
1851                  */
1852                 if (part->part_id < 0)
1853                         if (blk_select_hwpart_devnum(UCLASS_MMC,
1854                                                      part->dev->dev_id,
1855                                                      -part->part_id))
1856                                 return -1;
1857
1858                 blks = blk_derase(block_dev, blks_offset, blks_size);
1859
1860                 /* return to user partition */
1861                 if (part->part_id < 0)
1862                         blk_select_hwpart_devnum(UCLASS_MMC,
1863                                                  part->dev->dev_id, 0);
1864                 if (blks != blks_size) {
1865                         ret = -1;
1866                         stm32prog_err("%s (0x%x): MMC erase failed",
1867                                       part->name, part->id);
1868                 }
1869                 break;
1870         case STM32PROG_NOR:
1871         case STM32PROG_NAND:
1872         case STM32PROG_SPI_NAND:
1873                 if (!IS_ENABLED(CONFIG_MTD)) {
1874                         ret = -1;
1875                         stm32prog_err("%s (0x%x): erase invalid",
1876                                       part->name, part->id);
1877                         break;
1878                 }
1879                 get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1880                 printf("on %s: ", devstr);
1881                 sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1882                         devstr, part->addr, part->size);
1883                 if (run_command(cmdbuf, 0)) {
1884                         ret = -1;
1885                         stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1886                                       part->name, part->id, cmdbuf);
1887                 }
1888                 break;
1889         case STM32PROG_RAM:
1890                 printf("on ram: ");
1891                 memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1892                 break;
1893         default:
1894                 ret = -1;
1895                 stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1896                 break;
1897         }
1898         if (!ret)
1899                 printf("done\n");
1900
1901         return ret;
1902 }
1903
1904 static void stm32prog_devices_init(struct stm32prog_data *data)
1905 {
1906         int i;
1907         int ret;
1908         struct stm32prog_part_t *part;
1909
1910         ret = treat_partition_list(data);
1911         if (ret)
1912                 goto error;
1913
1914         /* empty flashlayout */
1915         if (!data->dev_nb)
1916                 return;
1917
1918         /* initialize the selected device */
1919         for (i = 0; i < data->dev_nb; i++) {
1920                 ret = init_device(data, &data->dev[i]);
1921                 if (ret)
1922                         goto error;
1923         }
1924
1925         /* delete RAW partition before create partition */
1926         for (i = 0; i < data->part_nb; i++) {
1927                 part = &data->part_array[i];
1928
1929                 if (part->part_type != RAW_IMAGE)
1930                         continue;
1931
1932                 if (!IS_SELECT(part) || !IS_DELETE(part))
1933                         continue;
1934
1935                 ret = part_delete(data, part);
1936                 if (ret)
1937                         goto error;
1938         }
1939
1940         if (IS_ENABLED(CONFIG_MMC)) {
1941                 ret = create_gpt_partitions(data);
1942                 if (ret)
1943                         goto error;
1944         }
1945
1946         /* delete partition GPT or MTD */
1947         for (i = 0; i < data->part_nb; i++) {
1948                 part = &data->part_array[i];
1949
1950                 if (part->part_type == RAW_IMAGE)
1951                         continue;
1952
1953                 if (!IS_SELECT(part) || !IS_DELETE(part))
1954                         continue;
1955
1956                 ret = part_delete(data, part);
1957                 if (ret)
1958                         goto error;
1959         }
1960
1961         return;
1962
1963 error:
1964         data->part_nb = 0;
1965 }
1966
1967 int stm32prog_dfu_init(struct stm32prog_data *data)
1968 {
1969         /* init device if no error */
1970         if (data->part_nb)
1971                 stm32prog_devices_init(data);
1972
1973         if (data->part_nb)
1974                 stm32prog_next_phase(data);
1975
1976         /* prepare DFU for device read/write */
1977         dfu_free_entities();
1978         return dfu_init_entities(data);
1979 }
1980
1981 int stm32prog_init(struct stm32prog_data *data, uintptr_t addr, ulong size)
1982 {
1983         memset(data, 0x0, sizeof(*data));
1984         data->read_phase = PHASE_RESET;
1985         data->phase = PHASE_FLASHLAYOUT;
1986
1987         return parse_flash_layout(data, addr, size);
1988 }
1989
1990 void stm32prog_clean(struct stm32prog_data *data)
1991 {
1992         /* clean */
1993         dfu_free_entities();
1994         free(data->part_array);
1995         free(data->otp_part);
1996         free(data->buffer);
1997
1998         if (CONFIG_IS_ENABLED(OPTEE) && data->tee) {
1999                 tee_close_session(data->tee, data->tee_session);
2000                 data->tee = NULL;
2001                 data->tee_session = 0x0;
2002         }
2003 }
2004
2005 /* DFU callback: used after serial and direct DFU USB access */
2006 void dfu_flush_callback(struct dfu_entity *dfu)
2007 {
2008         if (!stm32prog_data)
2009                 return;
2010
2011         if (dfu->dev_type == DFU_DEV_VIRT) {
2012                 if (dfu->data.virt.dev_num == PHASE_OTP)
2013                         stm32prog_otp_start(stm32prog_data);
2014                 else if (dfu->data.virt.dev_num == PHASE_PMIC)
2015                         stm32prog_pmic_start(stm32prog_data);
2016                 return;
2017         }
2018
2019         if (dfu->dev_type == DFU_DEV_RAM) {
2020                 if (dfu->alt == 0 &&
2021                     stm32prog_data->phase == PHASE_FLASHLAYOUT) {
2022                         stm32prog_end_phase(stm32prog_data, dfu->offset);
2023                         /* waiting DFU DETACH for reenumeration */
2024                 }
2025         }
2026
2027         if (!stm32prog_data->cur_part)
2028                 return;
2029
2030         if (dfu->alt == stm32prog_data->cur_part->alt_id) {
2031                 stm32prog_end_phase(stm32prog_data, dfu->offset);
2032                 stm32prog_next_phase(stm32prog_data);
2033         }
2034 }
2035
2036 void dfu_initiated_callback(struct dfu_entity *dfu)
2037 {
2038         if (!stm32prog_data)
2039                 return;
2040
2041         if (!stm32prog_data->cur_part)
2042                 return;
2043
2044         /* force the saved offset for the current partition */
2045         if (dfu->alt == stm32prog_data->cur_part->alt_id) {
2046                 dfu->offset = stm32prog_data->offset;
2047                 stm32prog_data->dfu_seq = 0;
2048                 log_debug("dfu offset = 0x%llx\n", dfu->offset);
2049         }
2050 }
2051
2052 void dfu_error_callback(struct dfu_entity *dfu, const char *msg)
2053 {
2054         struct stm32prog_data *data = stm32prog_data;
2055
2056         if (!stm32prog_data)
2057                 return;
2058
2059         if (!stm32prog_data->cur_part)
2060                 return;
2061
2062         if (dfu->alt == stm32prog_data->cur_part->alt_id)
2063                 stm32prog_err(msg);
2064 }
This page took 0.146078 seconds and 4 git commands to generate.