]>
Commit | Line | Data |
---|---|---|
f739fcd8 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
5d00995c AG |
2 | /* |
3 | * EFI application memory management | |
4 | * | |
5 | * Copyright (c) 2016 Alexander Graf | |
5d00995c AG |
6 | */ |
7 | ||
f606fab8 HS |
8 | #define LOG_CATEGORY LOGC_EFI |
9 | ||
5d00995c AG |
10 | #include <common.h> |
11 | #include <efi_loader.h> | |
67c4e9f8 | 12 | #include <init.h> |
f606fab8 | 13 | #include <log.h> |
5d00995c | 14 | #include <malloc.h> |
282a06cb | 15 | #include <mapmem.h> |
bdecaebd | 16 | #include <watchdog.h> |
90526e9f | 17 | #include <asm/cache.h> |
401d1c4f | 18 | #include <asm/global_data.h> |
38ce65e1 | 19 | #include <linux/list_sort.h> |
7a82c305 | 20 | #include <linux/sizes.h> |
5d00995c AG |
21 | |
22 | DECLARE_GLOBAL_DATA_PTR; | |
23 | ||
2c3ec289 HS |
24 | /* Magic number identifying memory allocated from pool */ |
25 | #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2 | |
26 | ||
1fcb7ea2 HS |
27 | efi_uintn_t efi_memory_map_key; |
28 | ||
5d00995c AG |
29 | struct efi_mem_list { |
30 | struct list_head link; | |
31 | struct efi_mem_desc desc; | |
32 | }; | |
33 | ||
74c16acc AG |
34 | #define EFI_CARVE_NO_OVERLAP -1 |
35 | #define EFI_CARVE_LOOP_AGAIN -2 | |
36 | #define EFI_CARVE_OVERLAPS_NONRAM -3 | |
257a498f | 37 | #define EFI_CARVE_OUT_OF_RESOURCES -4 |
74c16acc | 38 | |
5d00995c | 39 | /* This list contains all memory map items */ |
207b6864 | 40 | static LIST_HEAD(efi_mem); |
5d00995c | 41 | |
51735ae0 AG |
42 | #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
43 | void *efi_bounce_buffer; | |
44 | #endif | |
45 | ||
2c3ec289 | 46 | /** |
4be077b2 | 47 | * struct efi_pool_allocation - memory block allocated from pool |
2c3ec289 HS |
48 | * |
49 | * @num_pages: number of pages allocated | |
50 | * @checksum: checksum | |
4be077b2 | 51 | * @data: allocated pool memory |
2c3ec289 | 52 | * |
4be077b2 HS |
53 | * U-Boot services each UEFI AllocatePool() request as a separate |
54 | * (multiple) page allocation. We have to track the number of pages | |
42417bc8 | 55 | * to be able to free the correct amount later. |
4be077b2 HS |
56 | * |
57 | * The checksum calculated in function checksum() is used in FreePool() to avoid | |
58 | * freeing memory not allocated by AllocatePool() and duplicate freeing. | |
59 | * | |
42417bc8 | 60 | * EFI requires 8 byte alignment for pool allocations, so we can |
4be077b2 | 61 | * prepend each allocation with these header fields. |
42417bc8 SB |
62 | */ |
63 | struct efi_pool_allocation { | |
64 | u64 num_pages; | |
2c3ec289 | 65 | u64 checksum; |
946160f3 | 66 | char data[] __aligned(ARCH_DMA_MINALIGN); |
42417bc8 SB |
67 | }; |
68 | ||
2c3ec289 HS |
69 | /** |
70 | * checksum() - calculate checksum for memory allocated from pool | |
71 | * | |
72 | * @alloc: allocation header | |
73 | * Return: checksum, always non-zero | |
74 | */ | |
75 | static u64 checksum(struct efi_pool_allocation *alloc) | |
76 | { | |
77 | u64 addr = (uintptr_t)alloc; | |
78 | u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^ | |
79 | EFI_ALLOC_POOL_MAGIC; | |
80 | if (!ret) | |
81 | ++ret; | |
82 | return ret; | |
83 | } | |
84 | ||
0763c02e HS |
85 | /** |
86 | * efi_mem_cmp() - comparator function for sorting memory map | |
87 | * | |
38ce65e1 AG |
88 | * Sorts the memory list from highest address to lowest address |
89 | * | |
90 | * When allocating memory we should always start from the highest | |
91 | * address chunk, so sort the memory list such that the first list | |
92 | * iterator gets the highest address and goes lower from there. | |
0763c02e HS |
93 | * |
94 | * @priv: unused | |
95 | * @a: first memory area | |
96 | * @b: second memory area | |
97 | * Return: 1 if @a is before @b, -1 if @b is before @a, 0 if equal | |
38ce65e1 AG |
98 | */ |
99 | static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) | |
100 | { | |
101 | struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); | |
102 | struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); | |
103 | ||
104 | if (mema->desc.physical_start == memb->desc.physical_start) | |
105 | return 0; | |
106 | else if (mema->desc.physical_start < memb->desc.physical_start) | |
107 | return 1; | |
108 | else | |
109 | return -1; | |
110 | } | |
111 | ||
0763c02e HS |
112 | /** |
113 | * desc_get_end() - get end address of memory area | |
114 | * | |
115 | * @desc: memory descriptor | |
116 | * Return: end address + 1 | |
117 | */ | |
7b05667c AG |
118 | static uint64_t desc_get_end(struct efi_mem_desc *desc) |
119 | { | |
120 | return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT); | |
121 | } | |
122 | ||
0763c02e HS |
123 | /** |
124 | * efi_mem_sort() - sort memory map | |
125 | * | |
126 | * Sort the memory map and then try to merge adjacent memory areas. | |
127 | */ | |
38ce65e1 AG |
128 | static void efi_mem_sort(void) |
129 | { | |
7b05667c AG |
130 | struct list_head *lhandle; |
131 | struct efi_mem_list *prevmem = NULL; | |
132 | bool merge_again = true; | |
133 | ||
38ce65e1 | 134 | list_sort(NULL, &efi_mem, efi_mem_cmp); |
7b05667c AG |
135 | |
136 | /* Now merge entries that can be merged */ | |
137 | while (merge_again) { | |
138 | merge_again = false; | |
139 | list_for_each(lhandle, &efi_mem) { | |
140 | struct efi_mem_list *lmem; | |
141 | struct efi_mem_desc *prev = &prevmem->desc; | |
142 | struct efi_mem_desc *cur; | |
143 | uint64_t pages; | |
144 | ||
145 | lmem = list_entry(lhandle, struct efi_mem_list, link); | |
146 | if (!prevmem) { | |
147 | prevmem = lmem; | |
148 | continue; | |
149 | } | |
150 | ||
151 | cur = &lmem->desc; | |
152 | ||
153 | if ((desc_get_end(cur) == prev->physical_start) && | |
154 | (prev->type == cur->type) && | |
155 | (prev->attribute == cur->attribute)) { | |
156 | /* There is an existing map before, reuse it */ | |
157 | pages = cur->num_pages; | |
158 | prev->num_pages += pages; | |
159 | prev->physical_start -= pages << EFI_PAGE_SHIFT; | |
160 | prev->virtual_start -= pages << EFI_PAGE_SHIFT; | |
161 | list_del(&lmem->link); | |
162 | free(lmem); | |
163 | ||
164 | merge_again = true; | |
165 | break; | |
166 | } | |
167 | ||
168 | prevmem = lmem; | |
169 | } | |
170 | } | |
38ce65e1 AG |
171 | } |
172 | ||
0763c02e HS |
173 | /** |
174 | * efi_mem_carve_out() - unmap memory region | |
32826140 HS |
175 | * |
176 | * @map: memory map | |
177 | * @carve_desc: memory region to unmap | |
178 | * @overlap_only_ram: the carved out region may only overlap RAM | |
0763c02e | 179 | * Return: the number of overlapping pages which have been |
32826140 HS |
180 | * removed from the map, |
181 | * EFI_CARVE_NO_OVERLAP, if the regions don't overlap, | |
182 | * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap, | |
183 | * and the map contains anything but free ram | |
184 | * (only when overlap_only_ram is true), | |
185 | * EFI_CARVE_LOOP_AGAIN, if the mapping list should be | |
186 | * traversed again, as it has been altered. | |
5d00995c | 187 | * |
32826140 HS |
188 | * Unmaps all memory occupied by the carve_desc region from the list entry |
189 | * pointed to by map. | |
852efbf5 SB |
190 | * |
191 | * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility | |
32826140 | 192 | * to re-add the already carved out pages to the mapping. |
5d00995c | 193 | */ |
32826140 | 194 | static s64 efi_mem_carve_out(struct efi_mem_list *map, |
5d00995c AG |
195 | struct efi_mem_desc *carve_desc, |
196 | bool overlap_only_ram) | |
197 | { | |
198 | struct efi_mem_list *newmap; | |
199 | struct efi_mem_desc *map_desc = &map->desc; | |
200 | uint64_t map_start = map_desc->physical_start; | |
201 | uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); | |
202 | uint64_t carve_start = carve_desc->physical_start; | |
203 | uint64_t carve_end = carve_start + | |
204 | (carve_desc->num_pages << EFI_PAGE_SHIFT); | |
205 | ||
206 | /* check whether we're overlapping */ | |
207 | if ((carve_end <= map_start) || (carve_start >= map_end)) | |
74c16acc | 208 | return EFI_CARVE_NO_OVERLAP; |
5d00995c AG |
209 | |
210 | /* We're overlapping with non-RAM, warn the caller if desired */ | |
211 | if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) | |
74c16acc | 212 | return EFI_CARVE_OVERLAPS_NONRAM; |
5d00995c AG |
213 | |
214 | /* Sanitize carve_start and carve_end to lie within our bounds */ | |
215 | carve_start = max(carve_start, map_start); | |
216 | carve_end = min(carve_end, map_end); | |
217 | ||
218 | /* Carving at the beginning of our map? Just move it! */ | |
219 | if (carve_start == map_start) { | |
220 | if (map_end == carve_end) { | |
221 | /* Full overlap, just remove map */ | |
222 | list_del(&map->link); | |
511d0b97 SB |
223 | free(map); |
224 | } else { | |
225 | map->desc.physical_start = carve_end; | |
9631fa0f | 226 | map->desc.virtual_start = carve_end; |
511d0b97 SB |
227 | map->desc.num_pages = (map_end - carve_end) |
228 | >> EFI_PAGE_SHIFT; | |
5d00995c AG |
229 | } |
230 | ||
74c16acc | 231 | return (carve_end - carve_start) >> EFI_PAGE_SHIFT; |
5d00995c AG |
232 | } |
233 | ||
234 | /* | |
235 | * Overlapping maps, just split the list map at carve_start, | |
236 | * it will get moved or removed in the next iteration. | |
237 | * | |
238 | * [ map_desc |__carve_start__| newmap ] | |
239 | */ | |
240 | ||
241 | /* Create a new map from [ carve_start ... map_end ] */ | |
242 | newmap = calloc(1, sizeof(*newmap)); | |
257a498f HS |
243 | if (!newmap) |
244 | return EFI_CARVE_OUT_OF_RESOURCES; | |
5d00995c AG |
245 | newmap->desc = map->desc; |
246 | newmap->desc.physical_start = carve_start; | |
9631fa0f | 247 | newmap->desc.virtual_start = carve_start; |
5d00995c | 248 | newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; |
b6a95172 SB |
249 | /* Insert before current entry (descending address order) */ |
250 | list_add_tail(&newmap->link, &map->link); | |
5d00995c AG |
251 | |
252 | /* Shrink the map to [ map_start ... carve_start ] */ | |
253 | map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; | |
254 | ||
74c16acc | 255 | return EFI_CARVE_LOOP_AGAIN; |
5d00995c AG |
256 | } |
257 | ||
b225c92f | 258 | /** |
714497e3 | 259 | * efi_add_memory_map_pg() - add pages to the memory map |
b225c92f BD |
260 | * |
261 | * @start: start address, must be a multiple of EFI_PAGE_SIZE | |
262 | * @pages: number of pages to add | |
263 | * @memory_type: type of memory added | |
ffbeafe7 | 264 | * @overlap_only_ram: region may only overlap RAM |
b225c92f BD |
265 | * Return: status code |
266 | */ | |
714497e3 MW |
267 | static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages, |
268 | int memory_type, | |
269 | bool overlap_only_ram) | |
5d00995c AG |
270 | { |
271 | struct list_head *lhandle; | |
272 | struct efi_mem_list *newlist; | |
74c16acc AG |
273 | bool carve_again; |
274 | uint64_t carved_pages = 0; | |
e80474ad | 275 | struct efi_event *evt; |
5d00995c | 276 | |
e301e024 HS |
277 | EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__, |
278 | start, pages, memory_type, overlap_only_ram ? "yes" : "no"); | |
c933ed94 | 279 | |
1fcb7ea2 HS |
280 | if (memory_type >= EFI_MAX_MEMORY_TYPE) |
281 | return EFI_INVALID_PARAMETER; | |
282 | ||
5d00995c | 283 | if (!pages) |
b225c92f | 284 | return EFI_SUCCESS; |
5d00995c | 285 | |
1fcb7ea2 | 286 | ++efi_memory_map_key; |
5d00995c | 287 | newlist = calloc(1, sizeof(*newlist)); |
ba275630 HS |
288 | if (!newlist) |
289 | return EFI_OUT_OF_RESOURCES; | |
5d00995c AG |
290 | newlist->desc.type = memory_type; |
291 | newlist->desc.physical_start = start; | |
292 | newlist->desc.virtual_start = start; | |
293 | newlist->desc.num_pages = pages; | |
294 | ||
295 | switch (memory_type) { | |
296 | case EFI_RUNTIME_SERVICES_CODE: | |
297 | case EFI_RUNTIME_SERVICES_DATA: | |
9b89183b | 298 | newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME; |
5d00995c AG |
299 | break; |
300 | case EFI_MMAP_IO: | |
9b89183b | 301 | newlist->desc.attribute = EFI_MEMORY_RUNTIME; |
5d00995c AG |
302 | break; |
303 | default: | |
9b89183b | 304 | newlist->desc.attribute = EFI_MEMORY_WB; |
5d00995c AG |
305 | break; |
306 | } | |
307 | ||
308 | /* Add our new map */ | |
309 | do { | |
74c16acc | 310 | carve_again = false; |
5d00995c AG |
311 | list_for_each(lhandle, &efi_mem) { |
312 | struct efi_mem_list *lmem; | |
32826140 | 313 | s64 r; |
5d00995c AG |
314 | |
315 | lmem = list_entry(lhandle, struct efi_mem_list, link); | |
316 | r = efi_mem_carve_out(lmem, &newlist->desc, | |
317 | overlap_only_ram); | |
74c16acc | 318 | switch (r) { |
257a498f HS |
319 | case EFI_CARVE_OUT_OF_RESOURCES: |
320 | free(newlist); | |
321 | return EFI_OUT_OF_RESOURCES; | |
74c16acc AG |
322 | case EFI_CARVE_OVERLAPS_NONRAM: |
323 | /* | |
324 | * The user requested to only have RAM overlaps, | |
325 | * but we hit a non-RAM region. Error out. | |
326 | */ | |
ecae4bbf | 327 | free(newlist); |
b225c92f | 328 | return EFI_NO_MAPPING; |
74c16acc AG |
329 | case EFI_CARVE_NO_OVERLAP: |
330 | /* Just ignore this list entry */ | |
331 | break; | |
332 | case EFI_CARVE_LOOP_AGAIN: | |
333 | /* | |
334 | * We split an entry, but need to loop through | |
335 | * the list again to actually carve it. | |
336 | */ | |
337 | carve_again = true; | |
338 | break; | |
339 | default: | |
340 | /* We carved a number of pages */ | |
341 | carved_pages += r; | |
342 | carve_again = true; | |
343 | break; | |
344 | } | |
345 | ||
346 | if (carve_again) { | |
347 | /* The list changed, we need to start over */ | |
5d00995c AG |
348 | break; |
349 | } | |
350 | } | |
74c16acc AG |
351 | } while (carve_again); |
352 | ||
353 | if (overlap_only_ram && (carved_pages != pages)) { | |
354 | /* | |
355 | * The payload wanted to have RAM overlaps, but we overlapped | |
356 | * with an unallocated region. Error out. | |
357 | */ | |
ecae4bbf | 358 | free(newlist); |
b225c92f | 359 | return EFI_NO_MAPPING; |
74c16acc | 360 | } |
5d00995c AG |
361 | |
362 | /* Add our new map */ | |
363 | list_add_tail(&newlist->link, &efi_mem); | |
364 | ||
38ce65e1 AG |
365 | /* And make sure memory is listed in descending order */ |
366 | efi_mem_sort(); | |
367 | ||
e80474ad HS |
368 | /* Notify that the memory map was changed */ |
369 | list_for_each_entry(evt, &efi_events, link) { | |
370 | if (evt->group && | |
371 | !guidcmp(evt->group, | |
372 | &efi_guid_event_group_memory_map_change)) { | |
7eaa900e | 373 | efi_signal_event(evt); |
e80474ad HS |
374 | break; |
375 | } | |
376 | } | |
377 | ||
b225c92f | 378 | return EFI_SUCCESS; |
5d00995c AG |
379 | } |
380 | ||
714497e3 MW |
381 | /** |
382 | * efi_add_memory_map() - add memory area to the memory map | |
383 | * | |
384 | * @start: start address of the memory area | |
385 | * @size: length in bytes of the memory area | |
386 | * @memory_type: type of memory added | |
387 | * | |
388 | * Return: status code | |
389 | * | |
390 | * This function automatically aligns the start and size of the memory area | |
391 | * to EFI_PAGE_SIZE. | |
392 | */ | |
393 | efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type) | |
394 | { | |
395 | u64 pages; | |
396 | ||
397 | pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK)); | |
398 | start &= ~EFI_PAGE_MASK; | |
399 | ||
400 | return efi_add_memory_map_pg(start, pages, memory_type, false); | |
401 | } | |
402 | ||
7d3af58e HS |
403 | /** |
404 | * efi_check_allocated() - validate address to be freed | |
405 | * | |
406 | * Check that the address is within allocated memory: | |
407 | * | |
7d3af58e HS |
408 | * * The address must be in a range of the memory map. |
409 | * * The address may not point to EFI_CONVENTIONAL_MEMORY. | |
410 | * | |
411 | * Page alignment is not checked as this is not a requirement of | |
412 | * efi_free_pool(). | |
413 | * | |
f756fe83 HS |
414 | * @addr: address of page to be freed |
415 | * @must_be_allocated: return success if the page is allocated | |
416 | * Return: status code | |
7d3af58e | 417 | */ |
f756fe83 | 418 | static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated) |
7d3af58e HS |
419 | { |
420 | struct efi_mem_list *item; | |
421 | ||
7d3af58e HS |
422 | list_for_each_entry(item, &efi_mem, link) { |
423 | u64 start = item->desc.physical_start; | |
424 | u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT); | |
425 | ||
426 | if (addr >= start && addr < end) { | |
f756fe83 HS |
427 | if (must_be_allocated ^ |
428 | (item->desc.type == EFI_CONVENTIONAL_MEMORY)) | |
7d3af58e HS |
429 | return EFI_SUCCESS; |
430 | else | |
431 | return EFI_NOT_FOUND; | |
432 | } | |
433 | } | |
434 | ||
435 | return EFI_NOT_FOUND; | |
436 | } | |
437 | ||
0763c02e HS |
438 | /** |
439 | * efi_find_free_memory() - find free memory pages | |
440 | * | |
441 | * @len: size of memory area needed | |
442 | * @max_addr: highest address to allocate | |
443 | * Return: pointer to free memory area or 0 | |
444 | */ | |
5d00995c AG |
445 | static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) |
446 | { | |
447 | struct list_head *lhandle; | |
448 | ||
c2e1ad70 AG |
449 | /* |
450 | * Prealign input max address, so we simplify our matching | |
451 | * logic below and can just reuse it as return pointer. | |
452 | */ | |
453 | max_addr &= ~EFI_PAGE_MASK; | |
454 | ||
5d00995c AG |
455 | list_for_each(lhandle, &efi_mem) { |
456 | struct efi_mem_list *lmem = list_entry(lhandle, | |
457 | struct efi_mem_list, link); | |
458 | struct efi_mem_desc *desc = &lmem->desc; | |
459 | uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; | |
460 | uint64_t desc_end = desc->physical_start + desc_len; | |
461 | uint64_t curmax = min(max_addr, desc_end); | |
462 | uint64_t ret = curmax - len; | |
463 | ||
464 | /* We only take memory from free RAM */ | |
465 | if (desc->type != EFI_CONVENTIONAL_MEMORY) | |
466 | continue; | |
467 | ||
468 | /* Out of bounds for max_addr */ | |
469 | if ((ret + len) > max_addr) | |
470 | continue; | |
471 | ||
472 | /* Out of bounds for upper map limit */ | |
473 | if ((ret + len) > desc_end) | |
474 | continue; | |
475 | ||
476 | /* Out of bounds for lower map limit */ | |
477 | if (ret < desc->physical_start) | |
478 | continue; | |
479 | ||
480 | /* Return the highest address in this map within bounds */ | |
481 | return ret; | |
482 | } | |
483 | ||
484 | return 0; | |
485 | } | |
486 | ||
0763c02e HS |
487 | /** |
488 | * efi_allocate_pages - allocate memory pages | |
474a6f5a | 489 | * |
0763c02e HS |
490 | * @type: type of allocation to be performed |
491 | * @memory_type: usage type of the allocated memory | |
492 | * @pages: number of pages to be allocated | |
493 | * @memory: allocated memory | |
185f812c | 494 | * Return: status code |
474a6f5a | 495 | */ |
49d225e7 HS |
496 | efi_status_t efi_allocate_pages(enum efi_allocate_type type, |
497 | enum efi_memory_type memory_type, | |
f5a2a938 | 498 | efi_uintn_t pages, uint64_t *memory) |
5d00995c | 499 | { |
48d183f2 | 500 | u64 len; |
8ae39857 | 501 | efi_status_t ret; |
5d00995c AG |
502 | uint64_t addr; |
503 | ||
f12bcc91 HS |
504 | /* Check import parameters */ |
505 | if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE && | |
506 | memory_type <= 0x6FFFFFFF) | |
507 | return EFI_INVALID_PARAMETER; | |
4d5e071e HS |
508 | if (!memory) |
509 | return EFI_INVALID_PARAMETER; | |
48d183f2 HS |
510 | len = (u64)pages << EFI_PAGE_SHIFT; |
511 | /* Catch possible overflow on 64bit systems */ | |
512 | if (sizeof(efi_uintn_t) == sizeof(u64) && | |
513 | (len >> EFI_PAGE_SHIFT) != (u64)pages) | |
514 | return EFI_OUT_OF_RESOURCES; | |
4d5e071e | 515 | |
5d00995c | 516 | switch (type) { |
7c92fd69 | 517 | case EFI_ALLOCATE_ANY_PAGES: |
5d00995c | 518 | /* Any page */ |
14deb5e6 | 519 | addr = efi_find_free_memory(len, -1ULL); |
8ae39857 HS |
520 | if (!addr) |
521 | return EFI_OUT_OF_RESOURCES; | |
5d00995c | 522 | break; |
7c92fd69 | 523 | case EFI_ALLOCATE_MAX_ADDRESS: |
5d00995c AG |
524 | /* Max address */ |
525 | addr = efi_find_free_memory(len, *memory); | |
8ae39857 HS |
526 | if (!addr) |
527 | return EFI_OUT_OF_RESOURCES; | |
5d00995c | 528 | break; |
7c92fd69 | 529 | case EFI_ALLOCATE_ADDRESS: |
53def68d HS |
530 | if (*memory & EFI_PAGE_MASK) |
531 | return EFI_NOT_FOUND; | |
5d00995c | 532 | /* Exact address, reserve it. The addr is already in *memory. */ |
8ae39857 HS |
533 | ret = efi_check_allocated(*memory, false); |
534 | if (ret != EFI_SUCCESS) | |
535 | return EFI_NOT_FOUND; | |
5d00995c AG |
536 | addr = *memory; |
537 | break; | |
538 | default: | |
539 | /* UEFI doesn't specify other allocation types */ | |
8ae39857 | 540 | return EFI_INVALID_PARAMETER; |
5d00995c AG |
541 | } |
542 | ||
8ae39857 | 543 | /* Reserve that map in our memory maps */ |
714497e3 MW |
544 | ret = efi_add_memory_map_pg(addr, pages, memory_type, true); |
545 | if (ret != EFI_SUCCESS) | |
8ae39857 HS |
546 | /* Map would overlap, bail out */ |
547 | return EFI_OUT_OF_RESOURCES; | |
5d00995c | 548 | |
8ae39857 | 549 | *memory = addr; |
5d00995c | 550 | |
8ae39857 | 551 | return EFI_SUCCESS; |
5d00995c AG |
552 | } |
553 | ||
2c3ec289 HS |
554 | /** |
555 | * efi_free_pages() - free memory pages | |
474a6f5a | 556 | * |
2c3ec289 HS |
557 | * @memory: start of the memory area to be freed |
558 | * @pages: number of pages to be freed | |
559 | * Return: status code | |
474a6f5a | 560 | */ |
f5a2a938 | 561 | efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) |
5d00995c | 562 | { |
7d3af58e HS |
563 | efi_status_t ret; |
564 | ||
f756fe83 | 565 | ret = efi_check_allocated(memory, true); |
7d3af58e HS |
566 | if (ret != EFI_SUCCESS) |
567 | return ret; | |
b61d857b | 568 | |
2c3ec289 | 569 | /* Sanity check */ |
e00b82db | 570 | if (!memory || (memory & EFI_PAGE_MASK) || !pages) { |
2c3ec289 HS |
571 | printf("%s: illegal free 0x%llx, 0x%zx\n", __func__, |
572 | memory, pages); | |
573 | return EFI_INVALID_PARAMETER; | |
574 | } | |
575 | ||
714497e3 MW |
576 | ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY, |
577 | false); | |
b225c92f BD |
578 | if (ret != EFI_SUCCESS) |
579 | return EFI_NOT_FOUND; | |
b61d857b | 580 | |
b225c92f | 581 | return ret; |
5d00995c AG |
582 | } |
583 | ||
ebdea88d | 584 | /** |
0763c02e | 585 | * efi_alloc_aligned_pages() - allocate aligned memory pages |
ebdea88d IA |
586 | * |
587 | * @len: len in bytes | |
588 | * @memory_type: usage type of the allocated memory | |
589 | * @align: alignment in bytes | |
590 | * Return: aligned memory or NULL | |
591 | */ | |
592 | void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align) | |
593 | { | |
594 | u64 req_pages = efi_size_in_pages(len); | |
595 | u64 true_pages = req_pages + efi_size_in_pages(align) - 1; | |
596 | u64 free_pages; | |
597 | u64 aligned_mem; | |
598 | efi_status_t r; | |
599 | u64 mem; | |
600 | ||
601 | /* align must be zero or a power of two */ | |
602 | if (align & (align - 1)) | |
603 | return NULL; | |
604 | ||
605 | /* Check for overflow */ | |
606 | if (true_pages < req_pages) | |
607 | return NULL; | |
608 | ||
609 | if (align < EFI_PAGE_SIZE) { | |
610 | r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, | |
611 | req_pages, &mem); | |
612 | return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL; | |
613 | } | |
614 | ||
615 | r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, | |
616 | true_pages, &mem); | |
617 | if (r != EFI_SUCCESS) | |
618 | return NULL; | |
619 | ||
620 | aligned_mem = ALIGN(mem, align); | |
621 | /* Free pages before alignment */ | |
622 | free_pages = efi_size_in_pages(aligned_mem - mem); | |
623 | if (free_pages) | |
624 | efi_free_pages(mem, free_pages); | |
625 | ||
626 | /* Free trailing pages */ | |
627 | free_pages = true_pages - (req_pages + free_pages); | |
628 | if (free_pages) { | |
629 | mem = aligned_mem + req_pages * EFI_PAGE_SIZE; | |
630 | efi_free_pages(mem, free_pages); | |
631 | } | |
632 | ||
633 | return (void *)(uintptr_t)aligned_mem; | |
634 | } | |
635 | ||
2c3ec289 HS |
636 | /** |
637 | * efi_allocate_pool - allocate memory from pool | |
474a6f5a | 638 | * |
2c3ec289 HS |
639 | * @pool_type: type of the pool from which memory is to be allocated |
640 | * @size: number of bytes to be allocated | |
641 | * @buffer: allocated memory | |
642 | * Return: status code | |
474a6f5a | 643 | */ |
49d225e7 | 644 | efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer) |
ead1274b SB |
645 | { |
646 | efi_status_t r; | |
306b1671 | 647 | u64 addr; |
282a06cb | 648 | struct efi_pool_allocation *alloc; |
c3772ca1 HS |
649 | u64 num_pages = efi_size_in_pages(size + |
650 | sizeof(struct efi_pool_allocation)); | |
42417bc8 | 651 | |
4d5e071e HS |
652 | if (!buffer) |
653 | return EFI_INVALID_PARAMETER; | |
654 | ||
42417bc8 SB |
655 | if (size == 0) { |
656 | *buffer = NULL; | |
657 | return EFI_SUCCESS; | |
658 | } | |
ead1274b | 659 | |
e09159c8 | 660 | r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages, |
306b1671 | 661 | &addr); |
42417bc8 | 662 | if (r == EFI_SUCCESS) { |
306b1671 | 663 | alloc = (struct efi_pool_allocation *)(uintptr_t)addr; |
42417bc8 | 664 | alloc->num_pages = num_pages; |
2c3ec289 | 665 | alloc->checksum = checksum(alloc); |
42417bc8 SB |
666 | *buffer = alloc->data; |
667 | } | |
668 | ||
669 | return r; | |
670 | } | |
671 | ||
f606fab8 HS |
672 | /** |
673 | * efi_alloc() - allocate boot services data pool memory | |
674 | * | |
675 | * Allocate memory from pool and zero it out. | |
676 | * | |
677 | * @size: number of bytes to allocate | |
678 | * Return: pointer to allocated memory or NULL | |
679 | */ | |
680 | void *efi_alloc(size_t size) | |
681 | { | |
682 | void *buf; | |
683 | ||
684 | if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) != | |
685 | EFI_SUCCESS) { | |
686 | log_err("out of memory"); | |
687 | return NULL; | |
688 | } | |
689 | memset(buf, 0, size); | |
690 | ||
691 | return buf; | |
692 | } | |
693 | ||
2c3ec289 HS |
694 | /** |
695 | * efi_free_pool() - free memory from pool | |
474a6f5a | 696 | * |
2c3ec289 HS |
697 | * @buffer: start of memory to be freed |
698 | * Return: status code | |
474a6f5a | 699 | */ |
42417bc8 SB |
700 | efi_status_t efi_free_pool(void *buffer) |
701 | { | |
7d3af58e | 702 | efi_status_t ret; |
42417bc8 SB |
703 | struct efi_pool_allocation *alloc; |
704 | ||
0e22c7cb HS |
705 | if (!buffer) |
706 | return EFI_INVALID_PARAMETER; | |
707 | ||
f756fe83 | 708 | ret = efi_check_allocated((uintptr_t)buffer, true); |
7d3af58e HS |
709 | if (ret != EFI_SUCCESS) |
710 | return ret; | |
71275a3e | 711 | |
42417bc8 | 712 | alloc = container_of(buffer, struct efi_pool_allocation, data); |
2c3ec289 HS |
713 | |
714 | /* Check that this memory was allocated by efi_allocate_pool() */ | |
715 | if (((uintptr_t)alloc & EFI_PAGE_MASK) || | |
716 | alloc->checksum != checksum(alloc)) { | |
717 | printf("%s: illegal free 0x%p\n", __func__, buffer); | |
718 | return EFI_INVALID_PARAMETER; | |
719 | } | |
720 | /* Avoid double free */ | |
721 | alloc->checksum = 0; | |
42417bc8 | 722 | |
7d3af58e | 723 | ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages); |
ead1274b | 724 | |
7d3af58e | 725 | return ret; |
ead1274b SB |
726 | } |
727 | ||
0763c02e HS |
728 | /** |
729 | * efi_get_memory_map() - get map describing memory usage. | |
474a6f5a | 730 | * |
0763c02e | 731 | * @memory_map_size: on entry the size, in bytes, of the memory map buffer, |
474a6f5a | 732 | * on exit the size of the copied memory map |
0763c02e HS |
733 | * @memory_map: buffer to which the memory map is written |
734 | * @map_key: key for the memory map | |
735 | * @descriptor_size: size of an individual memory descriptor | |
736 | * @descriptor_version: version number of the memory descriptor structure | |
185f812c | 737 | * Return: status code |
474a6f5a | 738 | */ |
f5a2a938 HS |
739 | efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, |
740 | struct efi_mem_desc *memory_map, | |
741 | efi_uintn_t *map_key, | |
742 | efi_uintn_t *descriptor_size, | |
743 | uint32_t *descriptor_version) | |
5d00995c | 744 | { |
f5a2a938 | 745 | efi_uintn_t map_size = 0; |
cee752fa | 746 | int map_entries = 0; |
5d00995c | 747 | struct list_head *lhandle; |
fa995d0d | 748 | efi_uintn_t provided_map_size; |
5d00995c | 749 | |
8e835554 HS |
750 | if (!memory_map_size) |
751 | return EFI_INVALID_PARAMETER; | |
752 | ||
fa995d0d HS |
753 | provided_map_size = *memory_map_size; |
754 | ||
5d00995c | 755 | list_for_each(lhandle, &efi_mem) |
cee752fa AG |
756 | map_entries++; |
757 | ||
758 | map_size = map_entries * sizeof(struct efi_mem_desc); | |
5d00995c | 759 | |
a1b24823 RC |
760 | *memory_map_size = map_size; |
761 | ||
5d00995c AG |
762 | if (descriptor_size) |
763 | *descriptor_size = sizeof(struct efi_mem_desc); | |
764 | ||
4c02c11d MYK |
765 | if (descriptor_version) |
766 | *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; | |
767 | ||
b484296f AT |
768 | if (provided_map_size < map_size) |
769 | return EFI_BUFFER_TOO_SMALL; | |
770 | ||
771 | if (!memory_map) | |
772 | return EFI_INVALID_PARAMETER; | |
773 | ||
5d00995c | 774 | /* Copy list into array */ |
8e835554 HS |
775 | /* Return the list in ascending order */ |
776 | memory_map = &memory_map[map_entries - 1]; | |
777 | list_for_each(lhandle, &efi_mem) { | |
778 | struct efi_mem_list *lmem; | |
5d00995c | 779 | |
8e835554 HS |
780 | lmem = list_entry(lhandle, struct efi_mem_list, link); |
781 | *memory_map = lmem->desc; | |
782 | memory_map--; | |
5d00995c AG |
783 | } |
784 | ||
8e835554 | 785 | if (map_key) |
1fcb7ea2 | 786 | *map_key = efi_memory_map_key; |
c6e3c3e6 | 787 | |
5d00995c AG |
788 | return EFI_SUCCESS; |
789 | } | |
790 | ||
eff44401 HS |
791 | /** |
792 | * efi_get_memory_map_alloc() - allocate map describing memory usage | |
793 | * | |
794 | * The caller is responsible for calling FreePool() if the call succeeds. | |
795 | * | |
0763c02e HS |
796 | * @map_size: size of the memory map |
797 | * @memory_map: buffer to which the memory map is written | |
eff44401 HS |
798 | * Return: status code |
799 | */ | |
800 | efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size, | |
801 | struct efi_mem_desc **memory_map) | |
802 | { | |
803 | efi_status_t ret; | |
804 | ||
805 | *memory_map = NULL; | |
806 | *map_size = 0; | |
807 | ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL); | |
808 | if (ret == EFI_BUFFER_TOO_SMALL) { | |
809 | *map_size += sizeof(struct efi_mem_desc); /* for the map */ | |
810 | ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size, | |
811 | (void **)memory_map); | |
812 | if (ret != EFI_SUCCESS) | |
813 | return ret; | |
814 | ret = efi_get_memory_map(map_size, *memory_map, | |
815 | NULL, NULL, NULL); | |
816 | if (ret != EFI_SUCCESS) { | |
817 | efi_free_pool(*memory_map); | |
818 | *memory_map = NULL; | |
819 | } | |
820 | } | |
821 | ||
822 | return ret; | |
823 | } | |
824 | ||
b5b9eff2 PA |
825 | /** |
826 | * efi_add_conventional_memory_map() - add a RAM memory area to the map | |
827 | * | |
828 | * @ram_start: start address of a RAM memory area | |
829 | * @ram_end: end address of a RAM memory area | |
830 | * @ram_top: max address to be used as conventional memory | |
831 | * Return: status code | |
832 | */ | |
833 | efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end, | |
834 | u64 ram_top) | |
835 | { | |
836 | u64 pages; | |
837 | ||
838 | /* Remove partial pages */ | |
839 | ram_end &= ~EFI_PAGE_MASK; | |
840 | ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; | |
841 | ||
842 | if (ram_end <= ram_start) { | |
843 | /* Invalid mapping */ | |
844 | return EFI_INVALID_PARAMETER; | |
845 | } | |
846 | ||
847 | pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT; | |
848 | ||
714497e3 MW |
849 | efi_add_memory_map_pg(ram_start, pages, |
850 | EFI_CONVENTIONAL_MEMORY, false); | |
b5b9eff2 PA |
851 | |
852 | /* | |
853 | * Boards may indicate to the U-Boot memory core that they | |
854 | * can not support memory above ram_top. Let's honor this | |
855 | * in the efi_loader subsystem too by declaring any memory | |
856 | * above ram_top as "already occupied by firmware". | |
857 | */ | |
858 | if (ram_top < ram_start) { | |
859 | /* ram_top is before this region, reserve all */ | |
714497e3 MW |
860 | efi_add_memory_map_pg(ram_start, pages, |
861 | EFI_BOOT_SERVICES_DATA, true); | |
8da26f51 | 862 | } else if (ram_top < ram_end) { |
b5b9eff2 PA |
863 | /* ram_top is inside this region, reserve parts */ |
864 | pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT; | |
865 | ||
714497e3 MW |
866 | efi_add_memory_map_pg(ram_top, pages, |
867 | EFI_BOOT_SERVICES_DATA, true); | |
b5b9eff2 PA |
868 | } |
869 | ||
870 | return EFI_SUCCESS; | |
871 | } | |
872 | ||
0763c02e HS |
873 | /** |
874 | * efi_add_known_memory() - add memory banks to map | |
875 | * | |
876 | * This function may be overridden for specific architectures. | |
877 | */ | |
42633745 | 878 | __weak void efi_add_known_memory(void) |
5d00995c | 879 | { |
b571b3ac | 880 | u64 ram_top = gd->ram_top & ~EFI_PAGE_MASK; |
5d00995c AG |
881 | int i; |
882 | ||
23f5f4ab HS |
883 | /* |
884 | * ram_top is just outside mapped memory. So use an offset of one for | |
885 | * mapping the sandbox address. | |
886 | */ | |
887 | ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1; | |
888 | ||
7b78d643 AG |
889 | /* Fix for 32bit targets with ram_top at 4G */ |
890 | if (!ram_top) | |
891 | ram_top = 0x100000000ULL; | |
892 | ||
5d00995c AG |
893 | /* Add RAM */ |
894 | for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { | |
b5b9eff2 | 895 | u64 ram_end, ram_start; |
5d00995c | 896 | |
49759743 | 897 | ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0); |
108bdff8 HS |
898 | ram_end = ram_start + gd->bd->bi_dram[i].size; |
899 | ||
b5b9eff2 | 900 | efi_add_conventional_memory_map(ram_start, ram_end, ram_top); |
5d00995c | 901 | } |
42633745 YS |
902 | } |
903 | ||
0763c02e HS |
904 | /** |
905 | * add_u_boot_and_runtime() - add U-Boot code to memory map | |
906 | * | |
907 | * Add memory regions for U-Boot's memory and for the runtime services code. | |
908 | */ | |
69259b83 | 909 | static void add_u_boot_and_runtime(void) |
42633745 YS |
910 | { |
911 | unsigned long runtime_start, runtime_end, runtime_pages; | |
7a82c305 | 912 | unsigned long runtime_mask = EFI_PAGE_MASK; |
42633745 | 913 | unsigned long uboot_start, uboot_pages; |
74b869ba | 914 | unsigned long uboot_stack_size = CONFIG_STACK_SIZE; |
42633745 | 915 | |
5d00995c | 916 | /* Add U-Boot */ |
7264e21f HS |
917 | uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) - |
918 | uboot_stack_size) & ~EFI_PAGE_MASK; | |
919 | uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) - | |
920 | uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; | |
1a127962 | 921 | efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE, |
714497e3 | 922 | false); |
5d00995c | 923 | |
7a82c305 AG |
924 | #if defined(__aarch64__) |
925 | /* | |
926 | * Runtime Services must be 64KiB aligned according to the | |
927 | * "AArch64 Platforms" section in the UEFI spec (2.7+). | |
928 | */ | |
929 | ||
930 | runtime_mask = SZ_64K - 1; | |
931 | #endif | |
932 | ||
933 | /* | |
934 | * Add Runtime Services. We mark surrounding boottime code as runtime as | |
935 | * well to fulfill the runtime alignment constraints but avoid padding. | |
936 | */ | |
937 | runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask; | |
5d00995c | 938 | runtime_end = (ulong)&__efi_runtime_stop; |
7a82c305 | 939 | runtime_end = (runtime_end + runtime_mask) & ~runtime_mask; |
5d00995c | 940 | runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; |
714497e3 MW |
941 | efi_add_memory_map_pg(runtime_start, runtime_pages, |
942 | EFI_RUNTIME_SERVICES_CODE, false); | |
69259b83 SG |
943 | } |
944 | ||
945 | int efi_memory_init(void) | |
946 | { | |
947 | efi_add_known_memory(); | |
948 | ||
7264e21f | 949 | add_u_boot_and_runtime(); |
5d00995c | 950 | |
51735ae0 AG |
951 | #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
952 | /* Request a 32bit 64MB bounce buffer region */ | |
953 | uint64_t efi_bounce_buffer_addr = 0xffffffff; | |
954 | ||
1a127962 | 955 | if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA, |
51735ae0 AG |
956 | (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, |
957 | &efi_bounce_buffer_addr) != EFI_SUCCESS) | |
958 | return -1; | |
959 | ||
960 | efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; | |
961 | #endif | |
962 | ||
5d00995c AG |
963 | return 0; |
964 | } |