]>
Commit | Line | Data |
---|---|---|
f739fcd8 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
5d00995c AG |
2 | /* |
3 | * EFI application memory management | |
4 | * | |
5 | * Copyright (c) 2016 Alexander Graf | |
5d00995c AG |
6 | */ |
7 | ||
5d00995c AG |
8 | #include <common.h> |
9 | #include <efi_loader.h> | |
10 | #include <malloc.h> | |
282a06cb | 11 | #include <mapmem.h> |
bdecaebd | 12 | #include <watchdog.h> |
38ce65e1 | 13 | #include <linux/list_sort.h> |
7a82c305 | 14 | #include <linux/sizes.h> |
5d00995c AG |
15 | |
16 | DECLARE_GLOBAL_DATA_PTR; | |
17 | ||
1fcb7ea2 HS |
18 | efi_uintn_t efi_memory_map_key; |
19 | ||
5d00995c AG |
20 | struct efi_mem_list { |
21 | struct list_head link; | |
22 | struct efi_mem_desc desc; | |
23 | }; | |
24 | ||
74c16acc AG |
25 | #define EFI_CARVE_NO_OVERLAP -1 |
26 | #define EFI_CARVE_LOOP_AGAIN -2 | |
27 | #define EFI_CARVE_OVERLAPS_NONRAM -3 | |
28 | ||
5d00995c AG |
29 | /* This list contains all memory map items */ |
30 | LIST_HEAD(efi_mem); | |
31 | ||
51735ae0 AG |
32 | #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
33 | void *efi_bounce_buffer; | |
34 | #endif | |
35 | ||
42417bc8 SB |
36 | /* |
37 | * U-Boot services each EFI AllocatePool request as a separate | |
38 | * (multiple) page allocation. We have to track the number of pages | |
39 | * to be able to free the correct amount later. | |
40 | * EFI requires 8 byte alignment for pool allocations, so we can | |
41 | * prepend each allocation with an 64 bit header tracking the | |
42 | * allocation size, and hand out the remainder to the caller. | |
43 | */ | |
44 | struct efi_pool_allocation { | |
45 | u64 num_pages; | |
946160f3 | 46 | char data[] __aligned(ARCH_DMA_MINALIGN); |
42417bc8 SB |
47 | }; |
48 | ||
38ce65e1 AG |
49 | /* |
50 | * Sorts the memory list from highest address to lowest address | |
51 | * | |
52 | * When allocating memory we should always start from the highest | |
53 | * address chunk, so sort the memory list such that the first list | |
54 | * iterator gets the highest address and goes lower from there. | |
55 | */ | |
56 | static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) | |
57 | { | |
58 | struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); | |
59 | struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); | |
60 | ||
61 | if (mema->desc.physical_start == memb->desc.physical_start) | |
62 | return 0; | |
63 | else if (mema->desc.physical_start < memb->desc.physical_start) | |
64 | return 1; | |
65 | else | |
66 | return -1; | |
67 | } | |
68 | ||
7b05667c AG |
69 | static uint64_t desc_get_end(struct efi_mem_desc *desc) |
70 | { | |
71 | return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT); | |
72 | } | |
73 | ||
38ce65e1 AG |
74 | static void efi_mem_sort(void) |
75 | { | |
7b05667c AG |
76 | struct list_head *lhandle; |
77 | struct efi_mem_list *prevmem = NULL; | |
78 | bool merge_again = true; | |
79 | ||
38ce65e1 | 80 | list_sort(NULL, &efi_mem, efi_mem_cmp); |
7b05667c AG |
81 | |
82 | /* Now merge entries that can be merged */ | |
83 | while (merge_again) { | |
84 | merge_again = false; | |
85 | list_for_each(lhandle, &efi_mem) { | |
86 | struct efi_mem_list *lmem; | |
87 | struct efi_mem_desc *prev = &prevmem->desc; | |
88 | struct efi_mem_desc *cur; | |
89 | uint64_t pages; | |
90 | ||
91 | lmem = list_entry(lhandle, struct efi_mem_list, link); | |
92 | if (!prevmem) { | |
93 | prevmem = lmem; | |
94 | continue; | |
95 | } | |
96 | ||
97 | cur = &lmem->desc; | |
98 | ||
99 | if ((desc_get_end(cur) == prev->physical_start) && | |
100 | (prev->type == cur->type) && | |
101 | (prev->attribute == cur->attribute)) { | |
102 | /* There is an existing map before, reuse it */ | |
103 | pages = cur->num_pages; | |
104 | prev->num_pages += pages; | |
105 | prev->physical_start -= pages << EFI_PAGE_SHIFT; | |
106 | prev->virtual_start -= pages << EFI_PAGE_SHIFT; | |
107 | list_del(&lmem->link); | |
108 | free(lmem); | |
109 | ||
110 | merge_again = true; | |
111 | break; | |
112 | } | |
113 | ||
114 | prevmem = lmem; | |
115 | } | |
116 | } | |
38ce65e1 AG |
117 | } |
118 | ||
32826140 HS |
119 | /** efi_mem_carve_out - unmap memory region |
120 | * | |
121 | * @map: memory map | |
122 | * @carve_desc: memory region to unmap | |
123 | * @overlap_only_ram: the carved out region may only overlap RAM | |
124 | * Return Value: the number of overlapping pages which have been | |
125 | * removed from the map, | |
126 | * EFI_CARVE_NO_OVERLAP, if the regions don't overlap, | |
127 | * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap, | |
128 | * and the map contains anything but free ram | |
129 | * (only when overlap_only_ram is true), | |
130 | * EFI_CARVE_LOOP_AGAIN, if the mapping list should be | |
131 | * traversed again, as it has been altered. | |
5d00995c | 132 | * |
32826140 HS |
133 | * Unmaps all memory occupied by the carve_desc region from the list entry |
134 | * pointed to by map. | |
852efbf5 SB |
135 | * |
136 | * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility | |
32826140 | 137 | * to re-add the already carved out pages to the mapping. |
5d00995c | 138 | */ |
32826140 | 139 | static s64 efi_mem_carve_out(struct efi_mem_list *map, |
5d00995c AG |
140 | struct efi_mem_desc *carve_desc, |
141 | bool overlap_only_ram) | |
142 | { | |
143 | struct efi_mem_list *newmap; | |
144 | struct efi_mem_desc *map_desc = &map->desc; | |
145 | uint64_t map_start = map_desc->physical_start; | |
146 | uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); | |
147 | uint64_t carve_start = carve_desc->physical_start; | |
148 | uint64_t carve_end = carve_start + | |
149 | (carve_desc->num_pages << EFI_PAGE_SHIFT); | |
150 | ||
151 | /* check whether we're overlapping */ | |
152 | if ((carve_end <= map_start) || (carve_start >= map_end)) | |
74c16acc | 153 | return EFI_CARVE_NO_OVERLAP; |
5d00995c AG |
154 | |
155 | /* We're overlapping with non-RAM, warn the caller if desired */ | |
156 | if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) | |
74c16acc | 157 | return EFI_CARVE_OVERLAPS_NONRAM; |
5d00995c AG |
158 | |
159 | /* Sanitize carve_start and carve_end to lie within our bounds */ | |
160 | carve_start = max(carve_start, map_start); | |
161 | carve_end = min(carve_end, map_end); | |
162 | ||
163 | /* Carving at the beginning of our map? Just move it! */ | |
164 | if (carve_start == map_start) { | |
165 | if (map_end == carve_end) { | |
166 | /* Full overlap, just remove map */ | |
167 | list_del(&map->link); | |
511d0b97 SB |
168 | free(map); |
169 | } else { | |
170 | map->desc.physical_start = carve_end; | |
171 | map->desc.num_pages = (map_end - carve_end) | |
172 | >> EFI_PAGE_SHIFT; | |
5d00995c AG |
173 | } |
174 | ||
74c16acc | 175 | return (carve_end - carve_start) >> EFI_PAGE_SHIFT; |
5d00995c AG |
176 | } |
177 | ||
178 | /* | |
179 | * Overlapping maps, just split the list map at carve_start, | |
180 | * it will get moved or removed in the next iteration. | |
181 | * | |
182 | * [ map_desc |__carve_start__| newmap ] | |
183 | */ | |
184 | ||
185 | /* Create a new map from [ carve_start ... map_end ] */ | |
186 | newmap = calloc(1, sizeof(*newmap)); | |
187 | newmap->desc = map->desc; | |
188 | newmap->desc.physical_start = carve_start; | |
189 | newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; | |
b6a95172 SB |
190 | /* Insert before current entry (descending address order) */ |
191 | list_add_tail(&newmap->link, &map->link); | |
5d00995c AG |
192 | |
193 | /* Shrink the map to [ map_start ... carve_start ] */ | |
194 | map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; | |
195 | ||
74c16acc | 196 | return EFI_CARVE_LOOP_AGAIN; |
5d00995c AG |
197 | } |
198 | ||
199 | uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, | |
200 | bool overlap_only_ram) | |
201 | { | |
202 | struct list_head *lhandle; | |
203 | struct efi_mem_list *newlist; | |
74c16acc AG |
204 | bool carve_again; |
205 | uint64_t carved_pages = 0; | |
5d00995c | 206 | |
dee37fc9 | 207 | debug("%s: 0x%llx 0x%llx %d %s\n", __func__, |
c933ed94 AF |
208 | start, pages, memory_type, overlap_only_ram ? "yes" : "no"); |
209 | ||
1fcb7ea2 HS |
210 | if (memory_type >= EFI_MAX_MEMORY_TYPE) |
211 | return EFI_INVALID_PARAMETER; | |
212 | ||
5d00995c AG |
213 | if (!pages) |
214 | return start; | |
215 | ||
1fcb7ea2 | 216 | ++efi_memory_map_key; |
5d00995c AG |
217 | newlist = calloc(1, sizeof(*newlist)); |
218 | newlist->desc.type = memory_type; | |
219 | newlist->desc.physical_start = start; | |
220 | newlist->desc.virtual_start = start; | |
221 | newlist->desc.num_pages = pages; | |
222 | ||
223 | switch (memory_type) { | |
224 | case EFI_RUNTIME_SERVICES_CODE: | |
225 | case EFI_RUNTIME_SERVICES_DATA: | |
9b89183b | 226 | newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME; |
5d00995c AG |
227 | break; |
228 | case EFI_MMAP_IO: | |
9b89183b | 229 | newlist->desc.attribute = EFI_MEMORY_RUNTIME; |
5d00995c AG |
230 | break; |
231 | default: | |
9b89183b | 232 | newlist->desc.attribute = EFI_MEMORY_WB; |
5d00995c AG |
233 | break; |
234 | } | |
235 | ||
236 | /* Add our new map */ | |
237 | do { | |
74c16acc | 238 | carve_again = false; |
5d00995c AG |
239 | list_for_each(lhandle, &efi_mem) { |
240 | struct efi_mem_list *lmem; | |
32826140 | 241 | s64 r; |
5d00995c AG |
242 | |
243 | lmem = list_entry(lhandle, struct efi_mem_list, link); | |
244 | r = efi_mem_carve_out(lmem, &newlist->desc, | |
245 | overlap_only_ram); | |
74c16acc AG |
246 | switch (r) { |
247 | case EFI_CARVE_OVERLAPS_NONRAM: | |
248 | /* | |
249 | * The user requested to only have RAM overlaps, | |
250 | * but we hit a non-RAM region. Error out. | |
251 | */ | |
5d00995c | 252 | return 0; |
74c16acc AG |
253 | case EFI_CARVE_NO_OVERLAP: |
254 | /* Just ignore this list entry */ | |
255 | break; | |
256 | case EFI_CARVE_LOOP_AGAIN: | |
257 | /* | |
258 | * We split an entry, but need to loop through | |
259 | * the list again to actually carve it. | |
260 | */ | |
261 | carve_again = true; | |
262 | break; | |
263 | default: | |
264 | /* We carved a number of pages */ | |
265 | carved_pages += r; | |
266 | carve_again = true; | |
267 | break; | |
268 | } | |
269 | ||
270 | if (carve_again) { | |
271 | /* The list changed, we need to start over */ | |
5d00995c AG |
272 | break; |
273 | } | |
274 | } | |
74c16acc AG |
275 | } while (carve_again); |
276 | ||
277 | if (overlap_only_ram && (carved_pages != pages)) { | |
278 | /* | |
279 | * The payload wanted to have RAM overlaps, but we overlapped | |
280 | * with an unallocated region. Error out. | |
281 | */ | |
282 | return 0; | |
283 | } | |
5d00995c AG |
284 | |
285 | /* Add our new map */ | |
286 | list_add_tail(&newlist->link, &efi_mem); | |
287 | ||
38ce65e1 AG |
288 | /* And make sure memory is listed in descending order */ |
289 | efi_mem_sort(); | |
290 | ||
5d00995c AG |
291 | return start; |
292 | } | |
293 | ||
294 | static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) | |
295 | { | |
296 | struct list_head *lhandle; | |
297 | ||
c2e1ad70 AG |
298 | /* |
299 | * Prealign input max address, so we simplify our matching | |
300 | * logic below and can just reuse it as return pointer. | |
301 | */ | |
302 | max_addr &= ~EFI_PAGE_MASK; | |
303 | ||
5d00995c AG |
304 | list_for_each(lhandle, &efi_mem) { |
305 | struct efi_mem_list *lmem = list_entry(lhandle, | |
306 | struct efi_mem_list, link); | |
307 | struct efi_mem_desc *desc = &lmem->desc; | |
308 | uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; | |
309 | uint64_t desc_end = desc->physical_start + desc_len; | |
310 | uint64_t curmax = min(max_addr, desc_end); | |
311 | uint64_t ret = curmax - len; | |
312 | ||
313 | /* We only take memory from free RAM */ | |
314 | if (desc->type != EFI_CONVENTIONAL_MEMORY) | |
315 | continue; | |
316 | ||
317 | /* Out of bounds for max_addr */ | |
318 | if ((ret + len) > max_addr) | |
319 | continue; | |
320 | ||
321 | /* Out of bounds for upper map limit */ | |
322 | if ((ret + len) > desc_end) | |
323 | continue; | |
324 | ||
325 | /* Out of bounds for lower map limit */ | |
326 | if (ret < desc->physical_start) | |
327 | continue; | |
328 | ||
329 | /* Return the highest address in this map within bounds */ | |
330 | return ret; | |
331 | } | |
332 | ||
333 | return 0; | |
334 | } | |
335 | ||
474a6f5a HS |
336 | /* |
337 | * Allocate memory pages. | |
338 | * | |
339 | * @type type of allocation to be performed | |
340 | * @memory_type usage type of the allocated memory | |
341 | * @pages number of pages to be allocated | |
342 | * @memory allocated memory | |
343 | * @return status code | |
344 | */ | |
5d00995c | 345 | efi_status_t efi_allocate_pages(int type, int memory_type, |
f5a2a938 | 346 | efi_uintn_t pages, uint64_t *memory) |
5d00995c AG |
347 | { |
348 | u64 len = pages << EFI_PAGE_SHIFT; | |
349 | efi_status_t r = EFI_SUCCESS; | |
350 | uint64_t addr; | |
351 | ||
4d5e071e HS |
352 | if (!memory) |
353 | return EFI_INVALID_PARAMETER; | |
354 | ||
5d00995c | 355 | switch (type) { |
7c92fd69 | 356 | case EFI_ALLOCATE_ANY_PAGES: |
5d00995c | 357 | /* Any page */ |
14deb5e6 | 358 | addr = efi_find_free_memory(len, -1ULL); |
5d00995c AG |
359 | if (!addr) { |
360 | r = EFI_NOT_FOUND; | |
361 | break; | |
362 | } | |
363 | break; | |
7c92fd69 | 364 | case EFI_ALLOCATE_MAX_ADDRESS: |
5d00995c AG |
365 | /* Max address */ |
366 | addr = efi_find_free_memory(len, *memory); | |
367 | if (!addr) { | |
368 | r = EFI_NOT_FOUND; | |
369 | break; | |
370 | } | |
371 | break; | |
7c92fd69 | 372 | case EFI_ALLOCATE_ADDRESS: |
5d00995c AG |
373 | /* Exact address, reserve it. The addr is already in *memory. */ |
374 | addr = *memory; | |
375 | break; | |
376 | default: | |
377 | /* UEFI doesn't specify other allocation types */ | |
378 | r = EFI_INVALID_PARAMETER; | |
379 | break; | |
380 | } | |
381 | ||
382 | if (r == EFI_SUCCESS) { | |
383 | uint64_t ret; | |
384 | ||
385 | /* Reserve that map in our memory maps */ | |
386 | ret = efi_add_memory_map(addr, pages, memory_type, true); | |
387 | if (ret == addr) { | |
49759743 | 388 | *memory = addr; |
5d00995c AG |
389 | } else { |
390 | /* Map would overlap, bail out */ | |
391 | r = EFI_OUT_OF_RESOURCES; | |
392 | } | |
393 | } | |
394 | ||
395 | return r; | |
396 | } | |
397 | ||
398 | void *efi_alloc(uint64_t len, int memory_type) | |
399 | { | |
400 | uint64_t ret = 0; | |
c3772ca1 | 401 | uint64_t pages = efi_size_in_pages(len); |
5d00995c AG |
402 | efi_status_t r; |
403 | ||
e09159c8 HS |
404 | r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages, |
405 | &ret); | |
5d00995c AG |
406 | if (r == EFI_SUCCESS) |
407 | return (void*)(uintptr_t)ret; | |
408 | ||
409 | return NULL; | |
410 | } | |
411 | ||
474a6f5a HS |
412 | /* |
413 | * Free memory pages. | |
414 | * | |
415 | * @memory start of the memory area to be freed | |
416 | * @pages number of pages to be freed | |
417 | * @return status code | |
418 | */ | |
f5a2a938 | 419 | efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) |
5d00995c | 420 | { |
b61d857b SB |
421 | uint64_t r = 0; |
422 | ||
49759743 | 423 | r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false); |
b61d857b SB |
424 | /* Merging of adjacent free regions is missing */ |
425 | ||
49759743 | 426 | if (r == memory) |
b61d857b SB |
427 | return EFI_SUCCESS; |
428 | ||
429 | return EFI_NOT_FOUND; | |
5d00995c AG |
430 | } |
431 | ||
474a6f5a HS |
432 | /* |
433 | * Allocate memory from pool. | |
434 | * | |
435 | * @pool_type type of the pool from which memory is to be allocated | |
436 | * @size number of bytes to be allocated | |
437 | * @buffer allocated memory | |
438 | * @return status code | |
439 | */ | |
440 | efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer) | |
ead1274b SB |
441 | { |
442 | efi_status_t r; | |
282a06cb | 443 | struct efi_pool_allocation *alloc; |
c3772ca1 HS |
444 | u64 num_pages = efi_size_in_pages(size + |
445 | sizeof(struct efi_pool_allocation)); | |
42417bc8 | 446 | |
4d5e071e HS |
447 | if (!buffer) |
448 | return EFI_INVALID_PARAMETER; | |
449 | ||
42417bc8 SB |
450 | if (size == 0) { |
451 | *buffer = NULL; | |
452 | return EFI_SUCCESS; | |
453 | } | |
ead1274b | 454 | |
e09159c8 | 455 | r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages, |
282a06cb | 456 | (uint64_t *)&alloc); |
42417bc8 SB |
457 | |
458 | if (r == EFI_SUCCESS) { | |
42417bc8 SB |
459 | alloc->num_pages = num_pages; |
460 | *buffer = alloc->data; | |
461 | } | |
462 | ||
463 | return r; | |
464 | } | |
465 | ||
474a6f5a HS |
466 | /* |
467 | * Free memory from pool. | |
468 | * | |
469 | * @buffer start of memory to be freed | |
470 | * @return status code | |
471 | */ | |
42417bc8 SB |
472 | efi_status_t efi_free_pool(void *buffer) |
473 | { | |
474 | efi_status_t r; | |
475 | struct efi_pool_allocation *alloc; | |
476 | ||
71275a3e HS |
477 | if (buffer == NULL) |
478 | return EFI_INVALID_PARAMETER; | |
479 | ||
42417bc8 SB |
480 | alloc = container_of(buffer, struct efi_pool_allocation, data); |
481 | /* Sanity check, was the supplied address returned by allocate_pool */ | |
482 | assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0); | |
483 | ||
484 | r = efi_free_pages((uintptr_t)alloc, alloc->num_pages); | |
ead1274b SB |
485 | |
486 | return r; | |
487 | } | |
488 | ||
474a6f5a HS |
489 | /* |
490 | * Get map describing memory usage. | |
491 | * | |
492 | * @memory_map_size on entry the size, in bytes, of the memory map buffer, | |
493 | * on exit the size of the copied memory map | |
494 | * @memory_map buffer to which the memory map is written | |
495 | * @map_key key for the memory map | |
496 | * @descriptor_size size of an individual memory descriptor | |
497 | * @descriptor_version version number of the memory descriptor structure | |
498 | * @return status code | |
499 | */ | |
f5a2a938 HS |
500 | efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, |
501 | struct efi_mem_desc *memory_map, | |
502 | efi_uintn_t *map_key, | |
503 | efi_uintn_t *descriptor_size, | |
504 | uint32_t *descriptor_version) | |
5d00995c | 505 | { |
f5a2a938 | 506 | efi_uintn_t map_size = 0; |
cee752fa | 507 | int map_entries = 0; |
5d00995c | 508 | struct list_head *lhandle; |
fa995d0d | 509 | efi_uintn_t provided_map_size; |
5d00995c | 510 | |
8e835554 HS |
511 | if (!memory_map_size) |
512 | return EFI_INVALID_PARAMETER; | |
513 | ||
fa995d0d HS |
514 | provided_map_size = *memory_map_size; |
515 | ||
5d00995c | 516 | list_for_each(lhandle, &efi_mem) |
cee752fa AG |
517 | map_entries++; |
518 | ||
519 | map_size = map_entries * sizeof(struct efi_mem_desc); | |
5d00995c | 520 | |
a1b24823 RC |
521 | *memory_map_size = map_size; |
522 | ||
0ecba5db HS |
523 | if (provided_map_size < map_size) |
524 | return EFI_BUFFER_TOO_SMALL; | |
525 | ||
8e835554 HS |
526 | if (!memory_map) |
527 | return EFI_INVALID_PARAMETER; | |
528 | ||
5d00995c AG |
529 | if (descriptor_size) |
530 | *descriptor_size = sizeof(struct efi_mem_desc); | |
531 | ||
4c02c11d MYK |
532 | if (descriptor_version) |
533 | *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; | |
534 | ||
5d00995c | 535 | /* Copy list into array */ |
8e835554 HS |
536 | /* Return the list in ascending order */ |
537 | memory_map = &memory_map[map_entries - 1]; | |
538 | list_for_each(lhandle, &efi_mem) { | |
539 | struct efi_mem_list *lmem; | |
5d00995c | 540 | |
8e835554 HS |
541 | lmem = list_entry(lhandle, struct efi_mem_list, link); |
542 | *memory_map = lmem->desc; | |
543 | memory_map--; | |
5d00995c AG |
544 | } |
545 | ||
8e835554 | 546 | if (map_key) |
1fcb7ea2 | 547 | *map_key = efi_memory_map_key; |
c6e3c3e6 | 548 | |
5d00995c AG |
549 | return EFI_SUCCESS; |
550 | } | |
551 | ||
42633745 | 552 | __weak void efi_add_known_memory(void) |
5d00995c | 553 | { |
7b78d643 | 554 | u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK; |
5d00995c AG |
555 | int i; |
556 | ||
23f5f4ab HS |
557 | /* |
558 | * ram_top is just outside mapped memory. So use an offset of one for | |
559 | * mapping the sandbox address. | |
560 | */ | |
561 | ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1; | |
562 | ||
7b78d643 AG |
563 | /* Fix for 32bit targets with ram_top at 4G */ |
564 | if (!ram_top) | |
565 | ram_top = 0x100000000ULL; | |
566 | ||
5d00995c AG |
567 | /* Add RAM */ |
568 | for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { | |
108bdff8 | 569 | u64 ram_end, ram_start, pages; |
5d00995c | 570 | |
49759743 | 571 | ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0); |
108bdff8 HS |
572 | ram_end = ram_start + gd->bd->bi_dram[i].size; |
573 | ||
574 | /* Remove partial pages */ | |
575 | ram_end &= ~EFI_PAGE_MASK; | |
576 | ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; | |
577 | ||
7b78d643 AG |
578 | if (ram_end <= ram_start) { |
579 | /* Invalid mapping, keep going. */ | |
580 | continue; | |
581 | } | |
582 | ||
583 | pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT; | |
108bdff8 | 584 | |
7b78d643 AG |
585 | efi_add_memory_map(ram_start, pages, |
586 | EFI_CONVENTIONAL_MEMORY, false); | |
587 | ||
588 | /* | |
589 | * Boards may indicate to the U-Boot memory core that they | |
590 | * can not support memory above ram_top. Let's honor this | |
591 | * in the efi_loader subsystem too by declaring any memory | |
592 | * above ram_top as "already occupied by firmware". | |
593 | */ | |
594 | if (ram_top < ram_start) { | |
595 | /* ram_top is before this region, reserve all */ | |
108bdff8 | 596 | efi_add_memory_map(ram_start, pages, |
7b78d643 AG |
597 | EFI_BOOT_SERVICES_DATA, true); |
598 | } else if ((ram_top >= ram_start) && (ram_top < ram_end)) { | |
599 | /* ram_top is inside this region, reserve parts */ | |
600 | pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT; | |
601 | ||
602 | efi_add_memory_map(ram_top, pages, | |
603 | EFI_BOOT_SERVICES_DATA, true); | |
108bdff8 | 604 | } |
5d00995c | 605 | } |
42633745 YS |
606 | } |
607 | ||
69259b83 SG |
608 | /* Add memory regions for U-Boot's memory and for the runtime services code */ |
609 | static void add_u_boot_and_runtime(void) | |
42633745 YS |
610 | { |
611 | unsigned long runtime_start, runtime_end, runtime_pages; | |
7a82c305 | 612 | unsigned long runtime_mask = EFI_PAGE_MASK; |
42633745 YS |
613 | unsigned long uboot_start, uboot_pages; |
614 | unsigned long uboot_stack_size = 16 * 1024 * 1024; | |
615 | ||
5d00995c AG |
616 | /* Add U-Boot */ |
617 | uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; | |
618 | uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; | |
619 | efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); | |
620 | ||
7a82c305 AG |
621 | #if defined(__aarch64__) |
622 | /* | |
623 | * Runtime Services must be 64KiB aligned according to the | |
624 | * "AArch64 Platforms" section in the UEFI spec (2.7+). | |
625 | */ | |
626 | ||
627 | runtime_mask = SZ_64K - 1; | |
628 | #endif | |
629 | ||
630 | /* | |
631 | * Add Runtime Services. We mark surrounding boottime code as runtime as | |
632 | * well to fulfill the runtime alignment constraints but avoid padding. | |
633 | */ | |
634 | runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask; | |
5d00995c | 635 | runtime_end = (ulong)&__efi_runtime_stop; |
7a82c305 | 636 | runtime_end = (runtime_end + runtime_mask) & ~runtime_mask; |
5d00995c AG |
637 | runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; |
638 | efi_add_memory_map(runtime_start, runtime_pages, | |
639 | EFI_RUNTIME_SERVICES_CODE, false); | |
69259b83 SG |
640 | } |
641 | ||
642 | int efi_memory_init(void) | |
643 | { | |
644 | efi_add_known_memory(); | |
645 | ||
646 | if (!IS_ENABLED(CONFIG_SANDBOX)) | |
647 | add_u_boot_and_runtime(); | |
5d00995c | 648 | |
51735ae0 AG |
649 | #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
650 | /* Request a 32bit 64MB bounce buffer region */ | |
651 | uint64_t efi_bounce_buffer_addr = 0xffffffff; | |
652 | ||
e09159c8 | 653 | if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA, |
51735ae0 AG |
654 | (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, |
655 | &efi_bounce_buffer_addr) != EFI_SUCCESS) | |
656 | return -1; | |
657 | ||
658 | efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; | |
659 | #endif | |
660 | ||
5d00995c AG |
661 | return 0; |
662 | } |