1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef _SECP256K1_GROUP_
8 #define _SECP256K1_GROUP_
13 /** A group element of the secp256k1 curve, in affine coordinates. */
17 int infinity; /* whether this represents the point at infinity */
20 /** A group element of the secp256k1 curve, in jacobian coordinates. */
22 secp256k1_fe_t x; /* actual X: x/z^2 */
23 secp256k1_fe_t y; /* actual Y: y/z^3 */
25 int infinity; /* whether this represents the point at infinity */
28 /** Global constants related to the group */
30 secp256k1_ge_t g; /* the generator point */
32 #ifdef USE_ENDOMORPHISM
33 /* constants related to secp256k1's efficiently computable endomorphism */
36 } secp256k1_ge_consts_t;
38 static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL;
40 /** Initialize the group module. */
41 static void secp256k1_ge_start(void);
43 /** De-initialize the group module. */
44 static void secp256k1_ge_stop(void);
46 /** Set a group element equal to the point at infinity */
47 static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
49 /** Set a group element equal to the point with given X and Y coordinates */
50 static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
52 /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
53 * for Y. Return value indicates whether the result is valid. */
54 static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
56 /** Check whether a group element is the point at infinity. */
57 static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
59 /** Check whether a group element is valid (i.e., on the curve). */
60 static int secp256k1_ge_is_valid(const secp256k1_ge_t *a);
62 static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
64 /** Get a hex representation of a point. *rlen will be overwritten with the real length. */
65 static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
67 /** Set a group element equal to another which is given in jacobian coordinates */
68 static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
70 /** Set a batch of group elements equal to the inputs given in jacobian coordinates */
71 static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]);
74 /** Set a group element (jacobian) equal to the point at infinity. */
75 static void secp256k1_gej_set_infinity(secp256k1_gej_t *r);
77 /** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
78 static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
80 /** Set a group element (jacobian) equal to another which is given in affine coordinates. */
81 static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
83 /** Get the X coordinate of a group element (jacobian). */
84 static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a);
86 /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
87 static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
89 /** Check whether a group element is the point at infinity. */
90 static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
92 /** Set r equal to the double of a. */
93 static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
95 /** Set r equal to the sum of a and b. */
96 static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
98 /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
99 static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
101 /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
102 than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
103 guarantee, and b is allowed to be infinity. */
104 static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
106 /** Get a hex representation of a point. *rlen will be overwritten with the real length. */
107 static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a);
109 #ifdef USE_ENDOMORPHISM
110 /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
111 static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
114 /** Clear a secp256k1_gej_t to prevent leaking sensitive information. */
115 static void secp256k1_gej_clear(secp256k1_gej_t *r);
117 /** Clear a secp256k1_ge_t to prevent leaking sensitive information. */
118 static void secp256k1_ge_clear(secp256k1_ge_t *r);