1 """ Generates the constants used in secp256k1_scalar_split_lambda.
3 See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations.
6 load("secp256k1_params.sage")
9 """Returns the infinity norm of a vector."""
10 return max(map(abs, v))
12 def gauss_reduction(i1, i2):
13 v1, v2 = i1.copy(), i2.copy()
15 if inf_norm(v2) < inf_norm(v1):
18 # m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2))
19 # (rounding to the nearest integer) without relying on floating point arithmetic.
20 m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2)
26 def find_split_constants_gauss():
27 """Find constants for secp256k1_scalar_split_lamdba using gauss reduction."""
28 (v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)])
30 # We use related vectors in secp256k1_scalar_split_lambda.
36 def find_split_constants_explicit_tof():
37 """Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius.
39 See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on
40 elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2
42 assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10].
43 assert C.j_invariant() == 0
45 t = C.trace_of_frobenius()
47 c = Integer(sqrt((4*P - t**2)/3))
48 A1 = Integer((t - c)/2 - 1)
51 A2 = Integer((t + c)/2 - 1)
52 B2 = Integer(1 - (t - c)/2)
54 # We use a negated b values in secp256k1_scalar_split_lambda.
59 A1, B1, A2, B2 = find_split_constants_explicit_tof()
61 # For extra fun, use an independent method to recompute the constants.
62 assert (A1, B1, A2, B2) == find_split_constants_gauss()
64 # PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n.
66 return Z(a + LAMBDA*b)
68 # Check that (A1, B1) and (A2, B2) are in the kernel of PHI.
69 assert PHI(A1, B1) == Z(0)
70 assert PHI(A2, B2) == Z(0)
72 # Check that the parallelogram generated by (A1, A2) and (B1, B2)
73 # is a fundamental domain by containing exactly N points.
74 # Since the LHS is the determinant and N != 0, this also checks that
75 # (A1, A2) and (B1, B2) are linearly independent. By the previous
76 # assertions, (A1, A2) and (B1, B2) are a basis of the kernel.
77 assert A1*B2 - B1*A2 == N
79 # Check that their components are short enough.
80 assert (A1 + A2)/2 < sqrt(N)
84 G1 = round((2**384)*B2/N)
85 G2 = round((2**384)*(-B1)/N)
92 def scalar_lambda_split(k):
93 """Equivalent to secp256k1_scalar_lambda_split()."""
94 c1 = rnddiv2((k * G1) >> 383)
95 c2 = rnddiv2((k * G2) >> 383)
99 r1 = (k + r2 * -LAMBDA) % N
102 # The result of scalar_lambda_split can depend on the representation of k (mod n).
103 SPECIAL = (2**383) // G2 + 1
104 assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N)
106 print(' A1 =', hex(A1))
107 print(' -B1 =', hex(-B1))
108 print(' A2 =', hex(A2))
109 print(' -B2 =', hex(-B2))
110 print(' =', hex(Z(-B2)))
111 print(' -LAMBDA =', hex(-LAMBDA))
113 print(' G1 =', hex(G1))
114 print(' G2 =', hex(G2))