1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
8 #ifndef _SECP256K1_ECDSA_IMPL_H_
9 #define _SECP256K1_ECDSA_IMPL_H_
15 #include "ecmult_gen.h"
18 /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
19 * sage: for t in xrange(1023, -1, -1):
20 * .. p = 2**256 - 2**32 - t
24 * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
27 * sage: F = FiniteField (p)
28 * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
29 * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
31 static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
32 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
33 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
36 /** Difference between field and order, values 'p' and 'n' values defined in
37 * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
38 * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
41 * sage: F = FiniteField (p)
42 * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
43 * '14551231950b75fc4402da1722fc9baee'
45 static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
46 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
49 static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
50 unsigned char ra[32] = {0}, sa[32] = {0};
51 const unsigned char *rp;
52 const unsigned char *sp;
64 if (sig[1] != lenr+lens+4) {
67 if (lenr+lens+6 > size) {
76 if (sig[lenr+4] != 0x02) {
83 while (lens > 0 && sp[0] == 0) {
91 while (lenr > 0 && rp[0] == 0) {
98 memcpy(ra + 32 - lenr, rp, lenr);
99 memcpy(sa + 32 - lens, sp, lens);
101 secp256k1_scalar_set_b32(rr, ra, &overflow);
105 secp256k1_scalar_set_b32(rs, sa, &overflow);
112 static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
113 unsigned char r[33] = {0}, s[33] = {0};
114 unsigned char *rp = r, *sp = s;
115 size_t lenR = 33, lenS = 33;
116 secp256k1_scalar_get_b32(&r[1], ar);
117 secp256k1_scalar_get_b32(&s[1], as);
118 while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
119 while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
120 if (*size < 6+lenS+lenR) {
121 *size = 6 + lenS + lenR;
124 *size = 6 + lenS + lenR;
126 sig[1] = 4 + lenS + lenR;
129 memcpy(sig+4, rp, lenR);
132 memcpy(sig+lenR+6, sp, lenS);
136 static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
138 secp256k1_scalar sn, u1, u2;
140 secp256k1_gej pubkeyj;
143 if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
147 secp256k1_scalar_inverse_var(&sn, sigs);
148 secp256k1_scalar_mul(&u1, &sn, message);
149 secp256k1_scalar_mul(&u2, &sn, sigr);
150 secp256k1_gej_set_ge(&pubkeyj, pubkey);
151 secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
152 if (secp256k1_gej_is_infinity(&pr)) {
155 secp256k1_scalar_get_b32(c, sigr);
156 secp256k1_fe_set_b32(&xr, c);
158 /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
159 * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
160 * compute the remainder modulo n, and compare it to xr. However:
163 * <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
164 * [Since 2 * n > p, h can only be 0 or 1]
165 * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
166 * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
167 * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
168 * [Multiplying both sides of the equations by pr.z^2 mod p]
169 * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
171 * Thus, we can avoid the inversion, but we have to check both cases separately.
172 * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
174 if (secp256k1_gej_eq_x_var(&xr, &pr)) {
175 /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
178 if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
179 /* xr + p >= n, so we can skip testing the second case. */
182 secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
183 if (secp256k1_gej_eq_x_var(&xr, &pr)) {
184 /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
190 static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
191 unsigned char brx[32];
195 secp256k1_scalar rn, u1, u2;
198 if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
202 secp256k1_scalar_get_b32(brx, sigr);
203 VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
205 if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
208 secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
210 if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
213 secp256k1_gej_set_ge(&xj, &x);
214 secp256k1_scalar_inverse_var(&rn, sigr);
215 secp256k1_scalar_mul(&u1, &rn, message);
216 secp256k1_scalar_negate(&u1, &u1);
217 secp256k1_scalar_mul(&u2, &rn, sigs);
218 secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
219 secp256k1_ge_set_gej_var(pubkey, &qj);
220 return !secp256k1_gej_is_infinity(&qj);
223 static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
230 secp256k1_ecmult_gen(ctx, &rp, nonce);
231 secp256k1_ge_set_gej(&r, &rp);
232 secp256k1_fe_normalize(&r.x);
233 secp256k1_fe_normalize(&r.y);
234 secp256k1_fe_get_b32(b, &r.x);
235 secp256k1_scalar_set_b32(sigr, b, &overflow);
236 if (secp256k1_scalar_is_zero(sigr)) {
237 /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
238 secp256k1_gej_clear(&rp);
239 secp256k1_ge_clear(&r);
243 *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
245 secp256k1_scalar_mul(&n, sigr, seckey);
246 secp256k1_scalar_add(&n, &n, message);
247 secp256k1_scalar_inverse(sigs, nonce);
248 secp256k1_scalar_mul(sigs, sigs, &n);
249 secp256k1_scalar_clear(&n);
250 secp256k1_gej_clear(&rp);
251 secp256k1_ge_clear(&r);
252 if (secp256k1_scalar_is_zero(sigs)) {
255 if (secp256k1_scalar_is_high(sigs)) {
256 secp256k1_scalar_negate(sigs, sigs);