1 /**********************************************************************
2 * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef SECP256K1_ECMULT_GEN_IMPL_H
8 #define SECP256K1_ECMULT_GEN_IMPL_H
12 #include "ecmult_gen.h"
13 #include "hash_impl.h"
14 #ifdef USE_ECMULT_STATIC_PRECOMPUTATION
15 #include "ecmult_static_context.h"
17 static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
21 static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
22 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
23 secp256k1_ge prec[1024];
25 secp256k1_gej nums_gej;
29 if (ctx->prec != NULL) {
32 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
33 ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
35 /* get the generator */
36 secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
38 /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
40 static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
44 r = secp256k1_fe_set_b32(&nums_x, nums_b32);
47 r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
50 secp256k1_gej_set_ge(&nums_gej, &nums_ge);
51 /* Add G to make the bits in x uniformly distributed. */
52 secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
57 secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
59 secp256k1_gej numsbase;
60 gbase = gj; /* 16^j * G */
61 numsbase = nums_gej; /* 2^j * nums. */
62 for (j = 0; j < 64; j++) {
63 /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
64 precj[j*16] = numsbase;
65 for (i = 1; i < 16; i++) {
66 secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
68 /* Multiply gbase by 16. */
69 for (i = 0; i < 4; i++) {
70 secp256k1_gej_double_var(&gbase, &gbase, NULL);
72 /* Multiply numbase by 2. */
73 secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
75 /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
76 secp256k1_gej_neg(&numsbase, &numsbase);
77 secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
80 secp256k1_ge_set_all_gej_var(prec, precj, 1024);
82 for (j = 0; j < 64; j++) {
83 for (i = 0; i < 16; i++) {
84 secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
89 ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
91 secp256k1_ecmult_gen_blind(ctx, NULL);
94 static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
95 return ctx->prec != NULL;
98 static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
99 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
100 if (src->prec == NULL) {
103 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
104 dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
105 memcpy(dst->prec, src->prec, sizeof(*dst->prec));
108 dst->prec = src->prec;
110 dst->initial = src->initial;
111 dst->blind = src->blind;
115 static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
116 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
119 secp256k1_scalar_clear(&ctx->blind);
120 secp256k1_gej_clear(&ctx->initial);
124 static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
126 secp256k1_ge_storage adds;
127 secp256k1_scalar gnb;
130 memset(&adds, 0, sizeof(adds));
132 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
133 secp256k1_scalar_add(&gnb, gn, &ctx->blind);
135 for (j = 0; j < 64; j++) {
136 bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
137 for (i = 0; i < 16; i++) {
138 /** This uses a conditional move to avoid any secret data in array indexes.
139 * _Any_ use of secret indexes has been demonstrated to result in timing
140 * sidechannels, even when the cache-line access patterns are uniform.
142 * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
143 * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
144 * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
145 * by Dag Arne Osvik, Adi Shamir, and Eran Tromer
146 * (http://www.tau.ac.il/~tromer/papers/cache.pdf)
148 secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
150 secp256k1_ge_from_storage(&add, &adds);
151 secp256k1_gej_add_ge(r, r, &add);
154 secp256k1_ge_clear(&add);
155 secp256k1_scalar_clear(&gnb);
158 /* Setup blinding values for secp256k1_ecmult_gen. */
159 static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
163 unsigned char nonce32[32];
164 secp256k1_rfc6979_hmac_sha256 rng;
166 unsigned char keydata[64] = {0};
167 if (seed32 == NULL) {
168 /* When seed is NULL, reset the initial point and blinding value. */
169 secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
170 secp256k1_gej_neg(&ctx->initial, &ctx->initial);
171 secp256k1_scalar_set_int(&ctx->blind, 1);
173 /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
174 secp256k1_scalar_get_b32(nonce32, &ctx->blind);
175 /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
176 * and guards against weak or adversarial seeds. This is a simpler and safer interface than
177 * asking the caller for blinding values directly and expecting them to retry on failure.
179 memcpy(keydata, nonce32, 32);
180 if (seed32 != NULL) {
181 memcpy(keydata + 32, seed32, 32);
183 secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
184 memset(keydata, 0, sizeof(keydata));
185 /* Retry for out of range results to achieve uniformity. */
187 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
188 retry = !secp256k1_fe_set_b32(&s, nonce32);
189 retry |= secp256k1_fe_is_zero(&s);
190 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
191 /* Randomize the projection to defend against multiplier sidechannels. */
192 secp256k1_gej_rescale(&ctx->initial, &s);
193 secp256k1_fe_clear(&s);
195 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
196 secp256k1_scalar_set_b32(&b, nonce32, &retry);
197 /* A blinding value of 0 works, but would undermine the projection hardening. */
198 retry |= secp256k1_scalar_is_zero(&b);
199 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
200 secp256k1_rfc6979_hmac_sha256_finalize(&rng);
201 memset(nonce32, 0, 32);
202 secp256k1_ecmult_gen(ctx, &gb, &b);
203 secp256k1_scalar_negate(&b, &b);
206 secp256k1_scalar_clear(&b);
207 secp256k1_gej_clear(&gb);
210 #endif /* SECP256K1_ECMULT_GEN_IMPL_H */