1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef SECP256K1_FIELD_REPR_IMPL_H
8 #define SECP256K1_FIELD_REPR_IMPL_H
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
17 #if defined(USE_ASM_X86_64)
18 #include "field_5x52_asm_impl.h"
20 #include "field_5x52_int128_impl.h"
23 /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
24 * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
25 * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
26 * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
27 * accept any input with magnitude at most M, and have different rules for propagating magnitude to their
32 static void secp256k1_fe_verify(const secp256k1_fe *a) {
33 const uint64_t *d = a->n;
34 int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
35 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
36 r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
37 r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
38 r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
39 r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
40 r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
41 r &= (a->magnitude >= 0);
42 r &= (a->magnitude <= 2048);
44 r &= (a->magnitude <= 1);
45 if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
46 r &= (d[0] < 0xFFFFEFFFFFC2FULL);
53 static void secp256k1_fe_normalize(secp256k1_fe *r) {
54 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
56 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
58 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
60 /* The first pass ensures the magnitude is 1, ... */
61 t0 += x * 0x1000003D1ULL;
62 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
63 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
64 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
65 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
67 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
68 VERIFY_CHECK(t4 >> 49 == 0);
70 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
71 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
72 & (t0 >= 0xFFFFEFFFFFC2FULL));
74 /* Apply the final reduction (for constant-time behaviour, we do it always) */
75 t0 += x * 0x1000003D1ULL;
76 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
77 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
78 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
79 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
81 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
82 VERIFY_CHECK(t4 >> 48 == x);
84 /* Mask off the possible multiple of 2^256 from the final reduction */
85 t4 &= 0x0FFFFFFFFFFFFULL;
87 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
92 secp256k1_fe_verify(r);
96 static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
97 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
99 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
100 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
102 /* The first pass ensures the magnitude is 1, ... */
103 t0 += x * 0x1000003D1ULL;
104 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
105 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
106 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
107 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
109 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
110 VERIFY_CHECK(t4 >> 49 == 0);
112 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
116 secp256k1_fe_verify(r);
120 static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
121 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
123 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
125 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
127 /* The first pass ensures the magnitude is 1, ... */
128 t0 += x * 0x1000003D1ULL;
129 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
130 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
131 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
132 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
134 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
135 VERIFY_CHECK(t4 >> 49 == 0);
137 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
138 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
139 & (t0 >= 0xFFFFEFFFFFC2FULL));
142 t0 += 0x1000003D1ULL;
143 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
144 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
145 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
146 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
148 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
149 VERIFY_CHECK(t4 >> 48 == x);
151 /* Mask off the possible multiple of 2^256 from the final reduction */
152 t4 &= 0x0FFFFFFFFFFFFULL;
155 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
160 secp256k1_fe_verify(r);
164 static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
165 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
167 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
170 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
171 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
173 /* The first pass ensures the magnitude is 1, ... */
174 t0 += x * 0x1000003D1ULL;
175 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
176 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
177 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
178 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
179 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
181 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
182 VERIFY_CHECK(t4 >> 49 == 0);
184 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
187 static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
188 uint64_t t0, t1, t2, t3, t4;
195 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
198 /* The first pass ensures the magnitude is 1, ... */
199 t0 += x * 0x1000003D1ULL;
201 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
202 z0 = t0 & 0xFFFFFFFFFFFFFULL;
203 z1 = z0 ^ 0x1000003D0ULL;
205 /* Fast return path should catch the majority of cases */
206 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
214 t4 &= 0x0FFFFFFFFFFFFULL;
217 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
218 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
219 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
220 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
222 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
223 VERIFY_CHECK(t4 >> 49 == 0);
225 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
228 SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
230 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
234 secp256k1_fe_verify(r);
238 SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
239 const uint64_t *t = a->n;
241 VERIFY_CHECK(a->normalized);
242 secp256k1_fe_verify(a);
244 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
247 SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
249 VERIFY_CHECK(a->normalized);
250 secp256k1_fe_verify(a);
255 SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
261 for (i=0; i<5; i++) {
266 static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
269 VERIFY_CHECK(a->normalized);
270 VERIFY_CHECK(b->normalized);
271 secp256k1_fe_verify(a);
272 secp256k1_fe_verify(b);
274 for (i = 4; i >= 0; i--) {
275 if (a->n[i] > b->n[i]) {
278 if (a->n[i] < b->n[i]) {
285 static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
287 r->n[0] = (uint64_t)a[31]
288 | ((uint64_t)a[30] << 8)
289 | ((uint64_t)a[29] << 16)
290 | ((uint64_t)a[28] << 24)
291 | ((uint64_t)a[27] << 32)
292 | ((uint64_t)a[26] << 40)
293 | ((uint64_t)(a[25] & 0xF) << 48);
294 r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
295 | ((uint64_t)a[24] << 4)
296 | ((uint64_t)a[23] << 12)
297 | ((uint64_t)a[22] << 20)
298 | ((uint64_t)a[21] << 28)
299 | ((uint64_t)a[20] << 36)
300 | ((uint64_t)a[19] << 44);
301 r->n[2] = (uint64_t)a[18]
302 | ((uint64_t)a[17] << 8)
303 | ((uint64_t)a[16] << 16)
304 | ((uint64_t)a[15] << 24)
305 | ((uint64_t)a[14] << 32)
306 | ((uint64_t)a[13] << 40)
307 | ((uint64_t)(a[12] & 0xF) << 48);
308 r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
309 | ((uint64_t)a[11] << 4)
310 | ((uint64_t)a[10] << 12)
311 | ((uint64_t)a[9] << 20)
312 | ((uint64_t)a[8] << 28)
313 | ((uint64_t)a[7] << 36)
314 | ((uint64_t)a[6] << 44);
315 r->n[4] = (uint64_t)a[5]
316 | ((uint64_t)a[4] << 8)
317 | ((uint64_t)a[3] << 16)
318 | ((uint64_t)a[2] << 24)
319 | ((uint64_t)a[1] << 32)
320 | ((uint64_t)a[0] << 40);
321 ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
326 secp256k1_fe_verify(r);
334 /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
335 static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
337 VERIFY_CHECK(a->normalized);
338 secp256k1_fe_verify(a);
340 r[0] = (a->n[4] >> 40) & 0xFF;
341 r[1] = (a->n[4] >> 32) & 0xFF;
342 r[2] = (a->n[4] >> 24) & 0xFF;
343 r[3] = (a->n[4] >> 16) & 0xFF;
344 r[4] = (a->n[4] >> 8) & 0xFF;
345 r[5] = a->n[4] & 0xFF;
346 r[6] = (a->n[3] >> 44) & 0xFF;
347 r[7] = (a->n[3] >> 36) & 0xFF;
348 r[8] = (a->n[3] >> 28) & 0xFF;
349 r[9] = (a->n[3] >> 20) & 0xFF;
350 r[10] = (a->n[3] >> 12) & 0xFF;
351 r[11] = (a->n[3] >> 4) & 0xFF;
352 r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
353 r[13] = (a->n[2] >> 40) & 0xFF;
354 r[14] = (a->n[2] >> 32) & 0xFF;
355 r[15] = (a->n[2] >> 24) & 0xFF;
356 r[16] = (a->n[2] >> 16) & 0xFF;
357 r[17] = (a->n[2] >> 8) & 0xFF;
358 r[18] = a->n[2] & 0xFF;
359 r[19] = (a->n[1] >> 44) & 0xFF;
360 r[20] = (a->n[1] >> 36) & 0xFF;
361 r[21] = (a->n[1] >> 28) & 0xFF;
362 r[22] = (a->n[1] >> 20) & 0xFF;
363 r[23] = (a->n[1] >> 12) & 0xFF;
364 r[24] = (a->n[1] >> 4) & 0xFF;
365 r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
366 r[26] = (a->n[0] >> 40) & 0xFF;
367 r[27] = (a->n[0] >> 32) & 0xFF;
368 r[28] = (a->n[0] >> 24) & 0xFF;
369 r[29] = (a->n[0] >> 16) & 0xFF;
370 r[30] = (a->n[0] >> 8) & 0xFF;
371 r[31] = a->n[0] & 0xFF;
374 SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
376 VERIFY_CHECK(a->magnitude <= m);
377 secp256k1_fe_verify(a);
379 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
380 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
381 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
382 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
383 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
385 r->magnitude = m + 1;
387 secp256k1_fe_verify(r);
391 SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
400 secp256k1_fe_verify(r);
404 SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
406 secp256k1_fe_verify(a);
414 r->magnitude += a->magnitude;
416 secp256k1_fe_verify(r);
420 static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
422 VERIFY_CHECK(a->magnitude <= 8);
423 VERIFY_CHECK(b->magnitude <= 8);
424 secp256k1_fe_verify(a);
425 secp256k1_fe_verify(b);
426 VERIFY_CHECK(r != b);
427 VERIFY_CHECK(a != b);
429 secp256k1_fe_mul_inner(r->n, a->n, b->n);
433 secp256k1_fe_verify(r);
437 static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
439 VERIFY_CHECK(a->magnitude <= 8);
440 secp256k1_fe_verify(a);
442 secp256k1_fe_sqr_inner(r->n, a->n);
446 secp256k1_fe_verify(r);
450 static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
451 uint64_t mask0, mask1;
452 VG_CHECK_VERIFY(r->n, sizeof(r->n));
453 mask0 = flag + ~((uint64_t)0);
455 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
456 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
457 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
458 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
459 r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
462 r->magnitude = a->magnitude;
463 r->normalized = a->normalized;
468 static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
469 uint64_t mask0, mask1;
470 VG_CHECK_VERIFY(r->n, sizeof(r->n));
471 mask0 = flag + ~((uint64_t)0);
473 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
474 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
475 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
476 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
479 static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
481 VERIFY_CHECK(a->normalized);
483 r->n[0] = a->n[0] | a->n[1] << 52;
484 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
485 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
486 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
489 static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
490 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
491 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
492 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
493 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
494 r->n[4] = a->n[3] >> 16;
501 #endif /* SECP256K1_FIELD_REPR_IMPL_H */