1 // Copyright (c) 2013 Pieter Wuille
2 // Distributed under the MIT/X11 software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #if defined HAVE_CONFIG_H
6 #include "libsecp256k1-config.h"
13 #include "field_impl.h"
14 #include "group_impl.h"
15 #include "ecmult_impl.h"
16 #include "ecdsa_impl.h"
17 #include "util_impl.h"
19 #ifdef ENABLE_OPENSSL_TESTS
20 #include "openssl/bn.h"
21 #include "openssl/ec.h"
22 #include "openssl/ecdsa.h"
23 #include "openssl/obj_mac.h"
26 #define TEST_FAILURE(msg) do { \
27 fprintf(stderr, "%s:%d: %s\n", __FILE__, __LINE__, msg); \
31 #define CHECK(cond) do { if (!(cond)) { TEST_FAILURE("test condition failed: " #cond); } } while(0)
33 static int count = 100;
35 /***** NUM TESTS *****/
37 void random_num_negate(secp256k1_num_t *num) {
38 if (secp256k1_rand32() & 1)
39 secp256k1_num_negate(num);
42 void random_num_order_test(secp256k1_num_t *num) {
44 unsigned char b32[32];
45 secp256k1_rand256_test(b32);
46 secp256k1_num_set_bin(num, b32, 32);
47 if (secp256k1_num_is_zero(num))
49 if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
55 void random_num_order(secp256k1_num_t *num) {
57 unsigned char b32[32];
58 secp256k1_rand256(b32);
59 secp256k1_num_set_bin(num, b32, 32);
60 if (secp256k1_num_is_zero(num))
62 if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
68 void test_num_copy_inc_cmp() {
69 secp256k1_num_t n1,n2;
70 secp256k1_num_init(&n1);
71 secp256k1_num_init(&n2);
72 random_num_order(&n1);
73 secp256k1_num_copy(&n2, &n1);
74 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
75 CHECK(secp256k1_num_cmp(&n2, &n1) == 0);
76 secp256k1_num_inc(&n2);
77 CHECK(secp256k1_num_cmp(&n1, &n2) != 0);
78 CHECK(secp256k1_num_cmp(&n2, &n1) != 0);
79 secp256k1_num_free(&n1);
80 secp256k1_num_free(&n2);
84 void test_num_get_set_hex() {
85 secp256k1_num_t n1,n2;
86 secp256k1_num_init(&n1);
87 secp256k1_num_init(&n2);
88 random_num_order_test(&n1);
90 secp256k1_num_get_hex(c, 64, &n1);
91 secp256k1_num_set_hex(&n2, c, 64);
92 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
93 for (int i=0; i<64; i++) {
94 // check whether the lower 4 bits correspond to the last hex character
95 int low1 = secp256k1_num_shift(&n1, 4);
97 int low2 = (lowh>>6)*9+(lowh-'0')&15;
99 // shift bits off the hex representation, and compare
102 secp256k1_num_set_hex(&n2, c, 64);
103 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
105 secp256k1_num_free(&n2);
106 secp256k1_num_free(&n1);
109 void test_num_get_set_bin() {
110 secp256k1_num_t n1,n2;
111 secp256k1_num_init(&n1);
112 secp256k1_num_init(&n2);
113 random_num_order_test(&n1);
115 secp256k1_num_get_bin(c, 32, &n1);
116 secp256k1_num_set_bin(&n2, c, 32);
117 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
118 for (int i=0; i<32; i++) {
119 // check whether the lower 8 bits correspond to the last byte
120 int low1 = secp256k1_num_shift(&n1, 8);
123 // shift bits off the byte representation, and compare
126 secp256k1_num_set_bin(&n2, c, 32);
127 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
129 secp256k1_num_free(&n2);
130 secp256k1_num_free(&n1);
135 secp256k1_num_init(&n1);
136 for (int i=-255; i<256; i++) {
137 unsigned char c1[3] = {};
139 unsigned char c2[3] = {0x11,0x22,0x33};
140 secp256k1_num_set_int(&n1, i);
141 secp256k1_num_get_bin(c2, 3, &n1);
142 CHECK(memcmp(c1, c2, 3) == 0);
144 secp256k1_num_free(&n1);
147 void test_num_negate() {
150 secp256k1_num_init(&n1);
151 secp256k1_num_init(&n2);
152 random_num_order_test(&n1); // n1 = R
153 random_num_negate(&n1);
154 secp256k1_num_copy(&n2, &n1); // n2 = R
155 secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0
156 CHECK(secp256k1_num_is_zero(&n1));
157 secp256k1_num_copy(&n1, &n2); // n1 = R
158 secp256k1_num_negate(&n1); // n1 = -R
159 CHECK(!secp256k1_num_is_zero(&n1));
160 secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0
161 CHECK(secp256k1_num_is_zero(&n1));
162 secp256k1_num_copy(&n1, &n2); // n1 = R
163 secp256k1_num_negate(&n1); // n1 = -R
164 CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
165 secp256k1_num_negate(&n1); // n1 = R
166 CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
167 CHECK(secp256k1_num_is_neg(&n1) == secp256k1_num_is_neg(&n2));
168 secp256k1_num_free(&n2);
169 secp256k1_num_free(&n1);
172 void test_num_add_sub() {
175 secp256k1_num_init(&n1);
176 secp256k1_num_init(&n2);
177 random_num_order_test(&n1); // n1 = R1
178 random_num_negate(&n1);
179 random_num_order_test(&n2); // n2 = R2
180 random_num_negate(&n2);
181 secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
182 secp256k1_num_init(&n1p2);
183 secp256k1_num_init(&n2p1);
184 secp256k1_num_init(&n1m2);
185 secp256k1_num_init(&n2m1);
186 secp256k1_num_add(&n1p2, &n1, &n2); // n1p2 = R1 + R2
187 secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1
188 secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2
189 secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1
190 CHECK(secp256k1_num_cmp(&n1p2, &n2p1) == 0);
191 CHECK(secp256k1_num_cmp(&n1p2, &n1m2) != 0);
192 secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1
193 CHECK(secp256k1_num_cmp(&n2m1, &n1m2) == 0);
194 CHECK(secp256k1_num_cmp(&n2m1, &n1) != 0);
195 secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1
196 CHECK(secp256k1_num_cmp(&n2m1, &n1) == 0);
197 CHECK(secp256k1_num_cmp(&n2p1, &n1) != 0);
198 secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1
199 CHECK(secp256k1_num_cmp(&n2p1, &n1) == 0);
200 secp256k1_num_free(&n2m1);
201 secp256k1_num_free(&n1m2);
202 secp256k1_num_free(&n2p1);
203 secp256k1_num_free(&n1p2);
204 secp256k1_num_free(&n2);
205 secp256k1_num_free(&n1);
208 void run_num_smalltests() {
209 for (int i=0; i<100*count; i++) {
210 test_num_copy_inc_cmp();
211 test_num_get_set_hex();
212 test_num_get_set_bin();
219 /***** FIELD TESTS *****/
221 void random_fe(secp256k1_fe_t *x) {
222 unsigned char bin[32];
223 secp256k1_rand256(bin);
224 secp256k1_fe_set_b32(x, bin);
227 void random_fe_non_zero(secp256k1_fe_t *nz) {
229 while (--tries >= 0) {
231 secp256k1_fe_normalize(nz);
232 if (!secp256k1_fe_is_zero(nz))
235 // Infinitesimal probability of spurious failure here
239 void random_fe_non_square(secp256k1_fe_t *ns) {
240 random_fe_non_zero(ns);
242 if (secp256k1_fe_sqrt(&r, ns)) {
243 secp256k1_fe_negate(ns, ns, 1);
247 int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
248 secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an);
249 secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn);
250 return secp256k1_fe_equal(&an, &bn);
253 int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
254 secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai);
255 secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1);
256 return check_fe_equal(&x, &one);
259 void run_field_inv() {
260 secp256k1_fe_t x, xi, xii;
261 for (int i=0; i<10*count; i++) {
262 random_fe_non_zero(&x);
263 secp256k1_fe_inv(&xi, &x);
264 CHECK(check_fe_inverse(&x, &xi));
265 secp256k1_fe_inv(&xii, &xi);
266 CHECK(check_fe_equal(&x, &xii));
270 void run_field_inv_var() {
271 secp256k1_fe_t x, xi, xii;
272 for (int i=0; i<10*count; i++) {
273 random_fe_non_zero(&x);
274 secp256k1_fe_inv_var(&xi, &x);
275 CHECK(check_fe_inverse(&x, &xi));
276 secp256k1_fe_inv_var(&xii, &xi);
277 CHECK(check_fe_equal(&x, &xii));
281 void run_field_inv_all() {
282 secp256k1_fe_t x[16], xi[16], xii[16];
283 // Check it's safe to call for 0 elements
284 secp256k1_fe_inv_all(0, xi, x);
285 for (int i=0; i<count; i++) {
286 size_t len = (secp256k1_rand32() & 15) + 1;
287 for (int j=0; j<len; j++)
288 random_fe_non_zero(&x[j]);
289 secp256k1_fe_inv_all(len, xi, x);
290 for (int j=0; j<len; j++)
291 CHECK(check_fe_inverse(&x[j], &xi[j]));
292 secp256k1_fe_inv_all(len, xii, xi);
293 for (int j=0; j<len; j++)
294 CHECK(check_fe_equal(&x[j], &xii[j]));
298 void run_field_inv_all_var() {
299 secp256k1_fe_t x[16], xi[16], xii[16];
300 // Check it's safe to call for 0 elements
301 secp256k1_fe_inv_all_var(0, xi, x);
302 for (int i=0; i<count; i++) {
303 size_t len = (secp256k1_rand32() & 15) + 1;
304 for (int j=0; j<len; j++)
305 random_fe_non_zero(&x[j]);
306 secp256k1_fe_inv_all_var(len, xi, x);
307 for (int j=0; j<len; j++)
308 CHECK(check_fe_inverse(&x[j], &xi[j]));
309 secp256k1_fe_inv_all_var(len, xii, xi);
310 for (int j=0; j<len; j++)
311 CHECK(check_fe_equal(&x[j], &xii[j]));
315 void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
316 secp256k1_fe_t r1, r2;
317 int v = secp256k1_fe_sqrt(&r1, a);
318 CHECK((v == 0) == (k == NULL));
321 // Check that the returned root is +/- the given known answer
322 secp256k1_fe_negate(&r2, &r1, 1);
323 secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
324 secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
325 CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
330 secp256k1_fe_t ns, x, s, t;
332 // Check sqrt(0) is 0
333 secp256k1_fe_set_int(&x, 0);
334 secp256k1_fe_sqr(&s, &x);
337 // Check sqrt of small squares (and their negatives)
338 for (int i=1; i<=100; i++) {
339 secp256k1_fe_set_int(&x, i);
340 secp256k1_fe_sqr(&s, &x);
342 secp256k1_fe_negate(&t, &s, 1);
346 // Consistency checks for large random values
347 for (int i=0; i<10; i++) {
348 random_fe_non_square(&ns);
349 for (int j=0; j<count; j++) {
351 secp256k1_fe_sqr(&s, &x);
353 secp256k1_fe_negate(&t, &s, 1);
355 secp256k1_fe_mul(&t, &s, &ns);
361 /***** ECMULT TESTS *****/
363 void run_ecmult_chain() {
364 // random starting point A (on the curve)
365 secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64);
366 secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64);
367 secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
368 // two random initial factors xn and gn
370 secp256k1_num_init(&xn);
371 secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64);
373 secp256k1_num_init(&gn);
374 secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64);
375 // two small multipliers to be applied to xn and gn in every iteration:
377 secp256k1_num_init(&xf);
378 secp256k1_num_set_hex(&xf, "1337", 4);
380 secp256k1_num_init(&gf);
381 secp256k1_num_set_hex(&gf, "7113", 4);
382 // accumulators with the resulting coefficients to A and G
384 secp256k1_num_init(&ae);
385 secp256k1_num_set_int(&ae, 1);
387 secp256k1_num_init(&ge);
388 secp256k1_num_set_int(&ge, 0);
389 // the point being computed
390 secp256k1_gej_t x = a;
391 const secp256k1_num_t *order = &secp256k1_ge_consts->order;
392 for (int i=0; i<200*count; i++) {
393 // in each iteration, compute X = xn*X + gn*G;
394 secp256k1_ecmult(&x, &x, &xn, &gn);
395 // also compute ae and ge: the actual accumulated factors for A and G
396 // if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G)
397 secp256k1_num_mod_mul(&ae, &ae, &xn, order);
398 secp256k1_num_mod_mul(&ge, &ge, &xn, order);
399 secp256k1_num_add(&ge, &ge, &gn);
400 secp256k1_num_mod(&ge, order);
402 secp256k1_num_mod_mul(&xn, &xn, &xf, order);
403 secp256k1_num_mod_mul(&gn, &gn, &gf, order);
407 char res[132]; int resl = 132;
408 secp256k1_gej_get_hex(res, &resl, &x);
409 CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
412 // redo the computation, but directly with the resulting ae and ge coefficients:
413 secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
414 char res[132]; int resl = 132;
415 char res2[132]; int resl2 = 132;
416 secp256k1_gej_get_hex(res, &resl, &x);
417 secp256k1_gej_get_hex(res2, &resl2, &x2);
418 CHECK(strcmp(res, res2) == 0);
419 CHECK(strlen(res) == 131);
420 secp256k1_num_free(&xn);
421 secp256k1_num_free(&gn);
422 secp256k1_num_free(&xf);
423 secp256k1_num_free(&gf);
424 secp256k1_num_free(&ae);
425 secp256k1_num_free(&ge);
428 void test_point_times_order(const secp256k1_gej_t *point) {
429 // multiplying a point by the order results in O
430 const secp256k1_num_t *order = &secp256k1_ge_consts->order;
431 secp256k1_num_t zero;
432 secp256k1_num_init(&zero);
433 secp256k1_num_set_int(&zero, 0);
435 secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G;
436 CHECK(secp256k1_gej_is_infinity(&res));
437 secp256k1_num_free(&zero);
440 void run_point_times_order() {
441 secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2);
442 for (int i=0; i<500; i++) {
444 if (secp256k1_ge_set_xo(&p, &x, 1)) {
445 CHECK(secp256k1_ge_is_valid(&p));
447 secp256k1_gej_set_ge(&j, &p);
448 CHECK(secp256k1_gej_is_valid(&j));
449 test_point_times_order(&j);
451 secp256k1_fe_sqr(&x, &x);
453 char c[65]; int cl=65;
454 secp256k1_fe_get_hex(c, &cl, &x);
455 CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
458 void test_wnaf(const secp256k1_num_t *number, int w) {
459 secp256k1_num_t x, two, t;
460 secp256k1_num_init(&x);
461 secp256k1_num_init(&two);
462 secp256k1_num_init(&t);
463 secp256k1_num_set_int(&x, 0);
464 secp256k1_num_set_int(&two, 2);
466 int bits = secp256k1_ecmult_wnaf(wnaf, number, w);
468 for (int i=bits-1; i>=0; i--) {
469 secp256k1_num_mul(&x, &x, &two);
472 CHECK(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1
474 CHECK((v & 1) == 1); // check non-zero elements are odd
475 CHECK(v <= (1 << (w-1)) - 1); // check range below
476 CHECK(v >= -(1 << (w-1)) - 1); // check range above
478 CHECK(zeroes != -1); // check that no unnecessary zero padding exists
481 secp256k1_num_set_int(&t, v);
482 secp256k1_num_add(&x, &x, &t);
484 CHECK(secp256k1_num_cmp(&x, number) == 0); // check that wnaf represents number
485 secp256k1_num_free(&x);
486 secp256k1_num_free(&two);
487 secp256k1_num_free(&t);
492 secp256k1_num_init(&n);
493 for (int i=0; i<count; i++) {
494 random_num_order(&n);
496 secp256k1_num_negate(&n);
497 test_wnaf(&n, 4+(i%10));
499 secp256k1_num_free(&n);
502 void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *key, const secp256k1_num_t *msg, int *recid) {
503 secp256k1_num_t nonce;
504 secp256k1_num_init(&nonce);
506 random_num_order_test(&nonce);
507 } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
508 secp256k1_num_free(&nonce);
511 void test_ecdsa_sign_verify() {
512 const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
513 secp256k1_num_t msg, key;
514 secp256k1_num_init(&msg);
515 random_num_order_test(&msg);
516 secp256k1_num_init(&key);
517 random_num_order_test(&key);
518 secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key);
519 secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj);
520 secp256k1_ecdsa_sig_t sig;
521 secp256k1_ecdsa_sig_init(&sig);
522 random_sign(&sig, &key, &msg, NULL);
523 CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
524 secp256k1_num_inc(&msg);
525 CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
526 secp256k1_ecdsa_sig_free(&sig);
527 secp256k1_num_free(&msg);
528 secp256k1_num_free(&key);
531 void run_ecdsa_sign_verify() {
532 for (int i=0; i<10*count; i++) {
533 test_ecdsa_sign_verify();
537 #ifdef ENABLE_OPENSSL_TESTS
538 EC_KEY *get_openssl_key(const secp256k1_num_t *key) {
539 unsigned char privkey[300];
541 int compr = secp256k1_rand32() & 1;
542 const unsigned char* pbegin = privkey;
543 EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
544 CHECK(secp256k1_ecdsa_privkey_serialize(privkey, &privkeylen, key, compr));
545 CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
546 CHECK(EC_KEY_check_key(ec_key));
550 void test_ecdsa_openssl() {
551 const secp256k1_ge_consts_t *c = secp256k1_ge_consts;
552 secp256k1_num_t key, msg;
553 secp256k1_num_init(&msg);
554 unsigned char message[32];
555 secp256k1_rand256_test(message);
556 secp256k1_num_set_bin(&msg, message, 32);
557 secp256k1_num_init(&key);
558 random_num_order_test(&key);
560 secp256k1_ecmult_gen(&qj, &key);
562 secp256k1_ge_set_gej(&q, &qj);
563 EC_KEY *ec_key = get_openssl_key(&key);
565 unsigned char signature[80];
567 CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
568 secp256k1_ecdsa_sig_t sig;
569 secp256k1_ecdsa_sig_init(&sig);
570 CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
571 CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
572 secp256k1_num_inc(&sig.r);
573 CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
575 random_sign(&sig, &key, &msg, NULL);
577 CHECK(secp256k1_ecdsa_sig_serialize(signature, &sigsize, &sig));
578 CHECK(ECDSA_verify(0, message, sizeof(message), signature, sigsize, ec_key) == 1);
580 secp256k1_ecdsa_sig_free(&sig);
582 secp256k1_num_free(&key);
583 secp256k1_num_free(&msg);
586 void run_ecdsa_openssl() {
587 for (int i=0; i<10*count; i++) {
588 test_ecdsa_openssl();
593 int main(int argc, char **argv) {
595 count = strtol(argv[1], NULL, 0)*47;
597 printf("test count = %i\n", count);
600 secp256k1_fe_start();
601 secp256k1_ge_start();
602 secp256k1_ecmult_start();
605 run_num_smalltests();
611 run_field_inv_all_var();
616 run_point_times_order();
620 run_ecdsa_sign_verify();
621 #ifdef ENABLE_OPENSSL_TESTS
626 secp256k1_ecmult_stop();