1 /***********************************************************************
2 * Copyright (c) 2016 Andrew Poelstra *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #if defined HAVE_CONFIG_H
8 #include "libsecp256k1-config.h"
16 #undef USE_ECMULT_STATIC_PRECOMPUTATION
18 #ifndef EXHAUSTIVE_TEST_ORDER
19 /* see group_impl.h for allowable values */
20 #define EXHAUSTIVE_TEST_ORDER 13
21 #define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */
24 #include "include/secp256k1.h"
26 #include "secp256k1.c"
27 #include "testrand_impl.h"
29 #ifdef ENABLE_MODULE_RECOVERY
30 #include "src/modules/recovery/main_impl.h"
31 #include "include/secp256k1_recovery.h"
34 /** stolen from tests.c */
35 void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
36 CHECK(a->infinity == b->infinity);
40 CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
41 CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
44 void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
46 secp256k1_fe u1, u2, s1, s2;
47 CHECK(a->infinity == b->infinity);
51 /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
52 secp256k1_fe_sqr(&z2s, &b->z);
53 secp256k1_fe_mul(&u1, &a->x, &z2s);
54 u2 = b->x; secp256k1_fe_normalize_weak(&u2);
55 secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
56 s2 = b->y; secp256k1_fe_normalize_weak(&s2);
57 CHECK(secp256k1_fe_equal_var(&u1, &u2));
58 CHECK(secp256k1_fe_equal_var(&s1, &s2));
61 void random_fe(secp256k1_fe *x) {
62 unsigned char bin[32];
64 secp256k1_rand256(bin);
65 if (secp256k1_fe_set_b32(x, bin)) {
70 /** END stolen from tests.c */
72 int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
73 const unsigned char *key32, const unsigned char *algo16,
74 void *data, unsigned int attempt) {
80 /* Some nonces cannot be used because they'd cause s and/or r to be zero.
81 * The signing function has retry logic here that just re-calls the nonce
82 * function with an increased `attempt`. So if attempt > 0 this means we
83 * need to change the nonce to avoid an infinite loop. */
85 *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
87 secp256k1_scalar_set_int(&s, *idata);
88 secp256k1_scalar_get_b32(nonce32, &s);
92 #ifdef USE_ENDOMORPHISM
93 void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) {
95 for (i = 0; i < order; i++) {
97 secp256k1_ge_mul_lambda(&res, &group[i]);
98 ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
103 void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
106 /* Sanity-check (and check infinity functions) */
107 CHECK(secp256k1_ge_is_infinity(&group[0]));
108 CHECK(secp256k1_gej_is_infinity(&groupj[0]));
109 for (i = 1; i < order; i++) {
110 CHECK(!secp256k1_ge_is_infinity(&group[i]));
111 CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
114 /* Check all addition formulae */
115 for (j = 0; j < order; j++) {
117 secp256k1_fe_inv(&fe_inv, &groupj[j].z);
118 for (i = 0; i < order; i++) {
119 secp256k1_ge zless_gej;
122 secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
123 ge_equals_gej(&group[(i + j) % order], &tmp);
126 secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
127 ge_equals_gej(&group[(i + j) % order], &tmp);
130 secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
131 ge_equals_gej(&group[(i + j) % order], &tmp);
133 zless_gej.infinity = groupj[j].infinity;
134 zless_gej.x = groupj[j].x;
135 zless_gej.y = groupj[j].y;
136 secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
137 ge_equals_gej(&group[(i + j) % order], &tmp);
142 for (i = 0; i < order; i++) {
145 secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
146 ge_equals_gej(&group[(2 * i) % order], &tmp);
148 secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
149 ge_equals_gej(&group[(2 * i) % order], &tmp);
153 for (i = 1; i < order; i++) {
156 secp256k1_ge_neg(&tmp, &group[i]);
157 ge_equals_ge(&group[order - i], &tmp);
158 secp256k1_gej_neg(&tmpj, &groupj[i]);
159 ge_equals_gej(&group[order - i], &tmpj);
163 void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
165 for (r_log = 1; r_log < order; r_log++) {
166 for (j = 0; j < order; j++) {
167 for (i = 0; i < order; i++) {
169 secp256k1_scalar na, ng;
170 secp256k1_scalar_set_int(&na, i);
171 secp256k1_scalar_set_int(&ng, j);
173 secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
174 ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
177 secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
178 ge_equals_gej(&group[(i * j) % order], &tmp);
186 secp256k1_scalar sc[2];
190 static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
191 ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
197 void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
199 secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 4096);
200 for (i = 0; i < order; i++) {
201 for (j = 0; j < order; j++) {
202 for (k = 0; k < order; k++) {
203 for (x = 0; x < order; x++) {
204 for (y = 0; y < order; y++) {
206 secp256k1_scalar g_sc;
207 ecmult_multi_data data;
209 secp256k1_scalar_set_int(&data.sc[0], i);
210 secp256k1_scalar_set_int(&data.sc[1], j);
211 secp256k1_scalar_set_int(&g_sc, k);
212 data.pt[0] = group[x];
213 data.pt[1] = group[y];
215 secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
216 ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp);
222 secp256k1_scratch_destroy(&ctx->error_callback, scratch);
225 void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
227 unsigned char x_bin[32];
228 k %= EXHAUSTIVE_TEST_ORDER;
230 secp256k1_fe_normalize(&x);
231 secp256k1_fe_get_b32(x_bin, &x);
232 secp256k1_scalar_set_b32(r, x_bin, NULL);
235 void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
237 for (s = 1; s < order; s++) {
238 for (r = 1; r < order; r++) {
239 for (msg = 1; msg < order; msg++) {
240 for (key = 1; key < order; key++) {
241 secp256k1_ge nonconst_ge;
242 secp256k1_ecdsa_signature sig;
244 secp256k1_scalar sk_s, msg_s, r_s, s_s;
245 secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
246 int k, should_verify;
247 unsigned char msg32[32];
249 secp256k1_scalar_set_int(&s_s, s);
250 secp256k1_scalar_set_int(&r_s, r);
251 secp256k1_scalar_set_int(&msg_s, msg);
252 secp256k1_scalar_set_int(&sk_s, key);
255 /* Run through every k value that gives us this r and check that *one* works.
256 * Note there could be none, there could be multiple, ECDSA is weird. */
258 for (k = 0; k < order; k++) {
259 secp256k1_scalar check_x_s;
260 r_from_k(&check_x_s, group, k);
261 if (r_s == check_x_s) {
262 secp256k1_scalar_set_int(&s_times_k_s, k);
263 secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
264 secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
265 secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
266 should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
269 /* nb we have a "high s" rule */
270 should_verify &= !secp256k1_scalar_is_high(&s_s);
272 /* Verify by calling verify */
273 secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
274 memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
275 secp256k1_pubkey_save(&pk, &nonconst_ge);
276 secp256k1_scalar_get_b32(msg32, &msg_s);
277 CHECK(should_verify ==
278 secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
285 void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
289 for (i = 1; i < order; i++) { /* message */
290 for (j = 1; j < order; j++) { /* key */
291 for (k = 1; k < order; k++) { /* nonce */
292 const int starting_k = k;
293 secp256k1_ecdsa_signature sig;
294 secp256k1_scalar sk, msg, r, s, expected_r;
295 unsigned char sk32[32], msg32[32];
296 secp256k1_scalar_set_int(&msg, i);
297 secp256k1_scalar_set_int(&sk, j);
298 secp256k1_scalar_get_b32(sk32, &sk);
299 secp256k1_scalar_get_b32(msg32, &msg);
301 secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
303 secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
304 /* Note that we compute expected_r *after* signing -- this is important
305 * because our nonce-computing function function might change k during
307 r_from_k(&expected_r, group, k);
308 CHECK(r == expected_r);
309 CHECK((k * s) % order == (i + r * j) % order ||
310 (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
312 /* Overflow means we've tried every possible nonce */
313 if (k < starting_k) {
320 /* We would like to verify zero-knowledge here by counting how often every
321 * possible (s, r) tuple appears, but because the group order is larger
322 * than the field order, when coercing the x-values to scalar values, some
323 * appear more often than others, so we are actually not zero-knowledge.
324 * (This effect also appears in the real code, but the difference is on the
325 * order of 1/2^128th the field order, so the deviation is not useful to a
326 * computationally bounded attacker.)
330 #ifdef ENABLE_MODULE_RECOVERY
331 void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
335 for (i = 1; i < order; i++) { /* message */
336 for (j = 1; j < order; j++) { /* key */
337 for (k = 1; k < order; k++) { /* nonce */
338 const int starting_k = k;
339 secp256k1_fe r_dot_y_normalized;
340 secp256k1_ecdsa_recoverable_signature rsig;
341 secp256k1_ecdsa_signature sig;
342 secp256k1_scalar sk, msg, r, s, expected_r;
343 unsigned char sk32[32], msg32[32];
346 secp256k1_scalar_set_int(&msg, i);
347 secp256k1_scalar_set_int(&sk, j);
348 secp256k1_scalar_get_b32(sk32, &sk);
349 secp256k1_scalar_get_b32(msg32, &msg);
351 secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
354 secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
355 r_from_k(&expected_r, group, k);
356 CHECK(r == expected_r);
357 CHECK((k * s) % order == (i + r * j) % order ||
358 (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
359 /* In computing the recid, there is an overflow condition that is disabled in
360 * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
361 * will exceed the group order, and our signing code always holds out for r
362 * values that don't overflow, so with a proper overflow check the tests would
363 * loop indefinitely. */
364 r_dot_y_normalized = group[k].y;
365 secp256k1_fe_normalize(&r_dot_y_normalized);
366 /* Also the recovery id is flipped depending if we hit the low-s branch */
367 if ((k * s) % order == (i + r * j) % order) {
368 expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
370 expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
372 CHECK(recid == expected_recid);
374 /* Convert to a standard sig then check */
375 secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
376 secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
377 /* Note that we compute expected_r *after* signing -- this is important
378 * because our nonce-computing function function might change k during
380 r_from_k(&expected_r, group, k);
381 CHECK(r == expected_r);
382 CHECK((k * s) % order == (i + r * j) % order ||
383 (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
385 /* Overflow means we've tried every possible nonce */
386 if (k < starting_k) {
394 void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
395 /* This is essentially a copy of test_exhaustive_verify, with recovery added */
397 for (s = 1; s < order; s++) {
398 for (r = 1; r < order; r++) {
399 for (msg = 1; msg < order; msg++) {
400 for (key = 1; key < order; key++) {
401 secp256k1_ge nonconst_ge;
402 secp256k1_ecdsa_recoverable_signature rsig;
403 secp256k1_ecdsa_signature sig;
405 secp256k1_scalar sk_s, msg_s, r_s, s_s;
406 secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
408 int k, should_verify;
409 unsigned char msg32[32];
411 secp256k1_scalar_set_int(&s_s, s);
412 secp256k1_scalar_set_int(&r_s, r);
413 secp256k1_scalar_set_int(&msg_s, msg);
414 secp256k1_scalar_set_int(&sk_s, key);
415 secp256k1_scalar_get_b32(msg32, &msg_s);
418 /* Run through every k value that gives us this r and check that *one* works.
419 * Note there could be none, there could be multiple, ECDSA is weird. */
421 for (k = 0; k < order; k++) {
422 secp256k1_scalar check_x_s;
423 r_from_k(&check_x_s, group, k);
424 if (r_s == check_x_s) {
425 secp256k1_scalar_set_int(&s_times_k_s, k);
426 secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
427 secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
428 secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
429 should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
432 /* nb we have a "high s" rule */
433 should_verify &= !secp256k1_scalar_is_high(&s_s);
435 /* We would like to try recovering the pubkey and checking that it matches,
436 * but pubkey recovery is impossible in the exhaustive tests (the reason
437 * being that there are 12 nonzero r values, 12 nonzero points, and no
438 * overlap between the sets, so there are no valid signatures). */
440 /* Verify by converting to a standard signature and calling verify */
441 secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
442 secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
443 memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
444 secp256k1_pubkey_save(&pk, &nonconst_ge);
445 CHECK(should_verify ==
446 secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
456 secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
457 secp256k1_ge group[EXHAUSTIVE_TEST_ORDER];
460 secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
462 /* TODO set z = 1, then do num_tests runs with random z values */
464 /* Generate the entire group */
465 secp256k1_gej_set_infinity(&groupj[0]);
466 secp256k1_ge_set_gej(&group[0], &groupj[0]);
467 for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
468 /* Set a different random z-value for each Jacobian point */
472 secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
473 secp256k1_ge_set_gej(&group[i], &groupj[i]);
474 secp256k1_gej_rescale(&groupj[i], &z);
476 /* Verify against ecmult_gen */
478 secp256k1_scalar scalar_i;
479 secp256k1_gej generatedj;
480 secp256k1_ge generated;
482 secp256k1_scalar_set_int(&scalar_i, i);
483 secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
484 secp256k1_ge_set_gej(&generated, &generatedj);
486 CHECK(group[i].infinity == 0);
487 CHECK(generated.infinity == 0);
488 CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
489 CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
494 #ifdef USE_ENDOMORPHISM
495 test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER);
497 test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
498 test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
499 test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER);
500 test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
501 test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
503 #ifdef ENABLE_MODULE_RECOVERY
504 test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
505 test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
508 secp256k1_context_destroy(ctx);