1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef _SECP256K1_GROUP_
8 #define _SECP256K1_GROUP_
13 /** A group element of the secp256k1 curve, in affine coordinates. */
17 int infinity; /* whether this represents the point at infinity */
20 /** A group element of the secp256k1 curve, in jacobian coordinates. */
22 secp256k1_fe_t x; /* actual X: x/z^2 */
23 secp256k1_fe_t y; /* actual Y: y/z^3 */
25 int infinity; /* whether this represents the point at infinity */
28 /** Global constants related to the group */
30 secp256k1_num_t order; /* the order of the curve (= order of its generator) */
31 secp256k1_num_t half_order; /* half the order of the curve (= order of its generator) */
32 secp256k1_ge_t g; /* the generator point */
34 #ifdef USE_ENDOMORPHISM
35 /* constants related to secp256k1's efficiently computable endomorphism */
38 } secp256k1_ge_consts_t;
40 static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL;
42 /** Initialize the group module. */
43 static void secp256k1_ge_start(void);
45 /** De-initialize the group module. */
46 static void secp256k1_ge_stop(void);
48 /** Set a group element equal to the point at infinity */
49 static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
51 /** Set a group element equal to the point with given X and Y coordinates */
52 static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
54 /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
55 * for Y. Return value indicates whether the result is valid. */
56 static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
58 /** Check whether a group element is the point at infinity. */
59 static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
61 /** Check whether a group element is valid (i.e., on the curve). */
62 static int secp256k1_ge_is_valid(const secp256k1_ge_t *a);
64 static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
66 /** Get a hex representation of a point. *rlen will be overwritten with the real length. */
67 static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
69 /** Set a group element equal to another which is given in jacobian coordinates */
70 static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
72 /** Set a batch of group elements equal to the inputs given in jacobian coordinates */
73 static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]);
76 /** Set a group element (jacobian) equal to the point at infinity. */
77 static void secp256k1_gej_set_infinity(secp256k1_gej_t *r);
79 /** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
80 static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
82 /** Set a group element (jacobian) equal to another which is given in affine coordinates. */
83 static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
85 /** Get the X coordinate of a group element (jacobian). */
86 static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a);
88 /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
89 static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
91 /** Check whether a group element is the point at infinity. */
92 static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
94 /** Set r equal to the double of a. */
95 static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
97 /** Set r equal to the sum of a and b. */
98 static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
100 /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
101 static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
103 /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
104 than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
105 guarantee, and b is allowed to be infinity. */
106 static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
108 /** Get a hex representation of a point. *rlen will be overwritten with the real length. */
109 static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a);
111 #ifdef USE_ENDOMORPHISM
112 /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
113 static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
116 /** Clear a secp256k1_gej_t to prevent leaking sensitive information. */
117 static void secp256k1_gej_clear(secp256k1_gej_t *r);
119 /** Clear a secp256k1_ge_t to prevent leaking sensitive information. */
120 static void secp256k1_ge_clear(secp256k1_ge_t *r);