]> Git Repo - secp256k1.git/blob - src/group_impl.h
Rip out non-endomorphism code
[secp256k1.git] / src / group_impl.h
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille                             *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6
7 #ifndef SECP256K1_GROUP_IMPL_H
8 #define SECP256K1_GROUP_IMPL_H
9
10 #include "num.h"
11 #include "field.h"
12 #include "group.h"
13
14 /* These exhaustive group test orders and generators are chosen such that:
15  * - The field size is equal to that of secp256k1, so field code is the same.
16  * - The curve equation is of the form y^2=x^3+B for some constant B.
17  * - The subgroup has a generator 2*P, where P.x=1.
18  * - The subgroup has size less than 1000 to permit exhaustive testing.
19  * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
20  *
21  * These parameters are generated using sage/gen_exhaustive_groups.sage.
22  */
23 #if defined(EXHAUSTIVE_TEST_ORDER)
24 #  if EXHAUSTIVE_TEST_ORDER == 13
25 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
26     0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f,
27     0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb,
28     0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2,
29     0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24
30 );
31 static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
32     0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc,
33     0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417
34 );
35 #  elif EXHAUSTIVE_TEST_ORDER == 199
36 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
37     0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9,
38     0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18,
39     0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c,
40     0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae
41 );
42 static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
43     0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1,
44     0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb
45 );
46 #  else
47 #    error No known generator for the specified exhaustive test group order.
48 #  endif
49 #else
50 /** Generator for secp256k1, value 'g' defined in
51  *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
52  */
53 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
54     0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
55     0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
56     0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
57     0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
58 );
59
60 static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
61 #endif
62
63 static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
64     secp256k1_fe zi2;
65     secp256k1_fe zi3;
66     secp256k1_fe_sqr(&zi2, zi);
67     secp256k1_fe_mul(&zi3, &zi2, zi);
68     secp256k1_fe_mul(&r->x, &a->x, &zi2);
69     secp256k1_fe_mul(&r->y, &a->y, &zi3);
70     r->infinity = a->infinity;
71 }
72
73 static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
74     r->infinity = 0;
75     r->x = *x;
76     r->y = *y;
77 }
78
79 static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
80     return a->infinity;
81 }
82
83 static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
84     *r = *a;
85     secp256k1_fe_normalize_weak(&r->y);
86     secp256k1_fe_negate(&r->y, &r->y, 1);
87 }
88
89 static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
90     secp256k1_fe z2, z3;
91     r->infinity = a->infinity;
92     secp256k1_fe_inv(&a->z, &a->z);
93     secp256k1_fe_sqr(&z2, &a->z);
94     secp256k1_fe_mul(&z3, &a->z, &z2);
95     secp256k1_fe_mul(&a->x, &a->x, &z2);
96     secp256k1_fe_mul(&a->y, &a->y, &z3);
97     secp256k1_fe_set_int(&a->z, 1);
98     r->x = a->x;
99     r->y = a->y;
100 }
101
102 static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
103     secp256k1_fe z2, z3;
104     r->infinity = a->infinity;
105     if (a->infinity) {
106         return;
107     }
108     secp256k1_fe_inv_var(&a->z, &a->z);
109     secp256k1_fe_sqr(&z2, &a->z);
110     secp256k1_fe_mul(&z3, &a->z, &z2);
111     secp256k1_fe_mul(&a->x, &a->x, &z2);
112     secp256k1_fe_mul(&a->y, &a->y, &z3);
113     secp256k1_fe_set_int(&a->z, 1);
114     r->x = a->x;
115     r->y = a->y;
116 }
117
118 static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
119     secp256k1_fe u;
120     size_t i;
121     size_t last_i = SIZE_MAX;
122
123     for (i = 0; i < len; i++) {
124         if (!a[i].infinity) {
125             /* Use destination's x coordinates as scratch space */
126             if (last_i == SIZE_MAX) {
127                 r[i].x = a[i].z;
128             } else {
129                 secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
130             }
131             last_i = i;
132         }
133     }
134     if (last_i == SIZE_MAX) {
135         return;
136     }
137     secp256k1_fe_inv_var(&u, &r[last_i].x);
138
139     i = last_i;
140     while (i > 0) {
141         i--;
142         if (!a[i].infinity) {
143             secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
144             secp256k1_fe_mul(&u, &u, &a[last_i].z);
145             last_i = i;
146         }
147     }
148     VERIFY_CHECK(!a[last_i].infinity);
149     r[last_i].x = u;
150
151     for (i = 0; i < len; i++) {
152         r[i].infinity = a[i].infinity;
153         if (!a[i].infinity) {
154             secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
155         }
156     }
157 }
158
159 static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
160     size_t i = len - 1;
161     secp256k1_fe zs;
162
163     if (len > 0) {
164         /* The z of the final point gives us the "global Z" for the table. */
165         r[i].x = a[i].x;
166         r[i].y = a[i].y;
167         /* Ensure all y values are in weak normal form for fast negation of points */
168         secp256k1_fe_normalize_weak(&r[i].y);
169         *globalz = a[i].z;
170         r[i].infinity = 0;
171         zs = zr[i];
172
173         /* Work our way backwards, using the z-ratios to scale the x/y values. */
174         while (i > 0) {
175             if (i != len - 1) {
176                 secp256k1_fe_mul(&zs, &zs, &zr[i]);
177             }
178             i--;
179             secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
180         }
181     }
182 }
183
184 static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
185     r->infinity = 1;
186     secp256k1_fe_clear(&r->x);
187     secp256k1_fe_clear(&r->y);
188     secp256k1_fe_clear(&r->z);
189 }
190
191 static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
192     r->infinity = 1;
193     secp256k1_fe_clear(&r->x);
194     secp256k1_fe_clear(&r->y);
195 }
196
197 static void secp256k1_gej_clear(secp256k1_gej *r) {
198     r->infinity = 0;
199     secp256k1_fe_clear(&r->x);
200     secp256k1_fe_clear(&r->y);
201     secp256k1_fe_clear(&r->z);
202 }
203
204 static void secp256k1_ge_clear(secp256k1_ge *r) {
205     r->infinity = 0;
206     secp256k1_fe_clear(&r->x);
207     secp256k1_fe_clear(&r->y);
208 }
209
210 static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
211     secp256k1_fe x2, x3;
212     r->x = *x;
213     secp256k1_fe_sqr(&x2, x);
214     secp256k1_fe_mul(&x3, x, &x2);
215     r->infinity = 0;
216     secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
217     return secp256k1_fe_sqrt(&r->y, &x3);
218 }
219
220 static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
221     if (!secp256k1_ge_set_xquad(r, x)) {
222         return 0;
223     }
224     secp256k1_fe_normalize_var(&r->y);
225     if (secp256k1_fe_is_odd(&r->y) != odd) {
226         secp256k1_fe_negate(&r->y, &r->y, 1);
227     }
228     return 1;
229
230 }
231
232 static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
233    r->infinity = a->infinity;
234    r->x = a->x;
235    r->y = a->y;
236    secp256k1_fe_set_int(&r->z, 1);
237 }
238
239 static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
240     secp256k1_fe r, r2;
241     VERIFY_CHECK(!a->infinity);
242     secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
243     r2 = a->x; secp256k1_fe_normalize_weak(&r2);
244     return secp256k1_fe_equal_var(&r, &r2);
245 }
246
247 static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
248     r->infinity = a->infinity;
249     r->x = a->x;
250     r->y = a->y;
251     r->z = a->z;
252     secp256k1_fe_normalize_weak(&r->y);
253     secp256k1_fe_negate(&r->y, &r->y, 1);
254 }
255
256 static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
257     return a->infinity;
258 }
259
260 static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
261     secp256k1_fe y2, x3;
262     if (a->infinity) {
263         return 0;
264     }
265     /* y^2 = x^3 + 7 */
266     secp256k1_fe_sqr(&y2, &a->y);
267     secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
268     secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
269     secp256k1_fe_normalize_weak(&x3);
270     return secp256k1_fe_equal_var(&y2, &x3);
271 }
272
273 static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) {
274     /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
275      *
276      * Note that there is an implementation described at
277      *     https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
278      * which trades a multiply for a square, but in practice this is actually slower,
279      * mainly because it requires more normalizations.
280      */
281     secp256k1_fe t1,t2,t3,t4;
282
283     r->infinity = a->infinity;
284
285     secp256k1_fe_mul(&r->z, &a->z, &a->y);
286     secp256k1_fe_mul_int(&r->z, 2);       /* Z' = 2*Y*Z (2) */
287     secp256k1_fe_sqr(&t1, &a->x);
288     secp256k1_fe_mul_int(&t1, 3);         /* T1 = 3*X^2 (3) */
289     secp256k1_fe_sqr(&t2, &t1);           /* T2 = 9*X^4 (1) */
290     secp256k1_fe_sqr(&t3, &a->y);
291     secp256k1_fe_mul_int(&t3, 2);         /* T3 = 2*Y^2 (2) */
292     secp256k1_fe_sqr(&t4, &t3);
293     secp256k1_fe_mul_int(&t4, 2);         /* T4 = 8*Y^4 (2) */
294     secp256k1_fe_mul(&t3, &t3, &a->x);    /* T3 = 2*X*Y^2 (1) */
295     r->x = t3;
296     secp256k1_fe_mul_int(&r->x, 4);       /* X' = 8*X*Y^2 (4) */
297     secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
298     secp256k1_fe_add(&r->x, &t2);         /* X' = 9*X^4 - 8*X*Y^2 (6) */
299     secp256k1_fe_negate(&t2, &t2, 1);     /* T2 = -9*X^4 (2) */
300     secp256k1_fe_mul_int(&t3, 6);         /* T3 = 12*X*Y^2 (6) */
301     secp256k1_fe_add(&t3, &t2);           /* T3 = 12*X*Y^2 - 9*X^4 (8) */
302     secp256k1_fe_mul(&r->y, &t1, &t3);    /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
303     secp256k1_fe_negate(&t2, &t4, 2);     /* T2 = -8*Y^4 (3) */
304     secp256k1_fe_add(&r->y, &t2);         /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
305 }
306
307 static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
308     /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
309      *  Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
310      *  y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
311      *
312      *  Having said this, if this function receives a point on a sextic twist, e.g. by
313      *  a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
314      *  since -6 does have a cube root mod p. For this point, this function will not set
315      *  the infinity flag even though the point doubles to infinity, and the result
316      *  point will be gibberish (z = 0 but infinity = 0).
317      */
318     if (a->infinity) {
319         r->infinity = 1;
320         if (rzr != NULL) {
321             secp256k1_fe_set_int(rzr, 1);
322         }
323         return;
324     }
325
326     if (rzr != NULL) {
327         *rzr = a->y;
328         secp256k1_fe_normalize_weak(rzr);
329         secp256k1_fe_mul_int(rzr, 2);
330     }
331
332     secp256k1_gej_double(r, a);
333 }
334
335 static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
336     /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
337     secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
338
339     if (a->infinity) {
340         VERIFY_CHECK(rzr == NULL);
341         *r = *b;
342         return;
343     }
344
345     if (b->infinity) {
346         if (rzr != NULL) {
347             secp256k1_fe_set_int(rzr, 1);
348         }
349         *r = *a;
350         return;
351     }
352
353     r->infinity = 0;
354     secp256k1_fe_sqr(&z22, &b->z);
355     secp256k1_fe_sqr(&z12, &a->z);
356     secp256k1_fe_mul(&u1, &a->x, &z22);
357     secp256k1_fe_mul(&u2, &b->x, &z12);
358     secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
359     secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
360     secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
361     secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
362     if (secp256k1_fe_normalizes_to_zero_var(&h)) {
363         if (secp256k1_fe_normalizes_to_zero_var(&i)) {
364             secp256k1_gej_double_var(r, a, rzr);
365         } else {
366             if (rzr != NULL) {
367                 secp256k1_fe_set_int(rzr, 0);
368             }
369             secp256k1_gej_set_infinity(r);
370         }
371         return;
372     }
373     secp256k1_fe_sqr(&i2, &i);
374     secp256k1_fe_sqr(&h2, &h);
375     secp256k1_fe_mul(&h3, &h, &h2);
376     secp256k1_fe_mul(&h, &h, &b->z);
377     if (rzr != NULL) {
378         *rzr = h;
379     }
380     secp256k1_fe_mul(&r->z, &a->z, &h);
381     secp256k1_fe_mul(&t, &u1, &h2);
382     r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
383     secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
384     secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
385     secp256k1_fe_add(&r->y, &h3);
386 }
387
388 static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
389     /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
390     secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
391     if (a->infinity) {
392         VERIFY_CHECK(rzr == NULL);
393         secp256k1_gej_set_ge(r, b);
394         return;
395     }
396     if (b->infinity) {
397         if (rzr != NULL) {
398             secp256k1_fe_set_int(rzr, 1);
399         }
400         *r = *a;
401         return;
402     }
403     r->infinity = 0;
404
405     secp256k1_fe_sqr(&z12, &a->z);
406     u1 = a->x; secp256k1_fe_normalize_weak(&u1);
407     secp256k1_fe_mul(&u2, &b->x, &z12);
408     s1 = a->y; secp256k1_fe_normalize_weak(&s1);
409     secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
410     secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
411     secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
412     if (secp256k1_fe_normalizes_to_zero_var(&h)) {
413         if (secp256k1_fe_normalizes_to_zero_var(&i)) {
414             secp256k1_gej_double_var(r, a, rzr);
415         } else {
416             if (rzr != NULL) {
417                 secp256k1_fe_set_int(rzr, 0);
418             }
419             secp256k1_gej_set_infinity(r);
420         }
421         return;
422     }
423     secp256k1_fe_sqr(&i2, &i);
424     secp256k1_fe_sqr(&h2, &h);
425     secp256k1_fe_mul(&h3, &h, &h2);
426     if (rzr != NULL) {
427         *rzr = h;
428     }
429     secp256k1_fe_mul(&r->z, &a->z, &h);
430     secp256k1_fe_mul(&t, &u1, &h2);
431     r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
432     secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
433     secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
434     secp256k1_fe_add(&r->y, &h3);
435 }
436
437 static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
438     /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
439     secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
440
441     if (b->infinity) {
442         *r = *a;
443         return;
444     }
445     if (a->infinity) {
446         secp256k1_fe bzinv2, bzinv3;
447         r->infinity = b->infinity;
448         secp256k1_fe_sqr(&bzinv2, bzinv);
449         secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
450         secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
451         secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
452         secp256k1_fe_set_int(&r->z, 1);
453         return;
454     }
455     r->infinity = 0;
456
457     /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
458      *  secp256k1's isomorphism we can multiply the Z coordinates on both sides
459      *  by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
460      *  This means that (rx,ry,rz) can be calculated as
461      *  (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
462      *  The variable az below holds the modified Z coordinate for a, which is used
463      *  for the computation of rx and ry, but not for rz.
464      */
465     secp256k1_fe_mul(&az, &a->z, bzinv);
466
467     secp256k1_fe_sqr(&z12, &az);
468     u1 = a->x; secp256k1_fe_normalize_weak(&u1);
469     secp256k1_fe_mul(&u2, &b->x, &z12);
470     s1 = a->y; secp256k1_fe_normalize_weak(&s1);
471     secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
472     secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
473     secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
474     if (secp256k1_fe_normalizes_to_zero_var(&h)) {
475         if (secp256k1_fe_normalizes_to_zero_var(&i)) {
476             secp256k1_gej_double_var(r, a, NULL);
477         } else {
478             secp256k1_gej_set_infinity(r);
479         }
480         return;
481     }
482     secp256k1_fe_sqr(&i2, &i);
483     secp256k1_fe_sqr(&h2, &h);
484     secp256k1_fe_mul(&h3, &h, &h2);
485     r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
486     secp256k1_fe_mul(&t, &u1, &h2);
487     r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
488     secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
489     secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
490     secp256k1_fe_add(&r->y, &h3);
491 }
492
493
494 static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
495     /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
496     static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
497     secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
498     secp256k1_fe m_alt, rr_alt;
499     int infinity, degenerate;
500     VERIFY_CHECK(!b->infinity);
501     VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
502
503     /** In:
504      *    Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
505      *    In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
506      *  we find as solution for a unified addition/doubling formula:
507      *    lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
508      *    x3 = lambda^2 - (x1 + x2)
509      *    2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
510      *
511      *  Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
512      *    U1 = X1*Z2^2, U2 = X2*Z1^2
513      *    S1 = Y1*Z2^3, S2 = Y2*Z1^3
514      *    Z = Z1*Z2
515      *    T = U1+U2
516      *    M = S1+S2
517      *    Q = T*M^2
518      *    R = T^2-U1*U2
519      *    X3 = 4*(R^2-Q)
520      *    Y3 = 4*(R*(3*Q-2*R^2)-M^4)
521      *    Z3 = 2*M*Z
522      *  (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
523      *
524      *  This formula has the benefit of being the same for both addition
525      *  of distinct points and doubling. However, it breaks down in the
526      *  case that either point is infinity, or that y1 = -y2. We handle
527      *  these cases in the following ways:
528      *
529      *    - If b is infinity we simply bail by means of a VERIFY_CHECK.
530      *
531      *    - If a is infinity, we detect this, and at the end of the
532      *      computation replace the result (which will be meaningless,
533      *      but we compute to be constant-time) with b.x : b.y : 1.
534      *
535      *    - If a = -b, we have y1 = -y2, which is a degenerate case.
536      *      But here the answer is infinity, so we simply set the
537      *      infinity flag of the result, overriding the computed values
538      *      without even needing to cmov.
539      *
540      *    - If y1 = -y2 but x1 != x2, which does occur thanks to certain
541      *      properties of our curve (specifically, 1 has nontrivial cube
542      *      roots in our field, and the curve equation has no x coefficient)
543      *      then the answer is not infinity but also not given by the above
544      *      equation. In this case, we cmov in place an alternate expression
545      *      for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
546      *      expressions for lambda are defined, they are equal, and can be
547      *      obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
548      *      then substitution of x^3 + 7 for y^2 (using the curve equation).
549      *      For all pairs of nonzero points (a, b) at least one is defined,
550      *      so this covers everything.
551      */
552
553     secp256k1_fe_sqr(&zz, &a->z);                       /* z = Z1^2 */
554     u1 = a->x; secp256k1_fe_normalize_weak(&u1);        /* u1 = U1 = X1*Z2^2 (1) */
555     secp256k1_fe_mul(&u2, &b->x, &zz);                  /* u2 = U2 = X2*Z1^2 (1) */
556     s1 = a->y; secp256k1_fe_normalize_weak(&s1);        /* s1 = S1 = Y1*Z2^3 (1) */
557     secp256k1_fe_mul(&s2, &b->y, &zz);                  /* s2 = Y2*Z1^2 (1) */
558     secp256k1_fe_mul(&s2, &s2, &a->z);                  /* s2 = S2 = Y2*Z1^3 (1) */
559     t = u1; secp256k1_fe_add(&t, &u2);                  /* t = T = U1+U2 (2) */
560     m = s1; secp256k1_fe_add(&m, &s2);                  /* m = M = S1+S2 (2) */
561     secp256k1_fe_sqr(&rr, &t);                          /* rr = T^2 (1) */
562     secp256k1_fe_negate(&m_alt, &u2, 1);                /* Malt = -X2*Z1^2 */
563     secp256k1_fe_mul(&tt, &u1, &m_alt);                 /* tt = -U1*U2 (2) */
564     secp256k1_fe_add(&rr, &tt);                         /* rr = R = T^2-U1*U2 (3) */
565     /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
566      *  case that Z = z1z2 = 0, and this is special-cased later on). */
567     degenerate = secp256k1_fe_normalizes_to_zero(&m) &
568                  secp256k1_fe_normalizes_to_zero(&rr);
569     /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
570      * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
571      * a nontrivial cube root of one. In either case, an alternate
572      * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
573      * so we set R/M equal to this. */
574     rr_alt = s1;
575     secp256k1_fe_mul_int(&rr_alt, 2);       /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
576     secp256k1_fe_add(&m_alt, &u1);          /* Malt = X1*Z2^2 - X2*Z1^2 */
577
578     secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
579     secp256k1_fe_cmov(&m_alt, &m, !degenerate);
580     /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
581      * From here on out Ralt and Malt represent the numerator
582      * and denominator of lambda; R and M represent the explicit
583      * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
584     secp256k1_fe_sqr(&n, &m_alt);                       /* n = Malt^2 (1) */
585     secp256k1_fe_mul(&q, &n, &t);                       /* q = Q = T*Malt^2 (1) */
586     /* These two lines use the observation that either M == Malt or M == 0,
587      * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
588      * zero (which is "computed" by cmov). So the cost is one squaring
589      * versus two multiplications. */
590     secp256k1_fe_sqr(&n, &n);
591     secp256k1_fe_cmov(&n, &m, degenerate);              /* n = M^3 * Malt (2) */
592     secp256k1_fe_sqr(&t, &rr_alt);                      /* t = Ralt^2 (1) */
593     secp256k1_fe_mul(&r->z, &a->z, &m_alt);             /* r->z = Malt*Z (1) */
594     infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
595     secp256k1_fe_mul_int(&r->z, 2);                     /* r->z = Z3 = 2*Malt*Z (2) */
596     secp256k1_fe_negate(&q, &q, 1);                     /* q = -Q (2) */
597     secp256k1_fe_add(&t, &q);                           /* t = Ralt^2-Q (3) */
598     secp256k1_fe_normalize_weak(&t);
599     r->x = t;                                           /* r->x = Ralt^2-Q (1) */
600     secp256k1_fe_mul_int(&t, 2);                        /* t = 2*x3 (2) */
601     secp256k1_fe_add(&t, &q);                           /* t = 2*x3 - Q: (4) */
602     secp256k1_fe_mul(&t, &t, &rr_alt);                  /* t = Ralt*(2*x3 - Q) (1) */
603     secp256k1_fe_add(&t, &n);                           /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
604     secp256k1_fe_negate(&r->y, &t, 3);                  /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
605     secp256k1_fe_normalize_weak(&r->y);
606     secp256k1_fe_mul_int(&r->x, 4);                     /* r->x = X3 = 4*(Ralt^2-Q) */
607     secp256k1_fe_mul_int(&r->y, 4);                     /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
608
609     /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
610     secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
611     secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
612     secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
613     r->infinity = infinity;
614 }
615
616 static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
617     /* Operations: 4 mul, 1 sqr */
618     secp256k1_fe zz;
619     VERIFY_CHECK(!secp256k1_fe_is_zero(s));
620     secp256k1_fe_sqr(&zz, s);
621     secp256k1_fe_mul(&r->x, &r->x, &zz);                /* r->x *= s^2 */
622     secp256k1_fe_mul(&r->y, &r->y, &zz);
623     secp256k1_fe_mul(&r->y, &r->y, s);                  /* r->y *= s^3 */
624     secp256k1_fe_mul(&r->z, &r->z, s);                  /* r->z *= s   */
625 }
626
627 static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
628     secp256k1_fe x, y;
629     VERIFY_CHECK(!a->infinity);
630     x = a->x;
631     secp256k1_fe_normalize(&x);
632     y = a->y;
633     secp256k1_fe_normalize(&y);
634     secp256k1_fe_to_storage(&r->x, &x);
635     secp256k1_fe_to_storage(&r->y, &y);
636 }
637
638 static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
639     secp256k1_fe_from_storage(&r->x, &a->x);
640     secp256k1_fe_from_storage(&r->y, &a->y);
641     r->infinity = 0;
642 }
643
644 static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
645     secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
646     secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
647 }
648
649 static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
650     static const secp256k1_fe beta = SECP256K1_FE_CONST(
651         0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
652         0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
653     );
654     *r = *a;
655     secp256k1_fe_mul(&r->x, &r->x, &beta);
656 }
657
658 static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
659     secp256k1_fe yz;
660
661     if (a->infinity) {
662         return 0;
663     }
664
665     /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
666      * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
667        is */
668     secp256k1_fe_mul(&yz, &a->y, &a->z);
669     return secp256k1_fe_is_quad_var(&yz);
670 }
671
672 static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
673 #ifdef EXHAUSTIVE_TEST_ORDER
674     secp256k1_gej out;
675     int i;
676
677     /* A very simple EC multiplication ladder that avoids a dependecy on ecmult. */
678     secp256k1_gej_set_infinity(&out);
679     for (i = 0; i < 32; ++i) {
680         secp256k1_gej_double_var(&out, &out, NULL);
681         if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
682             secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
683         }
684     }
685     return secp256k1_gej_is_infinity(&out);
686 #else
687     (void)ge;
688     /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
689     return 1;
690 #endif
691 }
692
693 #endif /* SECP256K1_GROUP_IMPL_H */
This page took 0.065146 seconds and 4 git commands to generate.