]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
a9f5c8b8 PW |
6 | |
7 | #ifndef _SECP256K1_SCALAR_IMPL_H_ | |
8 | #define _SECP256K1_SCALAR_IMPL_H_ | |
9 | ||
10 | #include <string.h> | |
11 | ||
d1502eb4 | 12 | #include "group.h" |
a9f5c8b8 PW |
13 | #include "scalar.h" |
14 | ||
1d52a8b1 PW |
15 | #if defined HAVE_CONFIG_H |
16 | #include "libsecp256k1-config.h" | |
17 | #endif | |
79359302 | 18 | |
1d52a8b1 PW |
19 | #if defined(USE_SCALAR_4X64) |
20 | #include "scalar_4x64_impl.h" | |
21 | #elif defined(USE_SCALAR_8X32) | |
22 | #include "scalar_8x32_impl.h" | |
23 | #else | |
24 | #error "Please select scalar implementation" | |
25 | #endif | |
a9f5c8b8 | 26 | |
597128d3 | 27 | #ifndef USE_NUM_NONE |
a4a43d75 | 28 | static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) { |
a9f5c8b8 | 29 | unsigned char c[32]; |
1d52a8b1 | 30 | secp256k1_scalar_get_b32(c, a); |
a9f5c8b8 PW |
31 | secp256k1_num_set_bin(r, c, 32); |
32 | } | |
33 | ||
6efd6e77 | 34 | /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ |
659b554d | 35 | static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) { |
f1ebfe39 PW |
36 | static const unsigned char order[32] = { |
37 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
38 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |
39 | 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |
40 | 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 | |
41 | }; | |
42 | secp256k1_num_set_bin(r, order, 32); | |
659b554d | 43 | } |
597128d3 | 44 | #endif |
1d52a8b1 | 45 | |
a4a43d75 | 46 | static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { |
d9543c90 GM |
47 | secp256k1_scalar_t *t; |
48 | int i; | |
71712b27 | 49 | /* First compute x ^ (2^N - 1) for some values of N. */ |
1d52a8b1 PW |
50 | secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; |
51 | ||
52 | secp256k1_scalar_sqr(&x2, x); | |
53 | secp256k1_scalar_mul(&x2, &x2, x); | |
54 | ||
55 | secp256k1_scalar_sqr(&x3, &x2); | |
56 | secp256k1_scalar_mul(&x3, &x3, x); | |
57 | ||
58 | secp256k1_scalar_sqr(&x4, &x3); | |
59 | secp256k1_scalar_mul(&x4, &x4, x); | |
60 | ||
61 | secp256k1_scalar_sqr(&x6, &x4); | |
62 | secp256k1_scalar_sqr(&x6, &x6); | |
63 | secp256k1_scalar_mul(&x6, &x6, &x2); | |
64 | ||
65 | secp256k1_scalar_sqr(&x7, &x6); | |
66 | secp256k1_scalar_mul(&x7, &x7, x); | |
67 | ||
68 | secp256k1_scalar_sqr(&x8, &x7); | |
69 | secp256k1_scalar_mul(&x8, &x8, x); | |
70 | ||
71 | secp256k1_scalar_sqr(&x15, &x8); | |
26320197 | 72 | for (i = 0; i < 6; i++) { |
1d52a8b1 | 73 | secp256k1_scalar_sqr(&x15, &x15); |
26320197 | 74 | } |
1d52a8b1 PW |
75 | secp256k1_scalar_mul(&x15, &x15, &x7); |
76 | ||
77 | secp256k1_scalar_sqr(&x30, &x15); | |
26320197 | 78 | for (i = 0; i < 14; i++) { |
1d52a8b1 | 79 | secp256k1_scalar_sqr(&x30, &x30); |
26320197 | 80 | } |
1d52a8b1 PW |
81 | secp256k1_scalar_mul(&x30, &x30, &x15); |
82 | ||
83 | secp256k1_scalar_sqr(&x60, &x30); | |
26320197 | 84 | for (i = 0; i < 29; i++) { |
1d52a8b1 | 85 | secp256k1_scalar_sqr(&x60, &x60); |
26320197 | 86 | } |
1d52a8b1 PW |
87 | secp256k1_scalar_mul(&x60, &x60, &x30); |
88 | ||
89 | secp256k1_scalar_sqr(&x120, &x60); | |
26320197 | 90 | for (i = 0; i < 59; i++) { |
1d52a8b1 | 91 | secp256k1_scalar_sqr(&x120, &x120); |
26320197 | 92 | } |
1d52a8b1 PW |
93 | secp256k1_scalar_mul(&x120, &x120, &x60); |
94 | ||
95 | secp256k1_scalar_sqr(&x127, &x120); | |
26320197 | 96 | for (i = 0; i < 6; i++) { |
1d52a8b1 | 97 | secp256k1_scalar_sqr(&x127, &x127); |
26320197 | 98 | } |
1d52a8b1 PW |
99 | secp256k1_scalar_mul(&x127, &x127, &x7); |
100 | ||
71712b27 | 101 | /* Then accumulate the final result (t starts at x127). */ |
d9543c90 | 102 | t = &x127; |
26320197 | 103 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 104 | secp256k1_scalar_sqr(t, t); |
26320197 | 105 | } |
71712b27 | 106 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 107 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 108 | secp256k1_scalar_sqr(t, t); |
26320197 | 109 | } |
71712b27 | 110 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 111 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 112 | secp256k1_scalar_sqr(t, t); |
26320197 | 113 | } |
71712b27 | 114 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 115 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 116 | secp256k1_scalar_sqr(t, t); |
26320197 | 117 | } |
71712b27 | 118 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 119 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 120 | secp256k1_scalar_sqr(t, t); |
26320197 | 121 | } |
71712b27 | 122 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 123 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 124 | secp256k1_scalar_sqr(t, t); |
26320197 | 125 | } |
71712b27 | 126 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 127 | for (i = 0; i < 3; i++) { /* 0 */ |
1d52a8b1 | 128 | secp256k1_scalar_sqr(t, t); |
26320197 | 129 | } |
71712b27 | 130 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 131 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 132 | secp256k1_scalar_sqr(t, t); |
26320197 | 133 | } |
71712b27 | 134 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 135 | for (i = 0; i < 5; i++) { /* 00 */ |
1d52a8b1 | 136 | secp256k1_scalar_sqr(t, t); |
26320197 | 137 | } |
71712b27 | 138 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 139 | for (i = 0; i < 4; i++) { /* 00 */ |
1d52a8b1 | 140 | secp256k1_scalar_sqr(t, t); |
26320197 | 141 | } |
71712b27 | 142 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 143 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 144 | secp256k1_scalar_sqr(t, t); |
26320197 | 145 | } |
71712b27 | 146 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 147 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 148 | secp256k1_scalar_sqr(t, t); |
26320197 | 149 | } |
71712b27 | 150 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 151 | for (i = 0; i < 5; i++) { /* 0 */ |
1d52a8b1 | 152 | secp256k1_scalar_sqr(t, t); |
26320197 | 153 | } |
71712b27 | 154 | secp256k1_scalar_mul(t, t, &x4); /* 1111 */ |
26320197 | 155 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 156 | secp256k1_scalar_sqr(t, t); |
26320197 | 157 | } |
71712b27 | 158 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 159 | for (i = 0; i < 3; i++) { /* 00 */ |
1d52a8b1 | 160 | secp256k1_scalar_sqr(t, t); |
26320197 | 161 | } |
71712b27 | 162 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 163 | for (i = 0; i < 4; i++) { /* 000 */ |
1d52a8b1 | 164 | secp256k1_scalar_sqr(t, t); |
26320197 | 165 | } |
71712b27 | 166 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 167 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 168 | secp256k1_scalar_sqr(t, t); |
26320197 | 169 | } |
71712b27 | 170 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 171 | for (i = 0; i < 10; i++) { /* 0000000 */ |
1d52a8b1 | 172 | secp256k1_scalar_sqr(t, t); |
26320197 | 173 | } |
71712b27 | 174 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 175 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 176 | secp256k1_scalar_sqr(t, t); |
26320197 | 177 | } |
71712b27 | 178 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 179 | for (i = 0; i < 9; i++) { /* 0 */ |
1d52a8b1 | 180 | secp256k1_scalar_sqr(t, t); |
26320197 | 181 | } |
71712b27 | 182 | secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ |
26320197 | 183 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 184 | secp256k1_scalar_sqr(t, t); |
26320197 | 185 | } |
71712b27 | 186 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 187 | for (i = 0; i < 3; i++) { /* 00 */ |
1d52a8b1 | 188 | secp256k1_scalar_sqr(t, t); |
26320197 | 189 | } |
71712b27 | 190 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 191 | for (i = 0; i < 3; i++) { /* 00 */ |
1d52a8b1 | 192 | secp256k1_scalar_sqr(t, t); |
26320197 | 193 | } |
71712b27 | 194 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 195 | for (i = 0; i < 5; i++) { /* 0 */ |
1d52a8b1 | 196 | secp256k1_scalar_sqr(t, t); |
26320197 | 197 | } |
71712b27 | 198 | secp256k1_scalar_mul(t, t, &x4); /* 1111 */ |
26320197 | 199 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 200 | secp256k1_scalar_sqr(t, t); |
26320197 | 201 | } |
71712b27 | 202 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 203 | for (i = 0; i < 5; i++) { /* 000 */ |
1d52a8b1 | 204 | secp256k1_scalar_sqr(t, t); |
26320197 | 205 | } |
71712b27 | 206 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 207 | for (i = 0; i < 4; i++) { /* 00 */ |
1d52a8b1 | 208 | secp256k1_scalar_sqr(t, t); |
26320197 | 209 | } |
71712b27 | 210 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 211 | for (i = 0; i < 2; i++) { /* 0 */ |
1d52a8b1 | 212 | secp256k1_scalar_sqr(t, t); |
26320197 | 213 | } |
71712b27 | 214 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 215 | for (i = 0; i < 8; i++) { /* 000000 */ |
1d52a8b1 | 216 | secp256k1_scalar_sqr(t, t); |
26320197 | 217 | } |
71712b27 | 218 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 219 | for (i = 0; i < 3; i++) { /* 0 */ |
1d52a8b1 | 220 | secp256k1_scalar_sqr(t, t); |
26320197 | 221 | } |
71712b27 | 222 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
26320197 | 223 | for (i = 0; i < 3; i++) { /* 00 */ |
1d52a8b1 | 224 | secp256k1_scalar_sqr(t, t); |
26320197 | 225 | } |
71712b27 | 226 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 227 | for (i = 0; i < 6; i++) { /* 00000 */ |
1d52a8b1 | 228 | secp256k1_scalar_sqr(t, t); |
26320197 | 229 | } |
71712b27 | 230 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 231 | for (i = 0; i < 8; i++) { /* 00 */ |
1d52a8b1 | 232 | secp256k1_scalar_sqr(t, t); |
26320197 | 233 | } |
71712b27 | 234 | secp256k1_scalar_mul(r, t, &x6); /* 111111 */ |
1d52a8b1 PW |
235 | } |
236 | ||
44015000 AP |
237 | SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar_t *a) { |
238 | /* d[0] is present and is the lowest word for all representations */ | |
239 | return !(a->d[0] & 1); | |
240 | } | |
241 | ||
d1502eb4 PW |
242 | static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { |
243 | #if defined(USE_SCALAR_INV_BUILTIN) | |
244 | secp256k1_scalar_inverse(r, x); | |
245 | #elif defined(USE_SCALAR_INV_NUM) | |
246 | unsigned char b[32]; | |
f1ebfe39 | 247 | secp256k1_num_t n, m; |
36b305a8 PW |
248 | secp256k1_scalar_t t = *x; |
249 | secp256k1_scalar_get_b32(b, &t); | |
d1502eb4 | 250 | secp256k1_num_set_bin(&n, b, 32); |
f1ebfe39 PW |
251 | secp256k1_scalar_order_get_num(&m); |
252 | secp256k1_num_mod_inverse(&n, &n, &m); | |
d1502eb4 PW |
253 | secp256k1_num_get_bin(b, 32, &n); |
254 | secp256k1_scalar_set_b32(r, b, NULL); | |
36b305a8 PW |
255 | /* Verify that the inverse was computed correctly, without GMP code. */ |
256 | secp256k1_scalar_mul(&t, &t, r); | |
257 | CHECK(secp256k1_scalar_is_one(&t)); | |
d1502eb4 PW |
258 | #else |
259 | #error "Please select scalar inverse implementation" | |
260 | #endif | |
261 | } | |
262 | ||
6794be60 | 263 | #ifdef USE_ENDOMORPHISM |
f1ebfe39 PW |
264 | /** |
265 | * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where | |
266 | * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, | |
267 | * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} | |
268 | * | |
269 | * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm | |
270 | * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 | |
271 | * and k2 have a small size. | |
272 | * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: | |
273 | * | |
274 | * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
275 | * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} | |
276 | * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} | |
277 | * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
278 | * | |
279 | * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives | |
280 | * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and | |
281 | * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. | |
282 | * | |
283 | * g1, g2 are precomputed constants used to replace division with a rounded multiplication | |
284 | * when decomposing the scalar for an endomorphism-based point multiplication. | |
285 | * | |
286 | * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve | |
287 | * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. | |
288 | * | |
289 | * The derivation is described in the paper "Efficient Software Implementation of Public-Key | |
290 | * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), | |
291 | * Section 4.3 (here we use a somewhat higher-precision estimate): | |
292 | * d = a1*b2 - b1*a2 | |
293 | * g1 = round((2^272)*b2/d) | |
294 | * g2 = round((2^272)*b1/d) | |
295 | * | |
296 | * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found | |
297 | * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). | |
298 | * | |
299 | * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). | |
300 | */ | |
301 | ||
ed35d43a | 302 | static void secp256k1_scalar_split_lambda(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { |
d9543c90 | 303 | secp256k1_scalar_t c1, c2; |
f1ebfe39 PW |
304 | static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST( |
305 | 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, | |
306 | 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL | |
307 | ); | |
308 | static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST( | |
309 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, | |
310 | 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL | |
311 | ); | |
312 | static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST( | |
313 | 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, | |
314 | 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL | |
315 | ); | |
316 | static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST( | |
317 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, | |
318 | 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL | |
319 | ); | |
320 | static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST( | |
321 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, | |
322 | 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL | |
323 | ); | |
c35ff1ea PW |
324 | VERIFY_CHECK(r1 != a); |
325 | VERIFY_CHECK(r2 != a); | |
ed35d43a | 326 | /* these _var calls are constant time since the shift amount is constant */ |
f1ebfe39 PW |
327 | secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); |
328 | secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); | |
329 | secp256k1_scalar_mul(&c1, &c1, &minus_b1); | |
330 | secp256k1_scalar_mul(&c2, &c2, &minus_b2); | |
c35ff1ea | 331 | secp256k1_scalar_add(r2, &c1, &c2); |
f1ebfe39 | 332 | secp256k1_scalar_mul(r1, r2, &minus_lambda); |
c35ff1ea | 333 | secp256k1_scalar_add(r1, r1, a); |
6794be60 PW |
334 | } |
335 | #endif | |
336 | ||
a9f5c8b8 | 337 | #endif |