]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
a9f5c8b8 PW |
6 | |
7 | #ifndef _SECP256K1_SCALAR_IMPL_H_ | |
8 | #define _SECP256K1_SCALAR_IMPL_H_ | |
9 | ||
10 | #include <string.h> | |
11 | ||
d1502eb4 | 12 | #include "group.h" |
a9f5c8b8 PW |
13 | #include "scalar.h" |
14 | ||
1d52a8b1 PW |
15 | #if defined HAVE_CONFIG_H |
16 | #include "libsecp256k1-config.h" | |
17 | #endif | |
79359302 | 18 | |
1d52a8b1 PW |
19 | #if defined(USE_SCALAR_4X64) |
20 | #include "scalar_4x64_impl.h" | |
21 | #elif defined(USE_SCALAR_8X32) | |
22 | #include "scalar_8x32_impl.h" | |
23 | #else | |
24 | #error "Please select scalar implementation" | |
25 | #endif | |
a9f5c8b8 | 26 | |
597128d3 | 27 | #ifndef USE_NUM_NONE |
a4a43d75 | 28 | static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) { |
a9f5c8b8 | 29 | unsigned char c[32]; |
1d52a8b1 | 30 | secp256k1_scalar_get_b32(c, a); |
a9f5c8b8 PW |
31 | secp256k1_num_set_bin(r, c, 32); |
32 | } | |
33 | ||
659b554d | 34 | static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) { |
f1ebfe39 PW |
35 | static const unsigned char order[32] = { |
36 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
37 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |
38 | 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |
39 | 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 | |
40 | }; | |
41 | secp256k1_num_set_bin(r, order, 32); | |
659b554d | 42 | } |
597128d3 | 43 | #endif |
1d52a8b1 | 44 | |
a4a43d75 | 45 | static void secp256k1_scalar_inverse(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { |
71712b27 | 46 | /* First compute x ^ (2^N - 1) for some values of N. */ |
1d52a8b1 PW |
47 | secp256k1_scalar_t x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; |
48 | ||
49 | secp256k1_scalar_sqr(&x2, x); | |
50 | secp256k1_scalar_mul(&x2, &x2, x); | |
51 | ||
52 | secp256k1_scalar_sqr(&x3, &x2); | |
53 | secp256k1_scalar_mul(&x3, &x3, x); | |
54 | ||
55 | secp256k1_scalar_sqr(&x4, &x3); | |
56 | secp256k1_scalar_mul(&x4, &x4, x); | |
57 | ||
58 | secp256k1_scalar_sqr(&x6, &x4); | |
59 | secp256k1_scalar_sqr(&x6, &x6); | |
60 | secp256k1_scalar_mul(&x6, &x6, &x2); | |
61 | ||
62 | secp256k1_scalar_sqr(&x7, &x6); | |
63 | secp256k1_scalar_mul(&x7, &x7, x); | |
64 | ||
65 | secp256k1_scalar_sqr(&x8, &x7); | |
66 | secp256k1_scalar_mul(&x8, &x8, x); | |
67 | ||
68 | secp256k1_scalar_sqr(&x15, &x8); | |
69 | for (int i=0; i<6; i++) | |
70 | secp256k1_scalar_sqr(&x15, &x15); | |
71 | secp256k1_scalar_mul(&x15, &x15, &x7); | |
72 | ||
73 | secp256k1_scalar_sqr(&x30, &x15); | |
74 | for (int i=0; i<14; i++) | |
75 | secp256k1_scalar_sqr(&x30, &x30); | |
76 | secp256k1_scalar_mul(&x30, &x30, &x15); | |
77 | ||
78 | secp256k1_scalar_sqr(&x60, &x30); | |
79 | for (int i=0; i<29; i++) | |
80 | secp256k1_scalar_sqr(&x60, &x60); | |
81 | secp256k1_scalar_mul(&x60, &x60, &x30); | |
82 | ||
83 | secp256k1_scalar_sqr(&x120, &x60); | |
84 | for (int i=0; i<59; i++) | |
85 | secp256k1_scalar_sqr(&x120, &x120); | |
86 | secp256k1_scalar_mul(&x120, &x120, &x60); | |
87 | ||
88 | secp256k1_scalar_sqr(&x127, &x120); | |
89 | for (int i=0; i<6; i++) | |
90 | secp256k1_scalar_sqr(&x127, &x127); | |
91 | secp256k1_scalar_mul(&x127, &x127, &x7); | |
92 | ||
71712b27 | 93 | /* Then accumulate the final result (t starts at x127). */ |
1d52a8b1 | 94 | secp256k1_scalar_t *t = &x127; |
71712b27 | 95 | for (int i=0; i<2; i++) /* 0 */ |
1d52a8b1 | 96 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
97 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
98 | for (int i=0; i<4; i++) /* 0 */ | |
1d52a8b1 | 99 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
100 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
101 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 102 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
103 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
104 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 105 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
106 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
107 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 108 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
109 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
110 | for (int i=0; i<4; i++) /* 0 */ | |
1d52a8b1 | 111 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
112 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
113 | for (int i=0; i<3; i++) /* 0 */ | |
1d52a8b1 | 114 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
115 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
116 | for (int i=0; i<4; i++) /* 0 */ | |
1d52a8b1 | 117 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
118 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
119 | for (int i=0; i<5; i++) /* 00 */ | |
1d52a8b1 | 120 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
121 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
122 | for (int i=0; i<4; i++) /* 00 */ | |
1d52a8b1 | 123 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
124 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
125 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 126 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
127 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
128 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 129 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
130 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
131 | for (int i=0; i<5; i++) /* 0 */ | |
1d52a8b1 | 132 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
133 | secp256k1_scalar_mul(t, t, &x4); /* 1111 */ |
134 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 135 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
136 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
137 | for (int i=0; i<3; i++) /* 00 */ | |
1d52a8b1 | 138 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
139 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
140 | for (int i=0; i<4; i++) /* 000 */ | |
1d52a8b1 | 141 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
142 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
143 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 144 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
145 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
146 | for (int i=0; i<10; i++) /* 0000000 */ | |
1d52a8b1 | 147 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
148 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
149 | for (int i=0; i<4; i++) /* 0 */ | |
1d52a8b1 | 150 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
151 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
152 | for (int i=0; i<9; i++) /* 0 */ | |
1d52a8b1 | 153 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
154 | secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ |
155 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 156 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
157 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
158 | for (int i=0; i<3; i++) /* 00 */ | |
1d52a8b1 | 159 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
160 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
161 | for (int i=0; i<3; i++) /* 00 */ | |
1d52a8b1 | 162 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
163 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
164 | for (int i=0; i<5; i++) /* 0 */ | |
1d52a8b1 | 165 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
166 | secp256k1_scalar_mul(t, t, &x4); /* 1111 */ |
167 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 168 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
169 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
170 | for (int i=0; i<5; i++) /* 000 */ | |
1d52a8b1 | 171 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
172 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
173 | for (int i=0; i<4; i++) /* 00 */ | |
1d52a8b1 | 174 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
175 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
176 | for (int i=0; i<2; i++) /* 0 */ | |
1d52a8b1 | 177 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
178 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
179 | for (int i=0; i<8; i++) /* 000000 */ | |
1d52a8b1 | 180 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
181 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
182 | for (int i=0; i<3; i++) /* 0 */ | |
1d52a8b1 | 183 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
184 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
185 | for (int i=0; i<3; i++) /* 00 */ | |
1d52a8b1 | 186 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
187 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
188 | for (int i=0; i<6; i++) /* 00000 */ | |
1d52a8b1 | 189 | secp256k1_scalar_sqr(t, t); |
71712b27 GM |
190 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
191 | for (int i=0; i<8; i++) /* 00 */ | |
1d52a8b1 | 192 | secp256k1_scalar_sqr(t, t); |
71712b27 | 193 | secp256k1_scalar_mul(r, t, &x6); /* 111111 */ |
1d52a8b1 PW |
194 | } |
195 | ||
d1502eb4 PW |
196 | static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_scalar_t *x) { |
197 | #if defined(USE_SCALAR_INV_BUILTIN) | |
198 | secp256k1_scalar_inverse(r, x); | |
199 | #elif defined(USE_SCALAR_INV_NUM) | |
200 | unsigned char b[32]; | |
201 | secp256k1_scalar_get_b32(b, x); | |
f1ebfe39 | 202 | secp256k1_num_t n, m; |
d1502eb4 | 203 | secp256k1_num_set_bin(&n, b, 32); |
f1ebfe39 PW |
204 | secp256k1_scalar_order_get_num(&m); |
205 | secp256k1_num_mod_inverse(&n, &n, &m); | |
d1502eb4 PW |
206 | secp256k1_num_get_bin(b, 32, &n); |
207 | secp256k1_scalar_set_b32(r, b, NULL); | |
208 | #else | |
209 | #error "Please select scalar inverse implementation" | |
210 | #endif | |
211 | } | |
212 | ||
6794be60 | 213 | #ifdef USE_ENDOMORPHISM |
f1ebfe39 PW |
214 | /** |
215 | * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where | |
216 | * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, | |
217 | * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} | |
218 | * | |
219 | * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm | |
220 | * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 | |
221 | * and k2 have a small size. | |
222 | * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: | |
223 | * | |
224 | * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
225 | * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} | |
226 | * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} | |
227 | * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
228 | * | |
229 | * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives | |
230 | * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and | |
231 | * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. | |
232 | * | |
233 | * g1, g2 are precomputed constants used to replace division with a rounded multiplication | |
234 | * when decomposing the scalar for an endomorphism-based point multiplication. | |
235 | * | |
236 | * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve | |
237 | * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. | |
238 | * | |
239 | * The derivation is described in the paper "Efficient Software Implementation of Public-Key | |
240 | * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), | |
241 | * Section 4.3 (here we use a somewhat higher-precision estimate): | |
242 | * d = a1*b2 - b1*a2 | |
243 | * g1 = round((2^272)*b2/d) | |
244 | * g2 = round((2^272)*b1/d) | |
245 | * | |
246 | * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found | |
247 | * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). | |
248 | * | |
249 | * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). | |
250 | */ | |
251 | ||
6794be60 | 252 | static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { |
f1ebfe39 PW |
253 | static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST( |
254 | 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, | |
255 | 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL | |
256 | ); | |
257 | static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST( | |
258 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, | |
259 | 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL | |
260 | ); | |
261 | static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST( | |
262 | 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, | |
263 | 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL | |
264 | ); | |
265 | static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST( | |
266 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, | |
267 | 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL | |
268 | ); | |
269 | static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST( | |
270 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, | |
271 | 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL | |
272 | ); | |
c35ff1ea PW |
273 | VERIFY_CHECK(r1 != a); |
274 | VERIFY_CHECK(r2 != a); | |
275 | secp256k1_scalar_t c1, c2; | |
f1ebfe39 PW |
276 | secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); |
277 | secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); | |
278 | secp256k1_scalar_mul(&c1, &c1, &minus_b1); | |
279 | secp256k1_scalar_mul(&c2, &c2, &minus_b2); | |
c35ff1ea | 280 | secp256k1_scalar_add(r2, &c1, &c2); |
f1ebfe39 | 281 | secp256k1_scalar_mul(r1, r2, &minus_lambda); |
c35ff1ea | 282 | secp256k1_scalar_add(r1, r1, a); |
6794be60 PW |
283 | } |
284 | #endif | |
285 | ||
a9f5c8b8 | 286 | #endif |