]>
Commit | Line | Data |
---|---|---|
71712b27 GM |
1 | /********************************************************************** |
2 | * Copyright (c) 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
a9f5c8b8 | 6 | |
abe2d3e8 DR |
7 | #ifndef SECP256K1_SCALAR_IMPL_H |
8 | #define SECP256K1_SCALAR_IMPL_H | |
a9f5c8b8 | 9 | |
a9f5c8b8 | 10 | #include "scalar.h" |
2cb73b10 | 11 | #include "util.h" |
a9f5c8b8 | 12 | |
1d52a8b1 PW |
13 | #if defined HAVE_CONFIG_H |
14 | #include "libsecp256k1-config.h" | |
15 | #endif | |
79359302 | 16 | |
83836a95 AP |
17 | #if defined(EXHAUSTIVE_TEST_ORDER) |
18 | #include "scalar_low_impl.h" | |
79f1f7a4 | 19 | #elif defined(SECP256K1_WIDEMUL_INT128) |
1d52a8b1 | 20 | #include "scalar_4x64_impl.h" |
79f1f7a4 | 21 | #elif defined(SECP256K1_WIDEMUL_INT64) |
1d52a8b1 PW |
22 | #include "scalar_8x32_impl.h" |
23 | #else | |
79f1f7a4 | 24 | #error "Please select wide multiplication implementation" |
1d52a8b1 | 25 | #endif |
a9f5c8b8 | 26 | |
34a67c77 GM |
27 | static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); |
28 | static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); | |
29 | ||
597128d3 | 30 | #ifndef USE_NUM_NONE |
dd891e0e | 31 | static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { |
a9f5c8b8 | 32 | unsigned char c[32]; |
1d52a8b1 | 33 | secp256k1_scalar_get_b32(c, a); |
a9f5c8b8 PW |
34 | secp256k1_num_set_bin(r, c, 32); |
35 | } | |
36 | ||
6efd6e77 | 37 | /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ |
dd891e0e | 38 | static void secp256k1_scalar_order_get_num(secp256k1_num *r) { |
83836a95 AP |
39 | #if defined(EXHAUSTIVE_TEST_ORDER) |
40 | static const unsigned char order[32] = { | |
41 | 0,0,0,0,0,0,0,0, | |
42 | 0,0,0,0,0,0,0,0, | |
43 | 0,0,0,0,0,0,0,0, | |
44 | 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER | |
45 | }; | |
46 | #else | |
f1ebfe39 PW |
47 | static const unsigned char order[32] = { |
48 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
49 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |
50 | 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |
51 | 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 | |
52 | }; | |
83836a95 | 53 | #endif |
f1ebfe39 | 54 | secp256k1_num_set_bin(r, order, 32); |
659b554d | 55 | } |
597128d3 | 56 | #endif |
1d52a8b1 | 57 | |
9ab2cbe0 JN |
58 | static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) { |
59 | int overflow; | |
60 | secp256k1_scalar_set_b32(r, bin, &overflow); | |
61 | return (!overflow) & (!secp256k1_scalar_is_zero(r)); | |
62 | } | |
63 | ||
dd891e0e | 64 | static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { |
83836a95 AP |
65 | #if defined(EXHAUSTIVE_TEST_ORDER) |
66 | int i; | |
67 | *r = 0; | |
68 | for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) | |
69 | if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) | |
70 | *r = i; | |
71 | /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus | |
72 | * have a composite group order; fix it in exhaustive_tests.c). */ | |
73 | VERIFY_CHECK(*r != 0); | |
74 | } | |
75 | #else | |
dd891e0e | 76 | secp256k1_scalar *t; |
d9543c90 | 77 | int i; |
cf12fa13 PD |
78 | /* First compute xN as x ^ (2^N - 1) for some values of N, |
79 | * and uM as x ^ M for some values of M. */ | |
80 | secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126; | |
465159c2 | 81 | secp256k1_scalar u2, u5, u9, u11, u13; |
1d52a8b1 | 82 | |
cf12fa13 PD |
83 | secp256k1_scalar_sqr(&u2, x); |
84 | secp256k1_scalar_mul(&x2, &u2, x); | |
85 | secp256k1_scalar_mul(&u5, &u2, &x2); | |
86 | secp256k1_scalar_mul(&x3, &u5, &u2); | |
465159c2 BS |
87 | secp256k1_scalar_mul(&u9, &x3, &u2); |
88 | secp256k1_scalar_mul(&u11, &u9, &u2); | |
89 | secp256k1_scalar_mul(&u13, &u11, &u2); | |
1d52a8b1 | 90 | |
465159c2 BS |
91 | secp256k1_scalar_sqr(&x6, &u13); |
92 | secp256k1_scalar_sqr(&x6, &x6); | |
93 | secp256k1_scalar_mul(&x6, &x6, &u11); | |
1d52a8b1 | 94 | |
cf12fa13 PD |
95 | secp256k1_scalar_sqr(&x8, &x6); |
96 | secp256k1_scalar_sqr(&x8, &x8); | |
97 | secp256k1_scalar_mul(&x8, &x8, &x2); | |
1d52a8b1 | 98 | |
cf12fa13 PD |
99 | secp256k1_scalar_sqr(&x14, &x8); |
100 | for (i = 0; i < 5; i++) { | |
101 | secp256k1_scalar_sqr(&x14, &x14); | |
26320197 | 102 | } |
cf12fa13 | 103 | secp256k1_scalar_mul(&x14, &x14, &x6); |
1d52a8b1 | 104 | |
cf12fa13 PD |
105 | secp256k1_scalar_sqr(&x28, &x14); |
106 | for (i = 0; i < 13; i++) { | |
107 | secp256k1_scalar_sqr(&x28, &x28); | |
26320197 | 108 | } |
cf12fa13 | 109 | secp256k1_scalar_mul(&x28, &x28, &x14); |
1d52a8b1 | 110 | |
cf12fa13 PD |
111 | secp256k1_scalar_sqr(&x56, &x28); |
112 | for (i = 0; i < 27; i++) { | |
113 | secp256k1_scalar_sqr(&x56, &x56); | |
26320197 | 114 | } |
cf12fa13 | 115 | secp256k1_scalar_mul(&x56, &x56, &x28); |
1d52a8b1 | 116 | |
cf12fa13 PD |
117 | secp256k1_scalar_sqr(&x112, &x56); |
118 | for (i = 0; i < 55; i++) { | |
119 | secp256k1_scalar_sqr(&x112, &x112); | |
26320197 | 120 | } |
cf12fa13 | 121 | secp256k1_scalar_mul(&x112, &x112, &x56); |
1d52a8b1 | 122 | |
cf12fa13 PD |
123 | secp256k1_scalar_sqr(&x126, &x112); |
124 | for (i = 0; i < 13; i++) { | |
125 | secp256k1_scalar_sqr(&x126, &x126); | |
26320197 | 126 | } |
cf12fa13 | 127 | secp256k1_scalar_mul(&x126, &x126, &x14); |
1d52a8b1 | 128 | |
cf12fa13 PD |
129 | /* Then accumulate the final result (t starts at x126). */ |
130 | t = &x126; | |
131 | for (i = 0; i < 3; i++) { | |
1d52a8b1 | 132 | secp256k1_scalar_sqr(t, t); |
26320197 | 133 | } |
cf12fa13 | 134 | secp256k1_scalar_mul(t, t, &u5); /* 101 */ |
26320197 | 135 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 136 | secp256k1_scalar_sqr(t, t); |
26320197 | 137 | } |
71712b27 | 138 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
cf12fa13 | 139 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 140 | secp256k1_scalar_sqr(t, t); |
26320197 | 141 | } |
cf12fa13 | 142 | secp256k1_scalar_mul(t, t, &u5); /* 101 */ |
465159c2 | 143 | for (i = 0; i < 5; i++) { /* 0 */ |
1d52a8b1 | 144 | secp256k1_scalar_sqr(t, t); |
26320197 | 145 | } |
465159c2 BS |
146 | secp256k1_scalar_mul(t, t, &u11); /* 1011 */ |
147 | for (i = 0; i < 4; i++) { | |
1d52a8b1 | 148 | secp256k1_scalar_sqr(t, t); |
26320197 | 149 | } |
465159c2 | 150 | secp256k1_scalar_mul(t, t, &u11); /* 1011 */ |
26320197 | 151 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 152 | secp256k1_scalar_sqr(t, t); |
26320197 | 153 | } |
71712b27 | 154 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 155 | for (i = 0; i < 5; i++) { /* 00 */ |
1d52a8b1 | 156 | secp256k1_scalar_sqr(t, t); |
26320197 | 157 | } |
71712b27 | 158 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
465159c2 | 159 | for (i = 0; i < 6; i++) { /* 00 */ |
1d52a8b1 | 160 | secp256k1_scalar_sqr(t, t); |
26320197 | 161 | } |
465159c2 | 162 | secp256k1_scalar_mul(t, t, &u13); /* 1101 */ |
cf12fa13 | 163 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 164 | secp256k1_scalar_sqr(t, t); |
26320197 | 165 | } |
cf12fa13 | 166 | secp256k1_scalar_mul(t, t, &u5); /* 101 */ |
cf12fa13 | 167 | for (i = 0; i < 3; i++) { |
1d52a8b1 | 168 | secp256k1_scalar_sqr(t, t); |
26320197 | 169 | } |
465159c2 BS |
170 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
171 | for (i = 0; i < 5; i++) { /* 0 */ | |
1d52a8b1 | 172 | secp256k1_scalar_sqr(t, t); |
26320197 | 173 | } |
465159c2 | 174 | secp256k1_scalar_mul(t, t, &u9); /* 1001 */ |
cf12fa13 | 175 | for (i = 0; i < 6; i++) { /* 000 */ |
1d52a8b1 | 176 | secp256k1_scalar_sqr(t, t); |
26320197 | 177 | } |
cf12fa13 | 178 | secp256k1_scalar_mul(t, t, &u5); /* 101 */ |
26320197 | 179 | for (i = 0; i < 10; i++) { /* 0000000 */ |
1d52a8b1 | 180 | secp256k1_scalar_sqr(t, t); |
26320197 | 181 | } |
71712b27 | 182 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 183 | for (i = 0; i < 4; i++) { /* 0 */ |
1d52a8b1 | 184 | secp256k1_scalar_sqr(t, t); |
26320197 | 185 | } |
71712b27 | 186 | secp256k1_scalar_mul(t, t, &x3); /* 111 */ |
26320197 | 187 | for (i = 0; i < 9; i++) { /* 0 */ |
1d52a8b1 | 188 | secp256k1_scalar_sqr(t, t); |
26320197 | 189 | } |
71712b27 | 190 | secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ |
465159c2 | 191 | for (i = 0; i < 5; i++) { /* 0 */ |
1d52a8b1 | 192 | secp256k1_scalar_sqr(t, t); |
26320197 | 193 | } |
465159c2 BS |
194 | secp256k1_scalar_mul(t, t, &u9); /* 1001 */ |
195 | for (i = 0; i < 6; i++) { /* 00 */ | |
1d52a8b1 | 196 | secp256k1_scalar_sqr(t, t); |
26320197 | 197 | } |
465159c2 BS |
198 | secp256k1_scalar_mul(t, t, &u11); /* 1011 */ |
199 | for (i = 0; i < 4; i++) { | |
1d52a8b1 | 200 | secp256k1_scalar_sqr(t, t); |
26320197 | 201 | } |
465159c2 BS |
202 | secp256k1_scalar_mul(t, t, &u13); /* 1101 */ |
203 | for (i = 0; i < 5; i++) { | |
1d52a8b1 | 204 | secp256k1_scalar_sqr(t, t); |
26320197 | 205 | } |
71712b27 | 206 | secp256k1_scalar_mul(t, t, &x2); /* 11 */ |
465159c2 | 207 | for (i = 0; i < 6; i++) { /* 00 */ |
1d52a8b1 | 208 | secp256k1_scalar_sqr(t, t); |
26320197 | 209 | } |
465159c2 BS |
210 | secp256k1_scalar_mul(t, t, &u13); /* 1101 */ |
211 | for (i = 0; i < 10; i++) { /* 000000 */ | |
1d52a8b1 | 212 | secp256k1_scalar_sqr(t, t); |
26320197 | 213 | } |
465159c2 BS |
214 | secp256k1_scalar_mul(t, t, &u13); /* 1101 */ |
215 | for (i = 0; i < 4; i++) { | |
1d52a8b1 | 216 | secp256k1_scalar_sqr(t, t); |
26320197 | 217 | } |
465159c2 | 218 | secp256k1_scalar_mul(t, t, &u9); /* 1001 */ |
26320197 | 219 | for (i = 0; i < 6; i++) { /* 00000 */ |
1d52a8b1 | 220 | secp256k1_scalar_sqr(t, t); |
26320197 | 221 | } |
71712b27 | 222 | secp256k1_scalar_mul(t, t, x); /* 1 */ |
26320197 | 223 | for (i = 0; i < 8; i++) { /* 00 */ |
1d52a8b1 | 224 | secp256k1_scalar_sqr(t, t); |
26320197 | 225 | } |
71712b27 | 226 | secp256k1_scalar_mul(r, t, &x6); /* 111111 */ |
1d52a8b1 PW |
227 | } |
228 | ||
dd891e0e | 229 | SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { |
44015000 AP |
230 | return !(a->d[0] & 1); |
231 | } | |
83836a95 | 232 | #endif |
44015000 | 233 | |
dd891e0e | 234 | static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { |
d1502eb4 PW |
235 | #if defined(USE_SCALAR_INV_BUILTIN) |
236 | secp256k1_scalar_inverse(r, x); | |
237 | #elif defined(USE_SCALAR_INV_NUM) | |
238 | unsigned char b[32]; | |
dd891e0e PW |
239 | secp256k1_num n, m; |
240 | secp256k1_scalar t = *x; | |
36b305a8 | 241 | secp256k1_scalar_get_b32(b, &t); |
d1502eb4 | 242 | secp256k1_num_set_bin(&n, b, 32); |
f1ebfe39 PW |
243 | secp256k1_scalar_order_get_num(&m); |
244 | secp256k1_num_mod_inverse(&n, &n, &m); | |
d1502eb4 PW |
245 | secp256k1_num_get_bin(b, 32, &n); |
246 | secp256k1_scalar_set_b32(r, b, NULL); | |
36b305a8 PW |
247 | /* Verify that the inverse was computed correctly, without GMP code. */ |
248 | secp256k1_scalar_mul(&t, &t, r); | |
249 | CHECK(secp256k1_scalar_is_one(&t)); | |
d1502eb4 PW |
250 | #else |
251 | #error "Please select scalar inverse implementation" | |
252 | #endif | |
253 | } | |
254 | ||
6794be60 | 255 | #ifdef USE_ENDOMORPHISM |
83836a95 AP |
256 | #if defined(EXHAUSTIVE_TEST_ORDER) |
257 | /** | |
258 | * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the | |
259 | * full case we don't bother making k1 and k2 be small, we just want them to be | |
260 | * nontrivial to get full test coverage for the exhaustive tests. We therefore | |
261 | * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. | |
262 | */ | |
263 | static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { | |
264 | *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; | |
265 | *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; | |
266 | } | |
267 | #else | |
f1ebfe39 PW |
268 | /** |
269 | * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where | |
270 | * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, | |
271 | * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} | |
272 | * | |
273 | * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm | |
274 | * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 | |
275 | * and k2 have a small size. | |
276 | * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: | |
277 | * | |
278 | * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
279 | * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} | |
280 | * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} | |
281 | * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} | |
282 | * | |
283 | * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives | |
284 | * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and | |
285 | * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. | |
286 | * | |
287 | * g1, g2 are precomputed constants used to replace division with a rounded multiplication | |
288 | * when decomposing the scalar for an endomorphism-based point multiplication. | |
289 | * | |
290 | * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve | |
291 | * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. | |
292 | * | |
293 | * The derivation is described in the paper "Efficient Software Implementation of Public-Key | |
294 | * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), | |
295 | * Section 4.3 (here we use a somewhat higher-precision estimate): | |
296 | * d = a1*b2 - b1*a2 | |
297 | * g1 = round((2^272)*b2/d) | |
298 | * g2 = round((2^272)*b1/d) | |
299 | * | |
300 | * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found | |
301 | * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). | |
302 | * | |
303 | * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). | |
304 | */ | |
305 | ||
dd891e0e PW |
306 | static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { |
307 | secp256k1_scalar c1, c2; | |
308 | static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( | |
f1ebfe39 PW |
309 | 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, |
310 | 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL | |
311 | ); | |
dd891e0e | 312 | static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( |
f1ebfe39 PW |
313 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, |
314 | 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL | |
315 | ); | |
dd891e0e | 316 | static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( |
f1ebfe39 PW |
317 | 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, |
318 | 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL | |
319 | ); | |
dd891e0e | 320 | static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( |
f1ebfe39 PW |
321 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, |
322 | 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL | |
323 | ); | |
dd891e0e | 324 | static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( |
f1ebfe39 PW |
325 | 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, |
326 | 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL | |
327 | ); | |
c35ff1ea PW |
328 | VERIFY_CHECK(r1 != a); |
329 | VERIFY_CHECK(r2 != a); | |
ed35d43a | 330 | /* these _var calls are constant time since the shift amount is constant */ |
f1ebfe39 PW |
331 | secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); |
332 | secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); | |
333 | secp256k1_scalar_mul(&c1, &c1, &minus_b1); | |
334 | secp256k1_scalar_mul(&c2, &c2, &minus_b2); | |
c35ff1ea | 335 | secp256k1_scalar_add(r2, &c1, &c2); |
f1ebfe39 | 336 | secp256k1_scalar_mul(r1, r2, &minus_lambda); |
c35ff1ea | 337 | secp256k1_scalar_add(r1, r1, a); |
6794be60 PW |
338 | } |
339 | #endif | |
83836a95 | 340 | #endif |
6794be60 | 341 | |
abe2d3e8 | 342 | #endif /* SECP256K1_SCALAR_IMPL_H */ |