When AMD's SEV memory encryption is in use, flash memory banks (which are
initialed by pc_system_flash_map()) need to be encrypted with the guest's
key, so that the guest can read them.
That's abstracted via the kvm_memcrypt_encrypt_data() callback in the KVM
state.. except, that it doesn't really abstract much at all.
For starters, the only call site is in code specific to the 'pc'
family of machine types, so it's obviously specific to those and to
x86 to begin with. But it makes a bunch of further assumptions that
need not be true about an arbitrary confidential guest system based on
memory encryption, let alone one based on other mechanisms:
* it assumes that the flash memory is defined to be encrypted with the
guest key, rather than being shared with hypervisor
* it assumes that that hypervisor has some mechanism to encrypt data into
the guest, even though it can't decrypt it out, since that's the whole
point
* the interface assumes that this encrypt can be done in place, which
implies that the hypervisor can write into a confidential guests's
memory, even if what it writes isn't meaningful
So really, this "abstraction" is actually pretty specific to the way SEV
works. So, this patch removes it and instead has the PC flash
initialization code call into a SEV specific callback.
Signed-off-by: David Gibson <[email protected]>
Reviewed-by: Cornelia Huck <[email protected]>
KVMMemoryListener memory_listener;
QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
- /* memory encryption */
- void *memcrypt_handle;
- int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
-
/* For "info mtree -f" to tell if an MR is registered in KVM */
int nr_as;
struct KVMAs {
return s->nr_slots;
}
-bool kvm_memcrypt_enabled(void)
-{
- if (kvm_state && kvm_state->memcrypt_handle) {
- return true;
- }
-
- return false;
-}
-
-int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
-{
- if (kvm_state->memcrypt_handle &&
- kvm_state->memcrypt_encrypt_data) {
- return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
- ptr, len);
- }
-
- return 1;
-}
-
/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
{
* encryption context.
*/
if (ms->memory_encryption) {
- kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
- if (!kvm_state->memcrypt_handle) {
- ret = -1;
+ ret = sev_guest_init(ms->memory_encryption);
+ if (ret < 0) {
goto err;
}
-
- kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
}
ret = kvm_arch_init(ms, s);
#include "qemu-common.h"
#include "sysemu/sev.h"
-int sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len)
+int sev_guest_init(const char *id)
{
- abort();
-}
-
-void *sev_guest_init(const char *id)
-{
- return NULL;
+ return -1;
}
return 1;
}
-bool kvm_memcrypt_enabled(void)
-{
- return false;
-}
-
-int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
-{
- return 1;
-}
-
#ifndef CONFIG_USER_ONLY
int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
{
#include "sysemu/sysemu.h"
#include "hw/block/flash.h"
#include "sysemu/kvm.h"
+#include "sysemu/sev.h"
#define FLASH_SECTOR_SIZE 4096
PFlashCFI01 *system_flash;
MemoryRegion *flash_mem;
void *flash_ptr;
- int ret, flash_size;
+ int flash_size;
assert(PC_MACHINE_GET_CLASS(pcms)->pci_enabled);
flash_mem = pflash_cfi01_get_memory(system_flash);
pc_isa_bios_init(rom_memory, flash_mem, size);
- /* Encrypt the pflash boot ROM */
- if (kvm_memcrypt_enabled()) {
- flash_ptr = memory_region_get_ram_ptr(flash_mem);
- flash_size = memory_region_size(flash_mem);
- ret = kvm_memcrypt_encrypt_data(flash_ptr, flash_size);
- if (ret) {
- error_report("failed to encrypt pflash rom");
- exit(1);
- }
- }
+ /* Encrypt the pflash boot ROM, if necessary */
+ flash_ptr = memory_region_get_ram_ptr(flash_mem);
+ flash_size = memory_region_size(flash_mem);
+ sev_encrypt_flash(flash_ptr, flash_size, &error_fatal);
}
}
}
*/
bool kvm_arm_supports_user_irq(void);
-/**
- * kvm_memcrypt_enabled - return boolean indicating whether memory encryption
- * is enabled
- * Returns: 1 memory encryption is enabled
- * 0 memory encryption is disabled
- */
-bool kvm_memcrypt_enabled(void);
-
-/**
- * kvm_memcrypt_encrypt_data: encrypt the memory range
- *
- * Return: 1 failed to encrypt the range
- * 0 succesfully encrypted memory region
- */
-int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len);
-
#ifdef NEED_CPU_H
#include "cpu.h"
#include "sysemu/kvm.h"
-void *sev_guest_init(const char *id);
-int sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len);
+int sev_guest_init(const char *id);
+int sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp);
int sev_inject_launch_secret(const char *hdr, const char *secret,
uint64_t gpa, Error **errp);
#endif
{
return 1;
}
+
+int sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp)
+{
+ return 0;
+}
}
}
-void *
+int
sev_guest_init(const char *id)
{
SevGuestState *sev;
ret = ram_block_discard_disable(true);
if (ret) {
error_report("%s: cannot disable RAM discard", __func__);
- return NULL;
+ return -1;
}
sev = lookup_sev_guest_info(id);
qemu_add_machine_init_done_notifier(&sev_machine_done_notify);
qemu_add_vm_change_state_handler(sev_vm_state_change, sev);
- return sev;
+ return 0;
err:
sev_guest = NULL;
ram_block_discard_disable(false);
- return NULL;
+ return -1;
}
int
-sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len)
+sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp)
{
- SevGuestState *sev = handle;
-
- assert(sev);
+ if (!sev_guest) {
+ return 0;
+ }
/* if SEV is in update state then encrypt the data else do nothing */
- if (sev_check_state(sev, SEV_STATE_LAUNCH_UPDATE)) {
- return sev_launch_update_data(sev, ptr, len);
+ if (sev_check_state(sev_guest, SEV_STATE_LAUNCH_UPDATE)) {
+ int ret = sev_launch_update_data(sev_guest, ptr, len);
+ if (ret < 0) {
+ error_setg(errp, "failed to encrypt pflash rom");
+ return ret;
+ }
}
return 0;