{
return qemu_clock_get_ns(clock_type) - stats->last_access_time_ns;
}
+
+double block_acct_queue_depth(BlockAcctTimedStats *stats,
+ enum BlockAcctType type)
+{
+ uint64_t sum, elapsed;
+
+ assert(type < BLOCK_MAX_IOTYPE);
+
+ sum = timed_average_sum(&stats->latency[type], &elapsed);
+
+ return (double) sum / elapsed;
+}
dev_stats->min_flush_latency_ns = timed_average_min(fl);
dev_stats->max_flush_latency_ns = timed_average_max(fl);
dev_stats->avg_flush_latency_ns = timed_average_avg(fl);
+
+ dev_stats->avg_rd_queue_depth =
+ block_acct_queue_depth(ts, BLOCK_ACCT_READ);
+ dev_stats->avg_wr_queue_depth =
+ block_acct_queue_depth(ts, BLOCK_ACCT_WRITE);
}
}
void block_acct_merge_done(BlockAcctStats *stats, enum BlockAcctType type,
int num_requests);
int64_t block_acct_idle_time_ns(BlockAcctStats *stats);
+double block_acct_queue_depth(BlockAcctTimedStats *stats,
+ enum BlockAcctType type);
#endif
uint64_t timed_average_min(TimedAverage *ta);
uint64_t timed_average_avg(TimedAverage *ta);
uint64_t timed_average_max(TimedAverage *ta);
+uint64_t timed_average_sum(TimedAverage *ta, uint64_t *elapsed);
#endif
# @avg_flush_latency_ns: Average latency of flush operations in the
# defined interval, in nanoseconds.
#
+# @avg_rd_queue_depth: Average number of pending read operations
+# in the defined interval.
+#
+# @avg_wr_queue_depth: Average number of pending write operations
+# in the defined interval.
+#
# Since: 2.5
##
'max_rd_latency_ns': 'int', 'avg_rd_latency_ns': 'int',
'min_wr_latency_ns': 'int', 'max_wr_latency_ns': 'int',
'avg_wr_latency_ns': 'int', 'min_flush_latency_ns': 'int',
- 'max_flush_latency_ns': 'int', 'avg_flush_latency_ns': 'int' } }
+ 'max_flush_latency_ns': 'int', 'avg_flush_latency_ns': 'int',
+ 'avg_rd_queue_depth': 'number', 'avg_wr_queue_depth': 'number' } }
##
# @BlockDeviceStats:
- "avg_flush_latency_ns": average latency of flush operations
in the defined interval, in
nanoseconds (json-int)
+ - "avg_rd_queue_depth": average number of pending read
+ operations in the defined interval
+ (json-number)
+ - "avg_wr_queue_depth": average number of pending write
+ operations in the defined interval
+ (json-number).
- "parent": Contains recursively the statistics of the underlying
protocol (e.g. the host file for a qcow2 image). If there is
no underlying protocol, this field is omitted
* expiration time if that's the case.
*
* @ta: the TimedAverage structure
+ * @elapsed: if non-NULL, the elapsed time (in ns) within the current
+ * window will be stored here
*/
-static void check_expirations(TimedAverage *ta)
+static void check_expirations(TimedAverage *ta, uint64_t *elapsed)
{
int64_t now = qemu_clock_get_ns(ta->clock_type);
int i;
} else {
ta->current = 1;
}
+
+ /* Calculate the elapsed time within the current window */
+ if (elapsed) {
+ int64_t remaining = ta->windows[ta->current].expiration - now;
+ *elapsed = ta->period - remaining;
+ }
}
/* Account a value
void timed_average_account(TimedAverage *ta, uint64_t value)
{
int i;
- check_expirations(ta);
+ check_expirations(ta, NULL);
/* Do the accounting in both windows at the same time */
for (i = 0; i < 2; i++) {
uint64_t timed_average_min(TimedAverage *ta)
{
TimedAverageWindow *w;
- check_expirations(ta);
+ check_expirations(ta, NULL);
w = current_window(ta);
return w->min < UINT64_MAX ? w->min : 0;
}
uint64_t timed_average_avg(TimedAverage *ta)
{
TimedAverageWindow *w;
- check_expirations(ta);
+ check_expirations(ta, NULL);
w = current_window(ta);
return w->count > 0 ? w->sum / w->count : 0;
}
*/
uint64_t timed_average_max(TimedAverage *ta)
{
- check_expirations(ta);
+ check_expirations(ta, NULL);
return current_window(ta)->max;
}
+
+/* Get the sum of all accounted values
+ * @ta: the TimedAverage structure
+ * @elapsed: if non-NULL, the elapsed time (in ns) will be stored here
+ * @ret: the sum of all accounted values
+ */
+uint64_t timed_average_sum(TimedAverage *ta, uint64_t *elapsed)
+{
+ TimedAverageWindow *w;
+ check_expirations(ta, elapsed);
+ w = current_window(ta);
+ return w->sum;
+}