extern int64_t qemu_icount;
extern int use_icount;
-#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
+void cpu_exit(CPUState *s);
+
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#endif
if (queue_signal(sig, &tinfo) == 1) {
/* interrupt the virtual CPU as soon as possible */
- cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(global_env);
}
}
qemu_get_be32s(f, &env->halted);
qemu_get_be32s(f, &env->interrupt_request);
- env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
+ /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
+ version_id is increased. */
+ env->interrupt_request &= ~0x01;
tlb_flush(env, 1);
return 0;
cpu_set_log(loglevel);
}
-/* mask must never be zero, except for A20 change call */
-void cpu_interrupt(CPUState *env, int mask)
+static void cpu_unlink_tb(CPUState *env)
{
-#if !defined(USE_NPTL)
+#if defined(USE_NPTL)
+ /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
+ problem and hope the cpu will stop of its own accord. For userspace
+ emulation this often isn't actually as bad as it sounds. Often
+ signals are used primarily to interrupt blocking syscalls. */
+#else
TranslationBlock *tb;
static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
-#endif
- int old_mask;
- if (mask & CPU_INTERRUPT_EXIT) {
- env->exit_request = 1;
- mask &= ~CPU_INTERRUPT_EXIT;
+ tb = env->current_tb;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ if (tb && !testandset(&interrupt_lock)) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ resetlock(&interrupt_lock);
}
+#endif
+}
+
+/* mask must never be zero, except for A20 change call */
+void cpu_interrupt(CPUState *env, int mask)
+{
+ int old_mask;
old_mask = env->interrupt_request;
env->interrupt_request |= mask;
-#if defined(USE_NPTL)
- /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
- problem and hope the cpu will stop of its own accord. For userspace
- emulation this often isn't actually as bad as it sounds. Often
- signals are used primarily to interrupt blocking syscalls. */
-#else
+
if (use_icount) {
env->icount_decr.u16.high = 0xffff;
#ifndef CONFIG_USER_ONLY
}
#endif
} else {
- tb = env->current_tb;
- /* if the cpu is currently executing code, we must unlink it and
- all the potentially executing TB */
- if (tb && !testandset(&interrupt_lock)) {
- env->current_tb = NULL;
- tb_reset_jump_recursive(tb);
- resetlock(&interrupt_lock);
- }
+ cpu_unlink_tb(env);
}
-#endif
}
void cpu_reset_interrupt(CPUState *env, int mask)
env->interrupt_request &= ~mask;
}
+void cpu_exit(CPUState *env)
+{
+ env->exit_request = 1;
+ cpu_unlink_tb(env);
+}
+
const CPULogItem cpu_log_items[] = {
{ CPU_LOG_TB_OUT_ASM, "out_asm",
"show generated host assembly code for each compiled TB" },
#ifdef CONFIG_USER_ONLY
gdb_handlesig(s->c_cpu, 0);
#else
- cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
+ cpu_exit(s->c_cpu);
#endif
}
{
CPUState *env = cpu_single_env;
if (env)
- cpu_interrupt(env, CPU_INTERRUPT_EXIT);
+ cpu_exit(env);
}
static void dma_reset(void *opaque)
{
CPUState *env = cpu_single_env;
if (env)
- cpu_interrupt(env, CPU_INTERRUPT_EXIT);
+ cpu_exit(env);
}
static void
for (other = first_cpu; other; other = other->next_cpu) {
if (other->running) {
pending_cpus++;
- cpu_interrupt(other, CPU_INTERRUPT_EXIT);
+ cpu_exit(other);
}
}
if (pending_cpus > 1) {
host_to_target_siginfo_noswap(&tinfo, info);
if (queue_signal(thread_env, sig, &tinfo) == 1) {
/* interrupt the virtual CPU as soon as possible */
- cpu_interrupt(thread_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(thread_env);
}
}
}
/* Interrupt execution to force deadline recalculation. */
if (use_icount && cpu_single_env) {
- cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(cpu_single_env);
}
}
}
if (env) {
/* stop the currently executing cpu because a timer occured */
- cpu_interrupt(env, CPU_INTERRUPT_EXIT);
+ cpu_exit(env);
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_cpu_interrupt(env);
{
CPUState *env = cpu_single_env;
if (env) {
- cpu_interrupt(env, CPU_INTERRUPT_EXIT);
+ cpu_exit(env);
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_cpu_interrupt(env);
bh->idle = 0;
/* stop the currently executing CPU to execute the BH ASAP */
if (env) {
- cpu_interrupt(env, CPU_INTERRUPT_EXIT);
+ cpu_exit(env);
}
}
reset_requested = 1;
}
if (cpu_single_env)
- cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(cpu_single_env);
}
void qemu_system_shutdown_request(void)
{
shutdown_requested = 1;
if (cpu_single_env)
- cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(cpu_single_env);
}
void qemu_system_powerdown_request(void)
{
powerdown_requested = 1;
if (cpu_single_env)
- cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
+ cpu_exit(cpu_single_env);
}
#ifdef _WIN32