-/*
- * QEMU float support
- *
- * The code in this source file is derived from release 2a of the SoftFloat
- * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
- * some later contributions) are provided under that license, as detailed below.
- * It has subsequently been modified by contributors to the QEMU Project,
- * so some portions are provided under:
- * the SoftFloat-2a license
- * the BSD license
- * GPL-v2-or-later
- *
- * Any future contributions to this file after December 1st 2014 will be
- * taken to be licensed under the Softfloat-2a license unless specifically
- * indicated otherwise.
- */
-
-/*
-===============================================================================
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2a.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
-has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
-TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
-PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
-AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) they include prominent notice that the work is derivative, and (2) they
-include prominent notice akin to these four paragraphs for those parts of
-this code that are retained.
-
-===============================================================================
-*/
-
-/* BSD licensing:
- * Copyright (c) 2006, Fabrice Bellard
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its contributors
- * may be used to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/* Portions of this work are licensed under the terms of the GNU GPL,
- * version 2 or later. See the COPYING file in the top-level directory.
- */
-
-/* Define for architectures which deviate from IEEE in not supporting
- * signaling NaNs (so all NaNs are treated as quiet).
- */
-#if defined(TARGET_XTENSA)
-#define NO_SIGNALING_NANS 1
-#endif
-
-/* Define how the architecture discriminates signaling NaNs.
- * This done with the most significant bit of the fraction.
- * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
- * the msb must be zero. MIPS is (so far) unique in supporting both the
- * 2008 revision and backward compatibility with their original choice.
- * Thus for MIPS we must make the choice at runtime.
- */
-static inline flag snan_bit_is_one(float_status *status)
-{
-#if defined(TARGET_MIPS)
- return status->snan_bit_is_one;
-#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
- return 1;
-#else
- return 0;
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| For the deconstructed floating-point with fraction FRAC, return true
-| if the fraction represents a signalling NaN; otherwise false.
-*----------------------------------------------------------------------------*/
-
-static bool parts_is_snan_frac(uint64_t frac, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return false;
-#else
- flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
- return msb == snan_bit_is_one(status);
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated deconstructed floating-point NaN.
-*----------------------------------------------------------------------------*/
-
-static FloatParts parts_default_nan(float_status *status)
-{
- bool sign = 0;
- uint64_t frac;
-
-#if defined(TARGET_SPARC) || defined(TARGET_M68K)
- /* !snan_bit_is_one, set all bits */
- frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
-#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
- || defined(TARGET_MICROBLAZE)
- /* !snan_bit_is_one, set sign and msb */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
- sign = 1;
-#elif defined(TARGET_HPPA)
- /* snan_bit_is_one, set msb-1. */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
-#else
- /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
- * S390, SH4, TriCore, and Xtensa. I cannot find documentation
- * for Unicore32; the choice from the original commit is unchanged.
- * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
- * do not have floating-point.
- */
- if (snan_bit_is_one(status)) {
- /* set all bits other than msb */
- frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
- } else {
- /* set msb */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
- }
-#endif
-
- return (FloatParts) {
- .cls = float_class_qnan,
- .sign = sign,
- .exp = INT_MAX,
- .frac = frac
- };
-}
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN from a signalling NaN for the deconstructed
-| floating-point parts.
-*----------------------------------------------------------------------------*/
-
-static FloatParts parts_silence_nan(FloatParts a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- g_assert_not_reached();
-#elif defined(TARGET_HPPA)
- a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
- a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
-#else
- if (snan_bit_is_one(status)) {
- return parts_default_nan(status);
- } else {
- a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
- }
-#endif
- a.cls = float_class_qnan;
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision NaN.
-*----------------------------------------------------------------------------*/
-floatx80 floatx80_default_nan(float_status *status)
-{
- floatx80 r;
-
- /* None of the targets that have snan_bit_is_one use floatx80. */
- assert(!snan_bit_is_one(status));
-#if defined(TARGET_M68K)
- r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
- r.high = 0x7FFF;
-#else
- /* X86 */
- r.low = UINT64_C(0xC000000000000000);
- r.high = 0xFFFF;
-#endif
- return r;
-}
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision inf.
-*----------------------------------------------------------------------------*/
-
-#define floatx80_infinity_high 0x7FFF
-#if defined(TARGET_M68K)
-#define floatx80_infinity_low UINT64_C(0x0000000000000000)
-#else
-#define floatx80_infinity_low UINT64_C(0x8000000000000000)
-#endif
-
-const floatx80 floatx80_infinity
- = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
-
-/*----------------------------------------------------------------------------
-| Raises the exceptions specified by `flags'. Floating-point traps can be
-| defined here if desired. It is currently not possible for such a trap
-| to substitute a result value. If traps are not implemented, this routine
-| should be simply `float_exception_flags |= flags;'.
-*----------------------------------------------------------------------------*/
-
-void float_raise(uint8_t flags, float_status *status)
-{
- status->float_exception_flags |= flags;
-}
-
-/*----------------------------------------------------------------------------
-| Internal canonical NaN format.
-*----------------------------------------------------------------------------*/
-typedef struct {
- flag sign;
- uint64_t high, low;
-} commonNaNT;
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the half-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float16_is_quiet_nan(float16 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return float16_is_any_nan(a_);
-#else
- uint16_t a = float16_val(a_);
- if (snan_bit_is_one(status)) {
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
- } else {
- return ((a & ~0x8000) >= 0x7C80);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the half-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float16_is_signaling_nan(float16 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return 0;
-#else
- uint16_t a = float16_val(a_);
- if (snan_bit_is_one(status)) {
- return ((a & ~0x8000) >= 0x7C80);
- } else {
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float32_is_quiet_nan(float32 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return float32_is_any_nan(a_);
-#else
- uint32_t a = float32_val(a_);
- if (snan_bit_is_one(status)) {
- return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
- } else {
- return ((uint32_t)(a << 1) >= 0xFF800000);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float32_is_signaling_nan(float32 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return 0;
-#else
- uint32_t a = float32_val(a_);
- if (snan_bit_is_one(status)) {
- return ((uint32_t)(a << 1) >= 0xFF800000);
- } else {
- return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
-{
- commonNaNT z;
-
- if (float32_is_signaling_nan(a, status)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = float32_val(a) >> 31;
- z.low = 0;
- z.high = ((uint64_t)float32_val(a)) << 41;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the single-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
-{
- uint32_t mantissa = a.high >> 41;
-
- if (status->default_nan_mode) {
- return float32_default_nan(status);
- }
-
- if (mantissa) {
- return make_float32(
- (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
- } else {
- return float32_default_nan(status);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a two-input operation.
-| IEEE754 doesn't specify all the details of this, so the
-| algorithm is target-specific.
-| The routine is passed various bits of information about the
-| two NaNs and should return 0 to select NaN a and 1 for NaN b.
-| Note that signalling NaNs are always squashed to quiet NaNs
-| by the caller, by calling floatXX_silence_nan() before
-| returning them.
-|
-| aIsLargerSignificand is only valid if both a and b are NaNs
-| of some kind, and is true if a has the larger significand,
-| or if both a and b have the same significand but a is
-| positive but b is negative. It is only needed for the x87
-| tie-break rule.
-*----------------------------------------------------------------------------*/
-
-static int pickNaN(FloatClass a_cls, FloatClass b_cls,
- flag aIsLargerSignificand)
-{
-#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
- /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
- * the first of:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always quietened before returning it.
- */
- /* According to MIPS specifications, if one of the two operands is
- * a sNaN, a new qNaN has to be generated. This is done in
- * floatXX_silence_nan(). For qNaN inputs the specifications
- * says: "When possible, this QNaN result is one of the operand QNaN
- * values." In practice it seems that most implementations choose
- * the first operand if both operands are qNaN. In short this gives
- * the following rules:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always silenced before returning it.
- */
- if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
- /* PowerPC propagation rules:
- * 1. A if it sNaN or qNaN
- * 2. B if it sNaN or qNaN
- * A signaling NaN is always silenced before returning it.
- */
- /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
- * 3.4 FLOATING-POINT INSTRUCTION DETAILS
- * If either operand, but not both operands, of an operation is a
- * nonsignaling NaN, then that NaN is returned as the result. If both
- * operands are nonsignaling NaNs, then the destination operand
- * nonsignaling NaN is returned as the result.
- * If either operand to an operation is a signaling NaN (SNaN), then the
- * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
- * is set in the FPCR ENABLE byte, then the exception is taken and the
- * destination is not modified. If the SNaN exception enable bit is not
- * set, setting the SNaN bit in the operand to a one converts the SNaN to
- * a nonsignaling NaN. The operation then continues as described in the
- * preceding paragraph for nonsignaling NaNs.
- */
- if (is_nan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#else
- /* This implements x87 NaN propagation rules:
- * SNaN + QNaN => return the QNaN
- * two SNaNs => return the one with the larger significand, silenced
- * two QNaNs => return the one with the larger significand
- * SNaN and a non-NaN => return the SNaN, silenced
- * QNaN and a non-NaN => return the QNaN
- *
- * If we get down to comparing significands and they are the same,
- * return the NaN with the positive sign bit (if any).
- */
- if (is_snan(a_cls)) {
- if (is_snan(b_cls)) {
- return aIsLargerSignificand ? 0 : 1;
- }
- return is_qnan(b_cls) ? 1 : 0;
- } else if (is_qnan(a_cls)) {
- if (is_snan(b_cls) || !is_qnan(b_cls)) {
- return 0;
- } else {
- return aIsLargerSignificand ? 0 : 1;
- }
- } else {
- return 1;
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a three-input operation.
-| For the moment we assume that no CPU needs the 'larger significand'
-| information.
-| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
-*----------------------------------------------------------------------------*/
-static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
- bool infzero, float_status *status)
-{
-#if defined(TARGET_ARM)
- /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
- * the default NaN
- */
- if (infzero && is_qnan(c_cls)) {
- float_raise(float_flag_invalid, status);
- return 3;
- }
-
- /* This looks different from the ARM ARM pseudocode, because the ARM ARM
- * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
- */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_MIPS)
- if (snan_bit_is_one(status)) {
- /*
- * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
- * case sets InvalidOp and returns the default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return 3;
- }
- /* Prefer sNaN over qNaN, in the a, b, c order. */
- if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_snan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else if (is_qnan(b_cls)) {
- return 1;
- } else {
- return 2;
- }
- } else {
- /*
- * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
- * case sets InvalidOp and returns the input value 'c'
- */
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return 2;
- }
- /* Prefer sNaN over qNaN, in the c, a, b order. */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
- }
-#elif defined(TARGET_PPC)
- /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
- * to return an input NaN if we have one (ie c) rather than generating
- * a default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return 2;
- }
-
- /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
- * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
- */
- if (is_nan(a_cls)) {
- return 0;
- } else if (is_nan(c_cls)) {
- return 2;
- } else {
- return 1;
- }
-#else
- /* A default implementation: prefer a to b to c.
- * This is unlikely to actually match any real implementation.
- */
- if (is_nan(a_cls)) {
- return 0;
- } else if (is_nan(b_cls)) {
- return 1;
- } else {
- return 2;
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Takes two single-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
-{
- flag aIsLargerSignificand;
- uint32_t av, bv;
- FloatClass a_cls, b_cls;
-
- /* This is not complete, but is good enough for pickNaN. */
- a_cls = (!float32_is_any_nan(a)
- ? float_class_normal
- : float32_is_signaling_nan(a, status)
- ? float_class_snan
- : float_class_qnan);
- b_cls = (!float32_is_any_nan(b)
- ? float_class_normal
- : float32_is_signaling_nan(b, status)
- ? float_class_snan
- : float_class_qnan);
-
- av = float32_val(a);
- bv = float32_val(b);
-
- if (is_snan(a_cls) || is_snan(b_cls)) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- return float32_default_nan(status);
- }
-
- if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
- aIsLargerSignificand = 0;
- } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (av < bv) ? 1 : 0;
- }
-
- if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
- if (is_snan(b_cls)) {
- return float32_silence_nan(b, status);
- }
- return b;
- } else {
- if (is_snan(a_cls)) {
- return float32_silence_nan(a, status);
- }
- return a;
- }
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float64_is_quiet_nan(float64 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return float64_is_any_nan(a_);
-#else
- uint64_t a = float64_val(a_);
- if (snan_bit_is_one(status)) {
- return (((a >> 51) & 0xFFF) == 0xFFE)
- && (a & 0x0007FFFFFFFFFFFFULL);
- } else {
- return ((a << 1) >= 0xFFF0000000000000ULL);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float64_is_signaling_nan(float64 a_, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return 0;
-#else
- uint64_t a = float64_val(a_);
- if (snan_bit_is_one(status)) {
- return ((a << 1) >= 0xFFF0000000000000ULL);
- } else {
- return (((a >> 51) & 0xFFF) == 0xFFE)
- && (a & UINT64_C(0x0007FFFFFFFFFFFF));
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
-{
- commonNaNT z;
-
- if (float64_is_signaling_nan(a, status)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = float64_val(a) >> 63;
- z.low = 0;
- z.high = float64_val(a) << 12;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the double-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
-{
- uint64_t mantissa = a.high >> 12;
-
- if (status->default_nan_mode) {
- return float64_default_nan(status);
- }
-
- if (mantissa) {
- return make_float64(
- (((uint64_t) a.sign) << 63)
- | UINT64_C(0x7FF0000000000000)
- | (a.high >> 12));
- } else {
- return float64_default_nan(status);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Takes two double-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
-{
- flag aIsLargerSignificand;
- uint64_t av, bv;
- FloatClass a_cls, b_cls;
-
- /* This is not complete, but is good enough for pickNaN. */
- a_cls = (!float64_is_any_nan(a)
- ? float_class_normal
- : float64_is_signaling_nan(a, status)
- ? float_class_snan
- : float_class_qnan);
- b_cls = (!float64_is_any_nan(b)
- ? float_class_normal
- : float64_is_signaling_nan(b, status)
- ? float_class_snan
- : float_class_qnan);
-
- av = float64_val(a);
- bv = float64_val(b);
-
- if (is_snan(a_cls) || is_snan(b_cls)) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- return float64_default_nan(status);
- }
-
- if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
- aIsLargerSignificand = 0;
- } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (av < bv) ? 1 : 0;
- }
-
- if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
- if (is_snan(b_cls)) {
- return float64_silence_nan(b, status);
- }
- return b;
- } else {
- if (is_snan(a_cls)) {
- return float64_silence_nan(a, status);
- }
- return a;
- }
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| quiet NaN; otherwise returns 0. This slightly differs from the same
-| function for other types as floatx80 has an explicit bit.
-*----------------------------------------------------------------------------*/
-
-int floatx80_is_quiet_nan(floatx80 a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return floatx80_is_any_nan(a);
-#else
- if (snan_bit_is_one(status)) {
- uint64_t aLow;
-
- aLow = a.low & ~0x4000000000000000ULL;
- return ((a.high & 0x7FFF) == 0x7FFF)
- && (aLow << 1)
- && (a.low == aLow);
- } else {
- return ((a.high & 0x7FFF) == 0x7FFF)
- && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0. This slightly differs from the same
-| function for other types as floatx80 has an explicit bit.
-*----------------------------------------------------------------------------*/
-
-int floatx80_is_signaling_nan(floatx80 a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return 0;
-#else
- if (snan_bit_is_one(status)) {
- return ((a.high & 0x7FFF) == 0x7FFF)
- && ((a.low << 1) >= 0x8000000000000000ULL);
- } else {
- uint64_t aLow;
-
- aLow = a.low & ~UINT64_C(0x4000000000000000);
- return ((a.high & 0x7FFF) == 0x7FFF)
- && (uint64_t)(aLow << 1)
- && (a.low == aLow);
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN from a signalling NaN for the extended double-precision
-| floating point value `a'.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
-{
- /* None of the targets that have snan_bit_is_one use floatx80. */
- assert(!snan_bit_is_one(status));
- a.low |= UINT64_C(0xC000000000000000);
- return a;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
-| invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
-{
- floatx80 dflt;
- commonNaNT z;
-
- if (floatx80_is_signaling_nan(a, status)) {
- float_raise(float_flag_invalid, status);
- }
- if (a.low >> 63) {
- z.sign = a.high >> 15;
- z.low = 0;
- z.high = a.low << 1;
- } else {
- dflt = floatx80_default_nan(status);
- z.sign = dflt.high >> 15;
- z.low = 0;
- z.high = dflt.low << 1;
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the extended
-| double-precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
-{
- floatx80 z;
-
- if (status->default_nan_mode) {
- return floatx80_default_nan(status);
- }
-
- if (a.high >> 1) {
- z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
- z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
- } else {
- z = floatx80_default_nan(status);
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Takes two extended double-precision floating-point values `a' and `b', one
-| of which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
-{
- flag aIsLargerSignificand;
- FloatClass a_cls, b_cls;
-
- /* This is not complete, but is good enough for pickNaN. */
- a_cls = (!floatx80_is_any_nan(a)
- ? float_class_normal
- : floatx80_is_signaling_nan(a, status)
- ? float_class_snan
- : float_class_qnan);
- b_cls = (!floatx80_is_any_nan(b)
- ? float_class_normal
- : floatx80_is_signaling_nan(b, status)
- ? float_class_snan
- : float_class_qnan);
-
- if (is_snan(a_cls) || is_snan(b_cls)) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- return floatx80_default_nan(status);
- }
-
- if (a.low < b.low) {
- aIsLargerSignificand = 0;
- } else if (b.low < a.low) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
- }
-
- if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
- if (is_snan(b_cls)) {
- return floatx80_silence_nan(b, status);
- }
- return b;
- } else {
- if (is_snan(a_cls)) {
- return floatx80_silence_nan(a, status);
- }
- return a;
- }
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float128_is_quiet_nan(float128 a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return float128_is_any_nan(a);
-#else
- if (snan_bit_is_one(status)) {
- return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
- && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
- } else {
- return ((a.high << 1) >= 0xFFFF000000000000ULL)
- && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float128_is_signaling_nan(float128 a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- return 0;
-#else
- if (snan_bit_is_one(status)) {
- return ((a.high << 1) >= 0xFFFF000000000000ULL)
- && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
- } else {
- return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
- && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN from a signalling NaN for the quadruple-precision
-| floating point value `a'.
-*----------------------------------------------------------------------------*/
-
-float128 float128_silence_nan(float128 a, float_status *status)
-{
-#ifdef NO_SIGNALING_NANS
- g_assert_not_reached();
-#else
- if (snan_bit_is_one(status)) {
- return float128_default_nan(status);
- } else {
- a.high |= UINT64_C(0x0000800000000000);
- return a;
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
-{
- commonNaNT z;
-
- if (float128_is_signaling_nan(a, status)) {
- float_raise(float_flag_invalid, status);
- }
- z.sign = a.high >> 63;
- shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the quadruple-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
-{
- float128 z;
-
- if (status->default_nan_mode) {
- return float128_default_nan(status);
- }
-
- shift128Right(a.high, a.low, 16, &z.high, &z.low);
- z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Takes two quadruple-precision floating-point values `a' and `b', one of
-| which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float128 propagateFloat128NaN(float128 a, float128 b,
- float_status *status)
-{
- flag aIsLargerSignificand;
- FloatClass a_cls, b_cls;
-
- /* This is not complete, but is good enough for pickNaN. */
- a_cls = (!float128_is_any_nan(a)
- ? float_class_normal
- : float128_is_signaling_nan(a, status)
- ? float_class_snan
- : float_class_qnan);
- b_cls = (!float128_is_any_nan(b)
- ? float_class_normal
- : float128_is_signaling_nan(b, status)
- ? float_class_snan
- : float_class_qnan);
-
- if (is_snan(a_cls) || is_snan(b_cls)) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- return float128_default_nan(status);
- }
-
- if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
- aIsLargerSignificand = 0;
- } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
- }
-
- if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
- if (is_snan(b_cls)) {
- return float128_silence_nan(b, status);
- }
- return b;
- } else {
- if (is_snan(a_cls)) {
- return float128_silence_nan(a, status);
- }
- return a;
- }
-}