#define D(x)
-#define RW_DATA 0x0
-#define RW_SAVED_DATA 0x58
-#define RW_SAVED_DATA_BUF 0x5c
-#define RW_GROUP 0x60
-#define RW_GROUP_DOWN 0x7c
-#define RW_CMD 0x80
-#define RW_CFG 0x84
-#define RW_STAT 0x88
-#define RW_INTR_MASK 0x8c
-#define RW_ACK_INTR 0x90
-#define R_INTR 0x94
-#define R_MASKED_INTR 0x98
-#define RW_STREAM_CMD 0x9c
-
-#define DMA_REG_MAX 0x100
+#define RW_DATA (0x0 / 4)
+#define RW_SAVED_DATA (0x58 / 4)
+#define RW_SAVED_DATA_BUF (0x5c / 4)
+#define RW_GROUP (0x60 / 4)
+#define RW_GROUP_DOWN (0x7c / 4)
+#define RW_CMD (0x80 / 4)
+#define RW_CFG (0x84 / 4)
+#define RW_STAT (0x88 / 4)
+#define RW_INTR_MASK (0x8c / 4)
+#define RW_ACK_INTR (0x90 / 4)
+#define R_INTR (0x94 / 4)
+#define R_MASKED_INTR (0x98 / 4)
+#define RW_STREAM_CMD (0x9c / 4)
+
+#define DMA_REG_MAX (0x100 / 4)
/* descriptors */
// ------------------------------------------------------------ dma_descr_group
typedef struct dma_descr_group {
- struct dma_descr_group *next;
+ uint32_t next;
unsigned eol : 1;
unsigned tol : 1;
unsigned bol : 1;
// ---------------------------------------------------------- dma_descr_context
typedef struct dma_descr_context {
- struct dma_descr_context *next;
+ uint32_t next;
unsigned eol : 1;
unsigned : 3;
unsigned intr : 1;
unsigned md2;
unsigned md3;
unsigned md4;
- struct dma_descr_data *saved_data;
- char *saved_data_buf;
+ uint32_t saved_data;
+ uint32_t saved_data_buf;
} dma_descr_context;
// ------------------------------------------------------------- dma_descr_data
typedef struct dma_descr_data {
- struct dma_descr_data *next;
- char *buf;
+ uint32_t next;
+ uint32_t buf;
unsigned eol : 1;
unsigned : 2;
unsigned out_eop : 1;
unsigned in_eop : 1;
unsigned : 4;
unsigned md : 16;
- char *after;
+ uint32_t after;
} dma_descr_data;
/* Constants */
struct fs_dma_channel
{
- int regmap;
- qemu_irq *irq;
+ qemu_irq irq;
struct etraxfs_dma_client *client;
-
/* Internal status. */
int stream_cmd_src;
enum dma_ch_state state;
struct fs_dma_ctrl
{
- CPUState *env;
- target_phys_addr_t base;
-
+ int map;
int nr_channels;
struct fs_dma_channel *channels;
QEMUBH *bh;
};
+static void DMA_run(void *opaque);
+static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
+
static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
{
return ctrl->channels[c].regs[reg];
&& ctrl->channels[c].client;
}
-static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
+static inline int fs_channel(target_phys_addr_t addr)
{
/* Every channel has a 0x2000 ctrl register map. */
- return (addr - base) >> 13;
+ return addr >> 13;
}
#ifdef USE_THIS_DEAD_CODE
static void dump_c(int ch, struct dma_descr_context *c)
{
printf("%s ch=%d\n", __func__, ch);
- printf("next=%p\n", c->next);
- printf("saved_data=%p\n", c->saved_data);
- printf("saved_data_buf=%p\n", c->saved_data_buf);
+ printf("next=%x\n", c->next);
+ printf("saved_data=%x\n", c->saved_data);
+ printf("saved_data_buf=%x\n", c->saved_data_buf);
printf("eol=%x\n", (uint32_t) c->eol);
}
static void dump_d(int ch, struct dma_descr_data *d)
{
printf("%s ch=%d\n", __func__, ch);
- printf("next=%p\n", d->next);
- printf("buf=%p\n", d->buf);
- printf("after=%p\n", d->after);
+ printf("next=%x\n", d->next);
+ printf("buf=%x\n", d->buf);
+ printf("after=%x\n", d->after);
printf("intr=%x\n", (uint32_t) d->intr);
printf("out_eop=%x\n", (uint32_t) d->out_eop);
printf("in_eop=%x\n", (uint32_t) d->in_eop);
target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
/* Load and decode. FIXME: handle endianness. */
- D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
+ D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
cpu_physical_memory_read (addr,
(void *) &ctrl->channels[c].current_d,
sizeof ctrl->channels[c].current_d);
target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
/* Encode and store. FIXME: handle endianness. */
- D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
+ D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
D(dump_d(c, &ctrl->channels[c].current_d));
cpu_physical_memory_write (addr,
(void *) &ctrl->channels[c].current_c,
target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
/* Encode and store. FIXME: handle endianness. */
- D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
+ D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
cpu_physical_memory_write (addr,
(void *) &ctrl->channels[c].current_d,
sizeof ctrl->channels[c].current_d);
{
ctrl->channels[c].eol = 0;
ctrl->channels[c].state = RUNNING;
+ if (!ctrl->channels[c].input)
+ channel_out_run(ctrl, c);
} else
printf("WARNING: starting DMA ch %d with no client\n", c);
+
+ qemu_bh_schedule_idle(ctrl->bh);
}
static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
/* If the current descriptor cleared the eol flag and we had already
reached eol state, do the continue. */
if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
- D(printf("continue %d ok %p\n", c,
+ D(printf("continue %d ok %x\n", c,
ctrl->channels[c].current_d.next));
ctrl->channels[c].regs[RW_SAVED_DATA] =
(uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
channel_load_d(ctrl, c);
+ ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
+ (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
+
channel_start(ctrl, c);
}
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
if (cmd & regk_dma_load_c) {
channel_load_c(ctrl, c);
- channel_start(ctrl, c);
}
}
c,
ctrl->channels[c].regs[R_MASKED_INTR]));
- if (ctrl->channels[c].regs[R_MASKED_INTR])
- qemu_irq_raise(ctrl->channels[c].irq[0]);
- else
- qemu_irq_lower(ctrl->channels[c].irq[0]);
+ qemu_set_irq(ctrl->channels[c].irq,
+ !!ctrl->channels[c].regs[R_MASKED_INTR]);
}
-static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
+static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
{
uint32_t len;
uint32_t saved_data_buf;
unsigned char buf[2 * 1024];
- while (ctrl->channels[c].eol != 1) {
- saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
+ if (ctrl->channels[c].eol)
+ return 0;
- D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
+ do {
+ D(printf("ch=%d buf=%x after=%x\n",
c,
(uint32_t)ctrl->channels[c].current_d.buf,
- (uint32_t)ctrl->channels[c].current_d.after,
- saved_data_buf));
+ (uint32_t)ctrl->channels[c].current_d.after));
+ channel_load_d(ctrl, c);
+ saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
len = (uint32_t)(unsigned long)
ctrl->channels[c].current_d.after;
len -= saved_data_buf;
if (ctrl->channels[c].current_d.intr) {
/* TODO: signal eop to the client. */
/* data intr. */
- D(printf("signal intr\n"));
+ D(printf("signal intr %d eol=%d\n",
+ len, ctrl->channels[c].current_d.eol));
ctrl->channels[c].regs[R_INTR] |= (1 << 2);
channel_update_irq(ctrl, c);
}
+ channel_store_d(ctrl, c);
if (ctrl->channels[c].current_d.eol) {
D(printf("channel %d EOL\n", c));
ctrl->channels[c].eol = 1;
ctrl->channels[c].current_d.buf;
}
- channel_store_d(ctrl, c);
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
saved_data_buf;
D(dump_d(c, &ctrl->channels[c].current_d));
}
ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
- }
+ } while (!ctrl->channels[c].eol);
+ return 1;
}
static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
if (ctrl->channels[c].eol == 1)
return 0;
+ channel_load_d(ctrl, c);
saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
len -= saved_data_buf;
D(printf("in dscr end len=%d\n",
ctrl->channels[c].current_d.after
- ctrl->channels[c].current_d.buf));
- ctrl->channels[c].current_d.after =
- (void *)(unsigned long) saved_data_buf;
+ ctrl->channels[c].current_d.after = saved_data_buf;
/* Done. Step to next. */
if (ctrl->channels[c].current_d.intr) {
return len;
}
-static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
+static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
{
- if (ctrl->channels[c].client->client.pull)
+ if (ctrl->channels[c].client->client.pull) {
ctrl->channels[c].client->client.pull(
ctrl->channels[c].client->client.opaque);
+ return 1;
+ } else
+ return 0;
}
static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
{
- struct fs_dma_ctrl *ctrl = opaque;
- CPUState *env = ctrl->env;
- cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
- addr);
+ hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
return 0;
}
int c;
uint32_t r = 0;
- /* Make addr relative to this instances base. */
- c = fs_channel(ctrl->base, addr);
- addr &= 0x1fff;
+ /* Make addr relative to this channel and bounded to nr regs. */
+ c = fs_channel(addr);
+ addr &= 0xff;
+ addr >>= 2;
switch (addr)
{
case RW_STAT:
default:
r = ctrl->channels[c].regs[addr];
- D(printf ("%s c=%d addr=%x\n",
+ D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
__func__, c, addr));
break;
}
static void
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
{
- struct fs_dma_ctrl *ctrl = opaque;
- CPUState *env = ctrl->env;
- cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
- addr);
+ hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
}
static void
struct fs_dma_ctrl *ctrl = opaque;
int c;
- /* Make addr relative to this instances base. */
- c = fs_channel(ctrl->base, addr);
- addr &= 0x1fff;
+ /* Make addr relative to this channel and bounded to nr regs. */
+ c = fs_channel(addr);
+ addr &= 0xff;
+ addr >>= 2;
switch (addr)
{
case RW_DATA:
break;
default:
- D(printf ("%s c=%d %x %x\n", __func__, c, addr));
+ D(printf ("%s c=%d " TARGET_FMT_plx "\n",
+ __func__, c, addr));
break;
}
}
-static CPUReadMemoryFunc *dma_read[] = {
+static CPUReadMemoryFunc * const dma_read[] = {
&dma_rinvalid,
&dma_rinvalid,
&dma_readl,
};
-static CPUWriteMemoryFunc *dma_write[] = {
+static CPUWriteMemoryFunc * const dma_write[] = {
&dma_winvalid,
&dma_winvalid,
&dma_writel,
};
-void etraxfs_dmac_run(void *opaque)
+static int etraxfs_dmac_run(void *opaque)
{
struct fs_dma_ctrl *ctrl = opaque;
int i;
{
if (ctrl->channels[i].state == RUNNING)
{
- p++;
- if (ctrl->channels[i].input)
- channel_in_run(ctrl, i);
- else
- channel_out_run(ctrl, i);
+ if (ctrl->channels[i].input) {
+ p += channel_in_run(ctrl, i);
+ } else {
+ p += channel_out_run(ctrl, i);
+ }
}
}
+ return p;
}
int etraxfs_dmac_input(struct etraxfs_dma_client *client,
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
{
struct fs_dma_ctrl *ctrl = opaque;
- ctrl->channels[c].irq = line;
+ ctrl->channels[c].irq = *line;
ctrl->channels[c].input = input;
}
static void DMA_run(void *opaque)
{
struct fs_dma_ctrl *etraxfs_dmac = opaque;
+ int p = 1;
+
if (vm_running)
- etraxfs_dmac_run(etraxfs_dmac);
- qemu_bh_schedule_idle(etraxfs_dmac->bh);
+ p = etraxfs_dmac_run(etraxfs_dmac);
+
+ if (p)
+ qemu_bh_schedule_idle(etraxfs_dmac->bh);
}
-void *etraxfs_dmac_init(CPUState *env,
- target_phys_addr_t base, int nr_channels)
+void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
{
struct fs_dma_ctrl *ctrl = NULL;
- int i;
ctrl = qemu_mallocz(sizeof *ctrl);
- if (!ctrl)
- return NULL;
ctrl->bh = qemu_bh_new(DMA_run, ctrl);
- qemu_bh_schedule_idle(ctrl->bh);
- ctrl->base = base;
- ctrl->env = env;
ctrl->nr_channels = nr_channels;
ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
- if (!ctrl->channels)
- goto err;
-
- for (i = 0; i < nr_channels; i++)
- {
- ctrl->channels[i].regmap = cpu_register_io_memory(0,
- dma_read,
- dma_write,
- ctrl);
- cpu_register_physical_memory (base + i * 0x2000,
- sizeof ctrl->channels[i].regs,
- ctrl->channels[i].regmap);
- }
+ ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl, DEVICE_NATIVE_ENDIAN);
+ cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
return ctrl;
- err:
- qemu_free(ctrl->channels);
- qemu_free(ctrl);
- return NULL;
}