]> Git Repo - qemu.git/blob - memory.c
cpus: Change qemu_kvm_wait_io_event() argument to CPUState
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "sysemu/kvm.h"
21 #include <assert.h>
22
23 #include "exec/memory-internal.h"
24
25 //#define DEBUG_UNASSIGNED
26
27 static unsigned memory_region_transaction_depth;
28 static bool memory_region_update_pending;
29 static bool global_dirty_log = false;
30
31 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
32     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
33
34 static QTAILQ_HEAD(, AddressSpace) address_spaces
35     = QTAILQ_HEAD_INITIALIZER(address_spaces);
36
37 typedef struct AddrRange AddrRange;
38
39 /*
40  * Note using signed integers limits us to physical addresses at most
41  * 63 bits wide.  They are needed for negative offsetting in aliases
42  * (large MemoryRegion::alias_offset).
43  */
44 struct AddrRange {
45     Int128 start;
46     Int128 size;
47 };
48
49 static AddrRange addrrange_make(Int128 start, Int128 size)
50 {
51     return (AddrRange) { start, size };
52 }
53
54 static bool addrrange_equal(AddrRange r1, AddrRange r2)
55 {
56     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
57 }
58
59 static Int128 addrrange_end(AddrRange r)
60 {
61     return int128_add(r.start, r.size);
62 }
63
64 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
65 {
66     int128_addto(&range.start, delta);
67     return range;
68 }
69
70 static bool addrrange_contains(AddrRange range, Int128 addr)
71 {
72     return int128_ge(addr, range.start)
73         && int128_lt(addr, addrrange_end(range));
74 }
75
76 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
77 {
78     return addrrange_contains(r1, r2.start)
79         || addrrange_contains(r2, r1.start);
80 }
81
82 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
83 {
84     Int128 start = int128_max(r1.start, r2.start);
85     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
86     return addrrange_make(start, int128_sub(end, start));
87 }
88
89 enum ListenerDirection { Forward, Reverse };
90
91 static bool memory_listener_match(MemoryListener *listener,
92                                   MemoryRegionSection *section)
93 {
94     return !listener->address_space_filter
95         || listener->address_space_filter == section->address_space;
96 }
97
98 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
99     do {                                                                \
100         MemoryListener *_listener;                                      \
101                                                                         \
102         switch (_direction) {                                           \
103         case Forward:                                                   \
104             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
105                 if (_listener->_callback) {                             \
106                     _listener->_callback(_listener, ##_args);           \
107                 }                                                       \
108             }                                                           \
109             break;                                                      \
110         case Reverse:                                                   \
111             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
112                                    memory_listeners, link) {            \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         default:                                                        \
119             abort();                                                    \
120         }                                                               \
121     } while (0)
122
123 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
124     do {                                                                \
125         MemoryListener *_listener;                                      \
126                                                                         \
127         switch (_direction) {                                           \
128         case Forward:                                                   \
129             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
130                 if (_listener->_callback                                \
131                     && memory_listener_match(_listener, _section)) {    \
132                     _listener->_callback(_listener, _section, ##_args); \
133                 }                                                       \
134             }                                                           \
135             break;                                                      \
136         case Reverse:                                                   \
137             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
138                                    memory_listeners, link) {            \
139                 if (_listener->_callback                                \
140                     && memory_listener_match(_listener, _section)) {    \
141                     _listener->_callback(_listener, _section, ##_args); \
142                 }                                                       \
143             }                                                           \
144             break;                                                      \
145         default:                                                        \
146             abort();                                                    \
147         }                                                               \
148     } while (0)
149
150 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
151     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
152         .mr = (fr)->mr,                                                 \
153         .address_space = (as),                                          \
154         .offset_within_region = (fr)->offset_in_region,                 \
155         .size = (fr)->addr.size,                                        \
156         .offset_within_address_space = int128_get64((fr)->addr.start),  \
157         .readonly = (fr)->readonly,                                     \
158               }))
159
160 struct CoalescedMemoryRange {
161     AddrRange addr;
162     QTAILQ_ENTRY(CoalescedMemoryRange) link;
163 };
164
165 struct MemoryRegionIoeventfd {
166     AddrRange addr;
167     bool match_data;
168     uint64_t data;
169     EventNotifier *e;
170 };
171
172 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
173                                            MemoryRegionIoeventfd b)
174 {
175     if (int128_lt(a.addr.start, b.addr.start)) {
176         return true;
177     } else if (int128_gt(a.addr.start, b.addr.start)) {
178         return false;
179     } else if (int128_lt(a.addr.size, b.addr.size)) {
180         return true;
181     } else if (int128_gt(a.addr.size, b.addr.size)) {
182         return false;
183     } else if (a.match_data < b.match_data) {
184         return true;
185     } else  if (a.match_data > b.match_data) {
186         return false;
187     } else if (a.match_data) {
188         if (a.data < b.data) {
189             return true;
190         } else if (a.data > b.data) {
191             return false;
192         }
193     }
194     if (a.e < b.e) {
195         return true;
196     } else if (a.e > b.e) {
197         return false;
198     }
199     return false;
200 }
201
202 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
203                                           MemoryRegionIoeventfd b)
204 {
205     return !memory_region_ioeventfd_before(a, b)
206         && !memory_region_ioeventfd_before(b, a);
207 }
208
209 typedef struct FlatRange FlatRange;
210 typedef struct FlatView FlatView;
211
212 /* Range of memory in the global map.  Addresses are absolute. */
213 struct FlatRange {
214     MemoryRegion *mr;
215     hwaddr offset_in_region;
216     AddrRange addr;
217     uint8_t dirty_log_mask;
218     bool romd_mode;
219     bool readonly;
220 };
221
222 /* Flattened global view of current active memory hierarchy.  Kept in sorted
223  * order.
224  */
225 struct FlatView {
226     FlatRange *ranges;
227     unsigned nr;
228     unsigned nr_allocated;
229 };
230
231 typedef struct AddressSpaceOps AddressSpaceOps;
232
233 #define FOR_EACH_FLAT_RANGE(var, view)          \
234     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
235
236 static bool flatrange_equal(FlatRange *a, FlatRange *b)
237 {
238     return a->mr == b->mr
239         && addrrange_equal(a->addr, b->addr)
240         && a->offset_in_region == b->offset_in_region
241         && a->romd_mode == b->romd_mode
242         && a->readonly == b->readonly;
243 }
244
245 static void flatview_init(FlatView *view)
246 {
247     view->ranges = NULL;
248     view->nr = 0;
249     view->nr_allocated = 0;
250 }
251
252 /* Insert a range into a given position.  Caller is responsible for maintaining
253  * sorting order.
254  */
255 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
256 {
257     if (view->nr == view->nr_allocated) {
258         view->nr_allocated = MAX(2 * view->nr, 10);
259         view->ranges = g_realloc(view->ranges,
260                                     view->nr_allocated * sizeof(*view->ranges));
261     }
262     memmove(view->ranges + pos + 1, view->ranges + pos,
263             (view->nr - pos) * sizeof(FlatRange));
264     view->ranges[pos] = *range;
265     ++view->nr;
266 }
267
268 static void flatview_destroy(FlatView *view)
269 {
270     g_free(view->ranges);
271 }
272
273 static bool can_merge(FlatRange *r1, FlatRange *r2)
274 {
275     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
276         && r1->mr == r2->mr
277         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
278                                 r1->addr.size),
279                      int128_make64(r2->offset_in_region))
280         && r1->dirty_log_mask == r2->dirty_log_mask
281         && r1->romd_mode == r2->romd_mode
282         && r1->readonly == r2->readonly;
283 }
284
285 /* Attempt to simplify a view by merging adjacent ranges */
286 static void flatview_simplify(FlatView *view)
287 {
288     unsigned i, j;
289
290     i = 0;
291     while (i < view->nr) {
292         j = i + 1;
293         while (j < view->nr
294                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
295             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
296             ++j;
297         }
298         ++i;
299         memmove(&view->ranges[i], &view->ranges[j],
300                 (view->nr - j) * sizeof(view->ranges[j]));
301         view->nr -= j - i;
302     }
303 }
304
305 static void memory_region_oldmmio_read_accessor(void *opaque,
306                                                 hwaddr addr,
307                                                 uint64_t *value,
308                                                 unsigned size,
309                                                 unsigned shift,
310                                                 uint64_t mask)
311 {
312     MemoryRegion *mr = opaque;
313     uint64_t tmp;
314
315     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
316     *value |= (tmp & mask) << shift;
317 }
318
319 static void memory_region_read_accessor(void *opaque,
320                                         hwaddr addr,
321                                         uint64_t *value,
322                                         unsigned size,
323                                         unsigned shift,
324                                         uint64_t mask)
325 {
326     MemoryRegion *mr = opaque;
327     uint64_t tmp;
328
329     if (mr->flush_coalesced_mmio) {
330         qemu_flush_coalesced_mmio_buffer();
331     }
332     tmp = mr->ops->read(mr->opaque, addr, size);
333     *value |= (tmp & mask) << shift;
334 }
335
336 static void memory_region_oldmmio_write_accessor(void *opaque,
337                                                  hwaddr addr,
338                                                  uint64_t *value,
339                                                  unsigned size,
340                                                  unsigned shift,
341                                                  uint64_t mask)
342 {
343     MemoryRegion *mr = opaque;
344     uint64_t tmp;
345
346     tmp = (*value >> shift) & mask;
347     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
348 }
349
350 static void memory_region_write_accessor(void *opaque,
351                                          hwaddr addr,
352                                          uint64_t *value,
353                                          unsigned size,
354                                          unsigned shift,
355                                          uint64_t mask)
356 {
357     MemoryRegion *mr = opaque;
358     uint64_t tmp;
359
360     if (mr->flush_coalesced_mmio) {
361         qemu_flush_coalesced_mmio_buffer();
362     }
363     tmp = (*value >> shift) & mask;
364     mr->ops->write(mr->opaque, addr, tmp, size);
365 }
366
367 static void access_with_adjusted_size(hwaddr addr,
368                                       uint64_t *value,
369                                       unsigned size,
370                                       unsigned access_size_min,
371                                       unsigned access_size_max,
372                                       void (*access)(void *opaque,
373                                                      hwaddr addr,
374                                                      uint64_t *value,
375                                                      unsigned size,
376                                                      unsigned shift,
377                                                      uint64_t mask),
378                                       void *opaque)
379 {
380     uint64_t access_mask;
381     unsigned access_size;
382     unsigned i;
383
384     if (!access_size_min) {
385         access_size_min = 1;
386     }
387     if (!access_size_max) {
388         access_size_max = 4;
389     }
390
391     /* FIXME: support unaligned access? */
392     access_size = MAX(MIN(size, access_size_max), access_size_min);
393     access_mask = -1ULL >> (64 - access_size * 8);
394     for (i = 0; i < size; i += access_size) {
395 #ifdef TARGET_WORDS_BIGENDIAN
396         access(opaque, addr + i, value, access_size,
397                (size - access_size - i) * 8, access_mask);
398 #else
399         access(opaque, addr + i, value, access_size, i * 8, access_mask);
400 #endif
401     }
402 }
403
404 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
405                                              unsigned width, bool write)
406 {
407     const MemoryRegionPortio *mrp;
408
409     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
410         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
411             && width == mrp->size
412             && (write ? (bool)mrp->write : (bool)mrp->read)) {
413             return mrp;
414         }
415     }
416     return NULL;
417 }
418
419 static void memory_region_iorange_read(IORange *iorange,
420                                        uint64_t offset,
421                                        unsigned width,
422                                        uint64_t *data)
423 {
424     MemoryRegionIORange *mrio
425         = container_of(iorange, MemoryRegionIORange, iorange);
426     MemoryRegion *mr = mrio->mr;
427
428     offset += mrio->offset;
429     if (mr->ops->old_portio) {
430         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
431                                                     width, false);
432
433         *data = ((uint64_t)1 << (width * 8)) - 1;
434         if (mrp) {
435             *data = mrp->read(mr->opaque, offset);
436         } else if (width == 2) {
437             mrp = find_portio(mr, offset - mrio->offset, 1, false);
438             assert(mrp);
439             *data = mrp->read(mr->opaque, offset) |
440                     (mrp->read(mr->opaque, offset + 1) << 8);
441         }
442         return;
443     }
444     *data = 0;
445     access_with_adjusted_size(offset, data, width,
446                               mr->ops->impl.min_access_size,
447                               mr->ops->impl.max_access_size,
448                               memory_region_read_accessor, mr);
449 }
450
451 static void memory_region_iorange_write(IORange *iorange,
452                                         uint64_t offset,
453                                         unsigned width,
454                                         uint64_t data)
455 {
456     MemoryRegionIORange *mrio
457         = container_of(iorange, MemoryRegionIORange, iorange);
458     MemoryRegion *mr = mrio->mr;
459
460     offset += mrio->offset;
461     if (mr->ops->old_portio) {
462         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
463                                                     width, true);
464
465         if (mrp) {
466             mrp->write(mr->opaque, offset, data);
467         } else if (width == 2) {
468             mrp = find_portio(mr, offset - mrio->offset, 1, true);
469             assert(mrp);
470             mrp->write(mr->opaque, offset, data & 0xff);
471             mrp->write(mr->opaque, offset + 1, data >> 8);
472         }
473         return;
474     }
475     access_with_adjusted_size(offset, &data, width,
476                               mr->ops->impl.min_access_size,
477                               mr->ops->impl.max_access_size,
478                               memory_region_write_accessor, mr);
479 }
480
481 static void memory_region_iorange_destructor(IORange *iorange)
482 {
483     g_free(container_of(iorange, MemoryRegionIORange, iorange));
484 }
485
486 const IORangeOps memory_region_iorange_ops = {
487     .read = memory_region_iorange_read,
488     .write = memory_region_iorange_write,
489     .destructor = memory_region_iorange_destructor,
490 };
491
492 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
493 {
494     AddressSpace *as;
495
496     while (mr->parent) {
497         mr = mr->parent;
498     }
499     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
500         if (mr == as->root) {
501             return as;
502         }
503     }
504     abort();
505 }
506
507 /* Render a memory region into the global view.  Ranges in @view obscure
508  * ranges in @mr.
509  */
510 static void render_memory_region(FlatView *view,
511                                  MemoryRegion *mr,
512                                  Int128 base,
513                                  AddrRange clip,
514                                  bool readonly)
515 {
516     MemoryRegion *subregion;
517     unsigned i;
518     hwaddr offset_in_region;
519     Int128 remain;
520     Int128 now;
521     FlatRange fr;
522     AddrRange tmp;
523
524     if (!mr->enabled) {
525         return;
526     }
527
528     int128_addto(&base, int128_make64(mr->addr));
529     readonly |= mr->readonly;
530
531     tmp = addrrange_make(base, mr->size);
532
533     if (!addrrange_intersects(tmp, clip)) {
534         return;
535     }
536
537     clip = addrrange_intersection(tmp, clip);
538
539     if (mr->alias) {
540         int128_subfrom(&base, int128_make64(mr->alias->addr));
541         int128_subfrom(&base, int128_make64(mr->alias_offset));
542         render_memory_region(view, mr->alias, base, clip, readonly);
543         return;
544     }
545
546     /* Render subregions in priority order. */
547     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
548         render_memory_region(view, subregion, base, clip, readonly);
549     }
550
551     if (!mr->terminates) {
552         return;
553     }
554
555     offset_in_region = int128_get64(int128_sub(clip.start, base));
556     base = clip.start;
557     remain = clip.size;
558
559     fr.mr = mr;
560     fr.dirty_log_mask = mr->dirty_log_mask;
561     fr.romd_mode = mr->romd_mode;
562     fr.readonly = readonly;
563
564     /* Render the region itself into any gaps left by the current view. */
565     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
566         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
567             continue;
568         }
569         if (int128_lt(base, view->ranges[i].addr.start)) {
570             now = int128_min(remain,
571                              int128_sub(view->ranges[i].addr.start, base));
572             fr.offset_in_region = offset_in_region;
573             fr.addr = addrrange_make(base, now);
574             flatview_insert(view, i, &fr);
575             ++i;
576             int128_addto(&base, now);
577             offset_in_region += int128_get64(now);
578             int128_subfrom(&remain, now);
579         }
580         now = int128_sub(int128_min(int128_add(base, remain),
581                                     addrrange_end(view->ranges[i].addr)),
582                          base);
583         int128_addto(&base, now);
584         offset_in_region += int128_get64(now);
585         int128_subfrom(&remain, now);
586     }
587     if (int128_nz(remain)) {
588         fr.offset_in_region = offset_in_region;
589         fr.addr = addrrange_make(base, remain);
590         flatview_insert(view, i, &fr);
591     }
592 }
593
594 /* Render a memory topology into a list of disjoint absolute ranges. */
595 static FlatView generate_memory_topology(MemoryRegion *mr)
596 {
597     FlatView view;
598
599     flatview_init(&view);
600
601     if (mr) {
602         render_memory_region(&view, mr, int128_zero(),
603                              addrrange_make(int128_zero(), int128_2_64()), false);
604     }
605     flatview_simplify(&view);
606
607     return view;
608 }
609
610 static void address_space_add_del_ioeventfds(AddressSpace *as,
611                                              MemoryRegionIoeventfd *fds_new,
612                                              unsigned fds_new_nb,
613                                              MemoryRegionIoeventfd *fds_old,
614                                              unsigned fds_old_nb)
615 {
616     unsigned iold, inew;
617     MemoryRegionIoeventfd *fd;
618     MemoryRegionSection section;
619
620     /* Generate a symmetric difference of the old and new fd sets, adding
621      * and deleting as necessary.
622      */
623
624     iold = inew = 0;
625     while (iold < fds_old_nb || inew < fds_new_nb) {
626         if (iold < fds_old_nb
627             && (inew == fds_new_nb
628                 || memory_region_ioeventfd_before(fds_old[iold],
629                                                   fds_new[inew]))) {
630             fd = &fds_old[iold];
631             section = (MemoryRegionSection) {
632                 .address_space = as,
633                 .offset_within_address_space = int128_get64(fd->addr.start),
634                 .size = fd->addr.size,
635             };
636             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
637                                  fd->match_data, fd->data, fd->e);
638             ++iold;
639         } else if (inew < fds_new_nb
640                    && (iold == fds_old_nb
641                        || memory_region_ioeventfd_before(fds_new[inew],
642                                                          fds_old[iold]))) {
643             fd = &fds_new[inew];
644             section = (MemoryRegionSection) {
645                 .address_space = as,
646                 .offset_within_address_space = int128_get64(fd->addr.start),
647                 .size = fd->addr.size,
648             };
649             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
650                                  fd->match_data, fd->data, fd->e);
651             ++inew;
652         } else {
653             ++iold;
654             ++inew;
655         }
656     }
657 }
658
659 static void address_space_update_ioeventfds(AddressSpace *as)
660 {
661     FlatRange *fr;
662     unsigned ioeventfd_nb = 0;
663     MemoryRegionIoeventfd *ioeventfds = NULL;
664     AddrRange tmp;
665     unsigned i;
666
667     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
668         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
669             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
670                                   int128_sub(fr->addr.start,
671                                              int128_make64(fr->offset_in_region)));
672             if (addrrange_intersects(fr->addr, tmp)) {
673                 ++ioeventfd_nb;
674                 ioeventfds = g_realloc(ioeventfds,
675                                           ioeventfd_nb * sizeof(*ioeventfds));
676                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
677                 ioeventfds[ioeventfd_nb-1].addr = tmp;
678             }
679         }
680     }
681
682     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
683                                      as->ioeventfds, as->ioeventfd_nb);
684
685     g_free(as->ioeventfds);
686     as->ioeventfds = ioeventfds;
687     as->ioeventfd_nb = ioeventfd_nb;
688 }
689
690 static void address_space_update_topology_pass(AddressSpace *as,
691                                                FlatView old_view,
692                                                FlatView new_view,
693                                                bool adding)
694 {
695     unsigned iold, inew;
696     FlatRange *frold, *frnew;
697
698     /* Generate a symmetric difference of the old and new memory maps.
699      * Kill ranges in the old map, and instantiate ranges in the new map.
700      */
701     iold = inew = 0;
702     while (iold < old_view.nr || inew < new_view.nr) {
703         if (iold < old_view.nr) {
704             frold = &old_view.ranges[iold];
705         } else {
706             frold = NULL;
707         }
708         if (inew < new_view.nr) {
709             frnew = &new_view.ranges[inew];
710         } else {
711             frnew = NULL;
712         }
713
714         if (frold
715             && (!frnew
716                 || int128_lt(frold->addr.start, frnew->addr.start)
717                 || (int128_eq(frold->addr.start, frnew->addr.start)
718                     && !flatrange_equal(frold, frnew)))) {
719             /* In old but not in new, or in both but attributes changed. */
720
721             if (!adding) {
722                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
723             }
724
725             ++iold;
726         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
727             /* In both and unchanged (except logging may have changed) */
728
729             if (adding) {
730                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
731                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
732                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
733                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
734                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
735                 }
736             }
737
738             ++iold;
739             ++inew;
740         } else {
741             /* In new */
742
743             if (adding) {
744                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
745             }
746
747             ++inew;
748         }
749     }
750 }
751
752
753 static void address_space_update_topology(AddressSpace *as)
754 {
755     FlatView old_view = *as->current_map;
756     FlatView new_view = generate_memory_topology(as->root);
757
758     address_space_update_topology_pass(as, old_view, new_view, false);
759     address_space_update_topology_pass(as, old_view, new_view, true);
760
761     *as->current_map = new_view;
762     flatview_destroy(&old_view);
763     address_space_update_ioeventfds(as);
764 }
765
766 void memory_region_transaction_begin(void)
767 {
768     qemu_flush_coalesced_mmio_buffer();
769     ++memory_region_transaction_depth;
770 }
771
772 void memory_region_transaction_commit(void)
773 {
774     AddressSpace *as;
775
776     assert(memory_region_transaction_depth);
777     --memory_region_transaction_depth;
778     if (!memory_region_transaction_depth && memory_region_update_pending) {
779         memory_region_update_pending = false;
780         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
781
782         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
783             address_space_update_topology(as);
784         }
785
786         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
787     }
788 }
789
790 static void memory_region_destructor_none(MemoryRegion *mr)
791 {
792 }
793
794 static void memory_region_destructor_ram(MemoryRegion *mr)
795 {
796     qemu_ram_free(mr->ram_addr);
797 }
798
799 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
800 {
801     qemu_ram_free_from_ptr(mr->ram_addr);
802 }
803
804 static void memory_region_destructor_rom_device(MemoryRegion *mr)
805 {
806     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
807 }
808
809 static bool memory_region_wrong_endianness(MemoryRegion *mr)
810 {
811 #ifdef TARGET_WORDS_BIGENDIAN
812     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
813 #else
814     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
815 #endif
816 }
817
818 void memory_region_init(MemoryRegion *mr,
819                         const char *name,
820                         uint64_t size)
821 {
822     mr->ops = &unassigned_mem_ops;
823     mr->opaque = NULL;
824     mr->iommu_ops = NULL;
825     mr->parent = NULL;
826     mr->size = int128_make64(size);
827     if (size == UINT64_MAX) {
828         mr->size = int128_2_64();
829     }
830     mr->addr = 0;
831     mr->subpage = false;
832     mr->enabled = true;
833     mr->terminates = false;
834     mr->ram = false;
835     mr->romd_mode = true;
836     mr->readonly = false;
837     mr->rom_device = false;
838     mr->destructor = memory_region_destructor_none;
839     mr->priority = 0;
840     mr->may_overlap = false;
841     mr->alias = NULL;
842     QTAILQ_INIT(&mr->subregions);
843     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
844     QTAILQ_INIT(&mr->coalesced);
845     mr->name = g_strdup(name);
846     mr->dirty_log_mask = 0;
847     mr->ioeventfd_nb = 0;
848     mr->ioeventfds = NULL;
849     mr->flush_coalesced_mmio = false;
850 }
851
852 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
853                                     unsigned size)
854 {
855 #ifdef DEBUG_UNASSIGNED
856     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
857 #endif
858 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
859     cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
860 #endif
861     return 0;
862 }
863
864 static void unassigned_mem_write(void *opaque, hwaddr addr,
865                                  uint64_t val, unsigned size)
866 {
867 #ifdef DEBUG_UNASSIGNED
868     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
869 #endif
870 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
871     cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
872 #endif
873 }
874
875 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
876                                    unsigned size, bool is_write)
877 {
878     return false;
879 }
880
881 const MemoryRegionOps unassigned_mem_ops = {
882     .valid.accepts = unassigned_mem_accepts,
883     .endianness = DEVICE_NATIVE_ENDIAN,
884 };
885
886 bool memory_region_access_valid(MemoryRegion *mr,
887                                 hwaddr addr,
888                                 unsigned size,
889                                 bool is_write)
890 {
891     int access_size_min, access_size_max;
892     int access_size, i;
893
894     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
895         return false;
896     }
897
898     if (!mr->ops->valid.accepts) {
899         return true;
900     }
901
902     access_size_min = mr->ops->valid.min_access_size;
903     if (!mr->ops->valid.min_access_size) {
904         access_size_min = 1;
905     }
906
907     access_size_max = mr->ops->valid.max_access_size;
908     if (!mr->ops->valid.max_access_size) {
909         access_size_max = 4;
910     }
911
912     access_size = MAX(MIN(size, access_size_max), access_size_min);
913     for (i = 0; i < size; i += access_size) {
914         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
915                                     is_write)) {
916             return false;
917         }
918     }
919
920     return true;
921 }
922
923 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
924                                              hwaddr addr,
925                                              unsigned size)
926 {
927     uint64_t data = 0;
928
929     if (mr->ops->read) {
930         access_with_adjusted_size(addr, &data, size,
931                                   mr->ops->impl.min_access_size,
932                                   mr->ops->impl.max_access_size,
933                                   memory_region_read_accessor, mr);
934     } else {
935         access_with_adjusted_size(addr, &data, size, 1, 4,
936                                   memory_region_oldmmio_read_accessor, mr);
937     }
938
939     return data;
940 }
941
942 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
943 {
944     if (memory_region_wrong_endianness(mr)) {
945         switch (size) {
946         case 1:
947             break;
948         case 2:
949             *data = bswap16(*data);
950             break;
951         case 4:
952             *data = bswap32(*data);
953             break;
954         case 8:
955             *data = bswap64(*data);
956             break;
957         default:
958             abort();
959         }
960     }
961 }
962
963 static bool memory_region_dispatch_read(MemoryRegion *mr,
964                                         hwaddr addr,
965                                         uint64_t *pval,
966                                         unsigned size)
967 {
968     if (!memory_region_access_valid(mr, addr, size, false)) {
969         *pval = unassigned_mem_read(mr, addr, size);
970         return true;
971     }
972
973     *pval = memory_region_dispatch_read1(mr, addr, size);
974     adjust_endianness(mr, pval, size);
975     return false;
976 }
977
978 static bool memory_region_dispatch_write(MemoryRegion *mr,
979                                          hwaddr addr,
980                                          uint64_t data,
981                                          unsigned size)
982 {
983     if (!memory_region_access_valid(mr, addr, size, true)) {
984         unassigned_mem_write(mr, addr, data, size);
985         return true;
986     }
987
988     adjust_endianness(mr, &data, size);
989
990     if (mr->ops->write) {
991         access_with_adjusted_size(addr, &data, size,
992                                   mr->ops->impl.min_access_size,
993                                   mr->ops->impl.max_access_size,
994                                   memory_region_write_accessor, mr);
995     } else {
996         access_with_adjusted_size(addr, &data, size, 1, 4,
997                                   memory_region_oldmmio_write_accessor, mr);
998     }
999     return false;
1000 }
1001
1002 void memory_region_init_io(MemoryRegion *mr,
1003                            const MemoryRegionOps *ops,
1004                            void *opaque,
1005                            const char *name,
1006                            uint64_t size)
1007 {
1008     memory_region_init(mr, name, size);
1009     mr->ops = ops;
1010     mr->opaque = opaque;
1011     mr->terminates = true;
1012     mr->ram_addr = ~(ram_addr_t)0;
1013 }
1014
1015 void memory_region_init_ram(MemoryRegion *mr,
1016                             const char *name,
1017                             uint64_t size)
1018 {
1019     memory_region_init(mr, name, size);
1020     mr->ram = true;
1021     mr->terminates = true;
1022     mr->destructor = memory_region_destructor_ram;
1023     mr->ram_addr = qemu_ram_alloc(size, mr);
1024 }
1025
1026 void memory_region_init_ram_ptr(MemoryRegion *mr,
1027                                 const char *name,
1028                                 uint64_t size,
1029                                 void *ptr)
1030 {
1031     memory_region_init(mr, name, size);
1032     mr->ram = true;
1033     mr->terminates = true;
1034     mr->destructor = memory_region_destructor_ram_from_ptr;
1035     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1036 }
1037
1038 void memory_region_init_alias(MemoryRegion *mr,
1039                               const char *name,
1040                               MemoryRegion *orig,
1041                               hwaddr offset,
1042                               uint64_t size)
1043 {
1044     memory_region_init(mr, name, size);
1045     mr->alias = orig;
1046     mr->alias_offset = offset;
1047 }
1048
1049 void memory_region_init_rom_device(MemoryRegion *mr,
1050                                    const MemoryRegionOps *ops,
1051                                    void *opaque,
1052                                    const char *name,
1053                                    uint64_t size)
1054 {
1055     memory_region_init(mr, name, size);
1056     mr->ops = ops;
1057     mr->opaque = opaque;
1058     mr->terminates = true;
1059     mr->rom_device = true;
1060     mr->destructor = memory_region_destructor_rom_device;
1061     mr->ram_addr = qemu_ram_alloc(size, mr);
1062 }
1063
1064 void memory_region_init_iommu(MemoryRegion *mr,
1065                               const MemoryRegionIOMMUOps *ops,
1066                               const char *name,
1067                               uint64_t size)
1068 {
1069     memory_region_init(mr, name, size);
1070     mr->iommu_ops = ops,
1071     mr->terminates = true;  /* then re-forwards */
1072     notifier_list_init(&mr->iommu_notify);
1073 }
1074
1075 void memory_region_init_reservation(MemoryRegion *mr,
1076                                     const char *name,
1077                                     uint64_t size)
1078 {
1079     memory_region_init_io(mr, &unassigned_mem_ops, mr, name, size);
1080 }
1081
1082 void memory_region_destroy(MemoryRegion *mr)
1083 {
1084     assert(QTAILQ_EMPTY(&mr->subregions));
1085     assert(memory_region_transaction_depth == 0);
1086     mr->destructor(mr);
1087     memory_region_clear_coalescing(mr);
1088     g_free((char *)mr->name);
1089     g_free(mr->ioeventfds);
1090 }
1091
1092 uint64_t memory_region_size(MemoryRegion *mr)
1093 {
1094     if (int128_eq(mr->size, int128_2_64())) {
1095         return UINT64_MAX;
1096     }
1097     return int128_get64(mr->size);
1098 }
1099
1100 const char *memory_region_name(MemoryRegion *mr)
1101 {
1102     return mr->name;
1103 }
1104
1105 bool memory_region_is_ram(MemoryRegion *mr)
1106 {
1107     return mr->ram;
1108 }
1109
1110 bool memory_region_is_logging(MemoryRegion *mr)
1111 {
1112     return mr->dirty_log_mask;
1113 }
1114
1115 bool memory_region_is_rom(MemoryRegion *mr)
1116 {
1117     return mr->ram && mr->readonly;
1118 }
1119
1120 bool memory_region_is_iommu(MemoryRegion *mr)
1121 {
1122     return mr->iommu_ops;
1123 }
1124
1125 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1126 {
1127     notifier_list_add(&mr->iommu_notify, n);
1128 }
1129
1130 void memory_region_unregister_iommu_notifier(Notifier *n)
1131 {
1132     notifier_remove(n);
1133 }
1134
1135 void memory_region_notify_iommu(MemoryRegion *mr,
1136                                 IOMMUTLBEntry entry)
1137 {
1138     assert(memory_region_is_iommu(mr));
1139     notifier_list_notify(&mr->iommu_notify, &entry);
1140 }
1141
1142 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1143 {
1144     uint8_t mask = 1 << client;
1145
1146     memory_region_transaction_begin();
1147     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1148     memory_region_update_pending |= mr->enabled;
1149     memory_region_transaction_commit();
1150 }
1151
1152 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1153                              hwaddr size, unsigned client)
1154 {
1155     assert(mr->terminates);
1156     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1157                                          1 << client);
1158 }
1159
1160 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1161                              hwaddr size)
1162 {
1163     assert(mr->terminates);
1164     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1165 }
1166
1167 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1168                                         hwaddr size, unsigned client)
1169 {
1170     bool ret;
1171     assert(mr->terminates);
1172     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1173                                         1 << client);
1174     if (ret) {
1175         cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1176                                         mr->ram_addr + addr + size,
1177                                         1 << client);
1178     }
1179     return ret;
1180 }
1181
1182
1183 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1184 {
1185     AddressSpace *as;
1186     FlatRange *fr;
1187
1188     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1189         FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1190             if (fr->mr == mr) {
1191                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1192             }
1193         }
1194     }
1195 }
1196
1197 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1198 {
1199     if (mr->readonly != readonly) {
1200         memory_region_transaction_begin();
1201         mr->readonly = readonly;
1202         memory_region_update_pending |= mr->enabled;
1203         memory_region_transaction_commit();
1204     }
1205 }
1206
1207 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1208 {
1209     if (mr->romd_mode != romd_mode) {
1210         memory_region_transaction_begin();
1211         mr->romd_mode = romd_mode;
1212         memory_region_update_pending |= mr->enabled;
1213         memory_region_transaction_commit();
1214     }
1215 }
1216
1217 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1218                                hwaddr size, unsigned client)
1219 {
1220     assert(mr->terminates);
1221     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1222                                     mr->ram_addr + addr + size,
1223                                     1 << client);
1224 }
1225
1226 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1227 {
1228     if (mr->alias) {
1229         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1230     }
1231
1232     assert(mr->terminates);
1233
1234     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1235 }
1236
1237 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1238 {
1239     FlatRange *fr;
1240     CoalescedMemoryRange *cmr;
1241     AddrRange tmp;
1242     MemoryRegionSection section;
1243
1244     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1245         if (fr->mr == mr) {
1246             section = (MemoryRegionSection) {
1247                 .address_space = as,
1248                 .offset_within_address_space = int128_get64(fr->addr.start),
1249                 .size = fr->addr.size,
1250             };
1251
1252             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1253                                  int128_get64(fr->addr.start),
1254                                  int128_get64(fr->addr.size));
1255             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1256                 tmp = addrrange_shift(cmr->addr,
1257                                       int128_sub(fr->addr.start,
1258                                                  int128_make64(fr->offset_in_region)));
1259                 if (!addrrange_intersects(tmp, fr->addr)) {
1260                     continue;
1261                 }
1262                 tmp = addrrange_intersection(tmp, fr->addr);
1263                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1264                                      int128_get64(tmp.start),
1265                                      int128_get64(tmp.size));
1266             }
1267         }
1268     }
1269 }
1270
1271 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1272 {
1273     AddressSpace *as;
1274
1275     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1276         memory_region_update_coalesced_range_as(mr, as);
1277     }
1278 }
1279
1280 void memory_region_set_coalescing(MemoryRegion *mr)
1281 {
1282     memory_region_clear_coalescing(mr);
1283     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1284 }
1285
1286 void memory_region_add_coalescing(MemoryRegion *mr,
1287                                   hwaddr offset,
1288                                   uint64_t size)
1289 {
1290     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1291
1292     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1293     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1294     memory_region_update_coalesced_range(mr);
1295     memory_region_set_flush_coalesced(mr);
1296 }
1297
1298 void memory_region_clear_coalescing(MemoryRegion *mr)
1299 {
1300     CoalescedMemoryRange *cmr;
1301
1302     qemu_flush_coalesced_mmio_buffer();
1303     mr->flush_coalesced_mmio = false;
1304
1305     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1306         cmr = QTAILQ_FIRST(&mr->coalesced);
1307         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1308         g_free(cmr);
1309     }
1310     memory_region_update_coalesced_range(mr);
1311 }
1312
1313 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1314 {
1315     mr->flush_coalesced_mmio = true;
1316 }
1317
1318 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1319 {
1320     qemu_flush_coalesced_mmio_buffer();
1321     if (QTAILQ_EMPTY(&mr->coalesced)) {
1322         mr->flush_coalesced_mmio = false;
1323     }
1324 }
1325
1326 void memory_region_add_eventfd(MemoryRegion *mr,
1327                                hwaddr addr,
1328                                unsigned size,
1329                                bool match_data,
1330                                uint64_t data,
1331                                EventNotifier *e)
1332 {
1333     MemoryRegionIoeventfd mrfd = {
1334         .addr.start = int128_make64(addr),
1335         .addr.size = int128_make64(size),
1336         .match_data = match_data,
1337         .data = data,
1338         .e = e,
1339     };
1340     unsigned i;
1341
1342     adjust_endianness(mr, &mrfd.data, size);
1343     memory_region_transaction_begin();
1344     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1345         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1346             break;
1347         }
1348     }
1349     ++mr->ioeventfd_nb;
1350     mr->ioeventfds = g_realloc(mr->ioeventfds,
1351                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1352     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1353             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1354     mr->ioeventfds[i] = mrfd;
1355     memory_region_update_pending |= mr->enabled;
1356     memory_region_transaction_commit();
1357 }
1358
1359 void memory_region_del_eventfd(MemoryRegion *mr,
1360                                hwaddr addr,
1361                                unsigned size,
1362                                bool match_data,
1363                                uint64_t data,
1364                                EventNotifier *e)
1365 {
1366     MemoryRegionIoeventfd mrfd = {
1367         .addr.start = int128_make64(addr),
1368         .addr.size = int128_make64(size),
1369         .match_data = match_data,
1370         .data = data,
1371         .e = e,
1372     };
1373     unsigned i;
1374
1375     adjust_endianness(mr, &mrfd.data, size);
1376     memory_region_transaction_begin();
1377     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1378         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1379             break;
1380         }
1381     }
1382     assert(i != mr->ioeventfd_nb);
1383     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1384             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1385     --mr->ioeventfd_nb;
1386     mr->ioeventfds = g_realloc(mr->ioeventfds,
1387                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1388     memory_region_update_pending |= mr->enabled;
1389     memory_region_transaction_commit();
1390 }
1391
1392 static void memory_region_add_subregion_common(MemoryRegion *mr,
1393                                                hwaddr offset,
1394                                                MemoryRegion *subregion)
1395 {
1396     MemoryRegion *other;
1397
1398     memory_region_transaction_begin();
1399
1400     assert(!subregion->parent);
1401     subregion->parent = mr;
1402     subregion->addr = offset;
1403     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1404         if (subregion->may_overlap || other->may_overlap) {
1405             continue;
1406         }
1407         if (int128_ge(int128_make64(offset),
1408                       int128_add(int128_make64(other->addr), other->size))
1409             || int128_le(int128_add(int128_make64(offset), subregion->size),
1410                          int128_make64(other->addr))) {
1411             continue;
1412         }
1413 #if 0
1414         printf("warning: subregion collision %llx/%llx (%s) "
1415                "vs %llx/%llx (%s)\n",
1416                (unsigned long long)offset,
1417                (unsigned long long)int128_get64(subregion->size),
1418                subregion->name,
1419                (unsigned long long)other->addr,
1420                (unsigned long long)int128_get64(other->size),
1421                other->name);
1422 #endif
1423     }
1424     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1425         if (subregion->priority >= other->priority) {
1426             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1427             goto done;
1428         }
1429     }
1430     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1431 done:
1432     memory_region_update_pending |= mr->enabled && subregion->enabled;
1433     memory_region_transaction_commit();
1434 }
1435
1436
1437 void memory_region_add_subregion(MemoryRegion *mr,
1438                                  hwaddr offset,
1439                                  MemoryRegion *subregion)
1440 {
1441     subregion->may_overlap = false;
1442     subregion->priority = 0;
1443     memory_region_add_subregion_common(mr, offset, subregion);
1444 }
1445
1446 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1447                                          hwaddr offset,
1448                                          MemoryRegion *subregion,
1449                                          unsigned priority)
1450 {
1451     subregion->may_overlap = true;
1452     subregion->priority = priority;
1453     memory_region_add_subregion_common(mr, offset, subregion);
1454 }
1455
1456 void memory_region_del_subregion(MemoryRegion *mr,
1457                                  MemoryRegion *subregion)
1458 {
1459     memory_region_transaction_begin();
1460     assert(subregion->parent == mr);
1461     subregion->parent = NULL;
1462     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1463     memory_region_update_pending |= mr->enabled && subregion->enabled;
1464     memory_region_transaction_commit();
1465 }
1466
1467 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1468 {
1469     if (enabled == mr->enabled) {
1470         return;
1471     }
1472     memory_region_transaction_begin();
1473     mr->enabled = enabled;
1474     memory_region_update_pending = true;
1475     memory_region_transaction_commit();
1476 }
1477
1478 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1479 {
1480     MemoryRegion *parent = mr->parent;
1481     unsigned priority = mr->priority;
1482     bool may_overlap = mr->may_overlap;
1483
1484     if (addr == mr->addr || !parent) {
1485         mr->addr = addr;
1486         return;
1487     }
1488
1489     memory_region_transaction_begin();
1490     memory_region_del_subregion(parent, mr);
1491     if (may_overlap) {
1492         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1493     } else {
1494         memory_region_add_subregion(parent, addr, mr);
1495     }
1496     memory_region_transaction_commit();
1497 }
1498
1499 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1500 {
1501     assert(mr->alias);
1502
1503     if (offset == mr->alias_offset) {
1504         return;
1505     }
1506
1507     memory_region_transaction_begin();
1508     mr->alias_offset = offset;
1509     memory_region_update_pending |= mr->enabled;
1510     memory_region_transaction_commit();
1511 }
1512
1513 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1514 {
1515     return mr->ram_addr;
1516 }
1517
1518 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1519 {
1520     const AddrRange *addr = addr_;
1521     const FlatRange *fr = fr_;
1522
1523     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1524         return -1;
1525     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1526         return 1;
1527     }
1528     return 0;
1529 }
1530
1531 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1532 {
1533     return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1534                    sizeof(FlatRange), cmp_flatrange_addr);
1535 }
1536
1537 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1538                                        hwaddr addr, uint64_t size)
1539 {
1540     MemoryRegionSection ret = { .mr = NULL };
1541     MemoryRegion *root;
1542     AddressSpace *as;
1543     AddrRange range;
1544     FlatRange *fr;
1545
1546     addr += mr->addr;
1547     for (root = mr; root->parent; ) {
1548         root = root->parent;
1549         addr += root->addr;
1550     }
1551
1552     as = memory_region_to_address_space(root);
1553     range = addrrange_make(int128_make64(addr), int128_make64(size));
1554     fr = address_space_lookup(as, range);
1555     if (!fr) {
1556         return ret;
1557     }
1558
1559     while (fr > as->current_map->ranges
1560            && addrrange_intersects(fr[-1].addr, range)) {
1561         --fr;
1562     }
1563
1564     ret.mr = fr->mr;
1565     ret.address_space = as;
1566     range = addrrange_intersection(range, fr->addr);
1567     ret.offset_within_region = fr->offset_in_region;
1568     ret.offset_within_region += int128_get64(int128_sub(range.start,
1569                                                         fr->addr.start));
1570     ret.size = range.size;
1571     ret.offset_within_address_space = int128_get64(range.start);
1572     ret.readonly = fr->readonly;
1573     return ret;
1574 }
1575
1576 void address_space_sync_dirty_bitmap(AddressSpace *as)
1577 {
1578     FlatRange *fr;
1579
1580     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1581         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1582     }
1583 }
1584
1585 void memory_global_dirty_log_start(void)
1586 {
1587     global_dirty_log = true;
1588     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1589 }
1590
1591 void memory_global_dirty_log_stop(void)
1592 {
1593     global_dirty_log = false;
1594     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1595 }
1596
1597 static void listener_add_address_space(MemoryListener *listener,
1598                                        AddressSpace *as)
1599 {
1600     FlatRange *fr;
1601
1602     if (listener->address_space_filter
1603         && listener->address_space_filter != as) {
1604         return;
1605     }
1606
1607     if (global_dirty_log) {
1608         if (listener->log_global_start) {
1609             listener->log_global_start(listener);
1610         }
1611     }
1612
1613     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1614         MemoryRegionSection section = {
1615             .mr = fr->mr,
1616             .address_space = as,
1617             .offset_within_region = fr->offset_in_region,
1618             .size = fr->addr.size,
1619             .offset_within_address_space = int128_get64(fr->addr.start),
1620             .readonly = fr->readonly,
1621         };
1622         if (listener->region_add) {
1623             listener->region_add(listener, &section);
1624         }
1625     }
1626 }
1627
1628 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1629 {
1630     MemoryListener *other = NULL;
1631     AddressSpace *as;
1632
1633     listener->address_space_filter = filter;
1634     if (QTAILQ_EMPTY(&memory_listeners)
1635         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1636                                              memory_listeners)->priority) {
1637         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1638     } else {
1639         QTAILQ_FOREACH(other, &memory_listeners, link) {
1640             if (listener->priority < other->priority) {
1641                 break;
1642             }
1643         }
1644         QTAILQ_INSERT_BEFORE(other, listener, link);
1645     }
1646
1647     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1648         listener_add_address_space(listener, as);
1649     }
1650 }
1651
1652 void memory_listener_unregister(MemoryListener *listener)
1653 {
1654     QTAILQ_REMOVE(&memory_listeners, listener, link);
1655 }
1656
1657 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1658 {
1659     memory_region_transaction_begin();
1660     as->root = root;
1661     as->current_map = g_new(FlatView, 1);
1662     flatview_init(as->current_map);
1663     as->ioeventfd_nb = 0;
1664     as->ioeventfds = NULL;
1665     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1666     as->name = g_strdup(name ? name : "anonymous");
1667     address_space_init_dispatch(as);
1668     memory_region_update_pending |= root->enabled;
1669     memory_region_transaction_commit();
1670 }
1671
1672 void address_space_destroy(AddressSpace *as)
1673 {
1674     /* Flush out anything from MemoryListeners listening in on this */
1675     memory_region_transaction_begin();
1676     as->root = NULL;
1677     memory_region_transaction_commit();
1678     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1679     address_space_destroy_dispatch(as);
1680     flatview_destroy(as->current_map);
1681     g_free(as->name);
1682     g_free(as->current_map);
1683     g_free(as->ioeventfds);
1684 }
1685
1686 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1687 {
1688     return memory_region_dispatch_read(mr, addr, pval, size);
1689 }
1690
1691 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1692                   uint64_t val, unsigned size)
1693 {
1694     return memory_region_dispatch_write(mr, addr, val, size);
1695 }
1696
1697 typedef struct MemoryRegionList MemoryRegionList;
1698
1699 struct MemoryRegionList {
1700     const MemoryRegion *mr;
1701     bool printed;
1702     QTAILQ_ENTRY(MemoryRegionList) queue;
1703 };
1704
1705 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1706
1707 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1708                            const MemoryRegion *mr, unsigned int level,
1709                            hwaddr base,
1710                            MemoryRegionListHead *alias_print_queue)
1711 {
1712     MemoryRegionList *new_ml, *ml, *next_ml;
1713     MemoryRegionListHead submr_print_queue;
1714     const MemoryRegion *submr;
1715     unsigned int i;
1716
1717     if (!mr || !mr->enabled) {
1718         return;
1719     }
1720
1721     for (i = 0; i < level; i++) {
1722         mon_printf(f, "  ");
1723     }
1724
1725     if (mr->alias) {
1726         MemoryRegionList *ml;
1727         bool found = false;
1728
1729         /* check if the alias is already in the queue */
1730         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1731             if (ml->mr == mr->alias && !ml->printed) {
1732                 found = true;
1733             }
1734         }
1735
1736         if (!found) {
1737             ml = g_new(MemoryRegionList, 1);
1738             ml->mr = mr->alias;
1739             ml->printed = false;
1740             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1741         }
1742         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1743                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1744                    "-" TARGET_FMT_plx "\n",
1745                    base + mr->addr,
1746                    base + mr->addr
1747                    + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1748                    mr->priority,
1749                    mr->romd_mode ? 'R' : '-',
1750                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1751                                                                        : '-',
1752                    mr->name,
1753                    mr->alias->name,
1754                    mr->alias_offset,
1755                    mr->alias_offset
1756                    + (hwaddr)int128_get64(mr->size) - 1);
1757     } else {
1758         mon_printf(f,
1759                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1760                    base + mr->addr,
1761                    base + mr->addr
1762                    + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1763                    mr->priority,
1764                    mr->romd_mode ? 'R' : '-',
1765                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1766                                                                        : '-',
1767                    mr->name);
1768     }
1769
1770     QTAILQ_INIT(&submr_print_queue);
1771
1772     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1773         new_ml = g_new(MemoryRegionList, 1);
1774         new_ml->mr = submr;
1775         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1776             if (new_ml->mr->addr < ml->mr->addr ||
1777                 (new_ml->mr->addr == ml->mr->addr &&
1778                  new_ml->mr->priority > ml->mr->priority)) {
1779                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1780                 new_ml = NULL;
1781                 break;
1782             }
1783         }
1784         if (new_ml) {
1785             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1786         }
1787     }
1788
1789     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1790         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1791                        alias_print_queue);
1792     }
1793
1794     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1795         g_free(ml);
1796     }
1797 }
1798
1799 void mtree_info(fprintf_function mon_printf, void *f)
1800 {
1801     MemoryRegionListHead ml_head;
1802     MemoryRegionList *ml, *ml2;
1803     AddressSpace *as;
1804
1805     QTAILQ_INIT(&ml_head);
1806
1807     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1808         mon_printf(f, "%s\n", as->name);
1809         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1810     }
1811
1812     mon_printf(f, "aliases\n");
1813     /* print aliased regions */
1814     QTAILQ_FOREACH(ml, &ml_head, queue) {
1815         if (!ml->printed) {
1816             mon_printf(f, "%s\n", ml->mr->name);
1817             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1818         }
1819     }
1820
1821     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1822         g_free(ml);
1823     }
1824 }
This page took 0.12475 seconds and 4 git commands to generate.