2 * i386 emulator main execution loop
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
62 /* XXX: restore cpu registers saved in host registers */
64 #if !defined(CONFIG_SOFTMMU)
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
70 longjmp(env->jmp_env, 1);
73 /* main execution loop */
75 int cpu_exec(CPUState *env1)
77 int saved_T0, saved_T1, saved_T2;
104 int saved_i7, tmp_T0;
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 uint8_t *tc_ptr, *cs_base, *pc;
112 /* first we save global registers */
119 /* we also save i7 because longjmp may not restore it */
120 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
123 #if defined(TARGET_I386)
126 EAX = env->regs[R_EAX];
130 ECX = env->regs[R_ECX];
134 EDX = env->regs[R_EDX];
138 EBX = env->regs[R_EBX];
142 ESP = env->regs[R_ESP];
146 EBP = env->regs[R_EBP];
150 ESI = env->regs[R_ESI];
154 EDI = env->regs[R_EDI];
157 /* put eflags in CPU temporary format */
158 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
159 DF = 1 - (2 * ((env->eflags >> 10) & 1));
160 CC_OP = CC_OP_EFLAGS;
161 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
162 #elif defined(TARGET_ARM)
166 env->CF = (psr >> 29) & 1;
167 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
168 env->VF = (psr << 3) & 0x80000000;
169 env->cpsr = psr & ~0xf0000000;
171 #elif defined(TARGET_SPARC)
172 #elif defined(TARGET_PPC)
174 #error unsupported target CPU
176 env->exception_index = -1;
178 /* prepare setjmp context for exception handling */
180 if (setjmp(env->jmp_env) == 0) {
181 env->current_tb = NULL;
182 /* if an exception is pending, we execute it here */
183 if (env->exception_index >= 0) {
184 if (env->exception_index >= EXCP_INTERRUPT) {
185 /* exit request from the cpu execution loop */
186 ret = env->exception_index;
188 } else if (env->user_mode_only) {
189 /* if user mode only, we simulate a fake exception
190 which will be hanlded outside the cpu execution
192 #if defined(TARGET_I386)
193 do_interrupt_user(env->exception_index,
194 env->exception_is_int,
196 env->exception_next_eip);
198 ret = env->exception_index;
201 #if defined(TARGET_I386)
202 /* simulate a real cpu exception. On i386, it can
203 trigger new exceptions, but we do not handle
204 double or triple faults yet. */
205 do_interrupt(env->exception_index,
206 env->exception_is_int,
208 env->exception_next_eip, 0);
209 #elif defined(TARGET_PPC)
213 env->exception_index = -1;
215 T0 = 0; /* force lookup of first TB */
218 /* g1 can be modified by some libc? functions */
221 interrupt_request = env->interrupt_request;
222 if (__builtin_expect(interrupt_request, 0)) {
223 #if defined(TARGET_I386)
224 /* if hardware interrupt pending, we execute it */
225 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
226 (env->eflags & IF_MASK) &&
227 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
229 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
230 intno = cpu_get_pic_interrupt(env);
231 if (loglevel & CPU_LOG_TB_IN_ASM) {
232 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
234 do_interrupt(intno, 0, 0, 0, 1);
235 /* ensure that no TB jump will be modified as
236 the program flow was changed */
243 #elif defined(TARGET_PPC)
244 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
245 do_queue_exception(EXCP_EXTERNAL);
246 if (check_exception_state(env))
248 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
251 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
252 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
253 /* ensure that no TB jump will be modified as
254 the program flow was changed */
261 if (interrupt_request & CPU_INTERRUPT_EXIT) {
262 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
263 env->exception_index = EXCP_INTERRUPT;
268 if (loglevel & CPU_LOG_EXEC) {
269 #if defined(TARGET_I386)
270 /* restore flags in standard format */
271 env->regs[R_EAX] = EAX;
272 env->regs[R_EBX] = EBX;
273 env->regs[R_ECX] = ECX;
274 env->regs[R_EDX] = EDX;
275 env->regs[R_ESI] = ESI;
276 env->regs[R_EDI] = EDI;
277 env->regs[R_EBP] = EBP;
278 env->regs[R_ESP] = ESP;
279 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
280 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
281 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
282 #elif defined(TARGET_ARM)
283 env->cpsr = compute_cpsr();
284 cpu_arm_dump_state(env, logfile, 0);
285 env->cpsr &= ~0xf0000000;
286 #elif defined(TARGET_SPARC)
287 cpu_sparc_dump_state (env, logfile, 0);
288 #elif defined(TARGET_PPC)
289 cpu_ppc_dump_state(env, logfile, 0);
291 #error unsupported target CPU
295 /* we record a subset of the CPU state. It will
296 always be the same before a given translated block
298 #if defined(TARGET_I386)
300 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
301 cs_base = env->segs[R_CS].base;
302 pc = cs_base + env->eip;
303 #elif defined(TARGET_ARM)
306 pc = (uint8_t *)env->regs[15];
307 #elif defined(TARGET_SPARC)
309 cs_base = (uint8_t *)env->npc;
310 pc = (uint8_t *) env->pc;
311 #elif defined(TARGET_PPC)
314 pc = (uint8_t *)env->nip;
316 #error unsupported CPU
318 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
321 TranslationBlock **ptb1;
323 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
328 tb_invalidated_flag = 0;
330 /* find translated block using physical mappings */
331 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
332 phys_page1 = phys_pc & TARGET_PAGE_MASK;
334 h = tb_phys_hash_func(phys_pc);
335 ptb1 = &tb_phys_hash[h];
340 if (tb->pc == (unsigned long)pc &&
341 tb->page_addr[0] == phys_page1 &&
342 tb->cs_base == (unsigned long)cs_base &&
343 tb->flags == flags) {
344 /* check next page if needed */
345 if (tb->page_addr[1] != -1) {
346 virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
348 phys_page2 = get_phys_addr_code(env, virt_page2);
349 if (tb->page_addr[1] == phys_page2)
355 ptb1 = &tb->phys_hash_next;
358 /* if no translated code available, then translate it now */
359 tb = tb_alloc((unsigned long)pc);
361 /* flush must be done */
363 /* cannot fail at this point */
364 tb = tb_alloc((unsigned long)pc);
365 /* don't forget to invalidate previous TB info */
366 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
369 tc_ptr = code_gen_ptr;
371 tb->cs_base = (unsigned long)cs_base;
373 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
374 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
376 /* check next page if needed */
377 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
379 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
380 phys_page2 = get_phys_addr_code(env, virt_page2);
382 tb_link_phys(tb, phys_pc, phys_page2);
385 if (tb_invalidated_flag) {
386 /* as some TB could have been invalidated because
387 of memory exceptions while generating the code, we
388 must recompute the hash index here */
389 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
391 ptb = &(*ptb)->hash_next;
394 /* we add the TB in the virtual pc hash table */
396 tb->hash_next = NULL;
398 spin_unlock(&tb_lock);
401 if (loglevel & CPU_LOG_EXEC) {
402 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
403 (long)tb->tc_ptr, (long)tb->pc,
404 lookup_symbol((void *)tb->pc));
410 /* see if we can patch the calling TB. */
412 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
413 && (tb->cflags & CF_CODE_COPY) ==
414 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
418 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
419 #if defined(USE_CODE_COPY)
420 /* propagates the FP use info */
421 ((TranslationBlock *)(T0 & ~3))->cflags |=
422 (tb->cflags & CF_FP_USED);
424 spin_unlock(&tb_lock);
427 env->current_tb = tb;
428 /* execute the generated code */
429 gen_func = (void *)tc_ptr;
430 #if defined(__sparc__)
431 __asm__ __volatile__("call %0\n\t"
435 : "i0", "i1", "i2", "i3", "i4", "i5");
436 #elif defined(__arm__)
437 asm volatile ("mov pc, %0\n\t"
438 ".global exec_loop\n\t"
442 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
443 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
445 if (!(tb->cflags & CF_CODE_COPY)) {
446 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
447 save_native_fp_state(env);
451 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
452 restore_native_fp_state(env);
454 /* we work with native eflags */
455 CC_SRC = cc_table[CC_OP].compute_all();
456 CC_OP = CC_OP_EFLAGS;
457 asm(".globl exec_loop\n"
462 " fs movl %11, %%eax\n"
463 " andl $0x400, %%eax\n"
464 " fs orl %8, %%eax\n"
467 " fs movl %%esp, %12\n"
468 " fs movl %0, %%eax\n"
469 " fs movl %1, %%ecx\n"
470 " fs movl %2, %%edx\n"
471 " fs movl %3, %%ebx\n"
472 " fs movl %4, %%esp\n"
473 " fs movl %5, %%ebp\n"
474 " fs movl %6, %%esi\n"
475 " fs movl %7, %%edi\n"
478 " fs movl %%esp, %4\n"
479 " fs movl %12, %%esp\n"
480 " fs movl %%eax, %0\n"
481 " fs movl %%ecx, %1\n"
482 " fs movl %%edx, %2\n"
483 " fs movl %%ebx, %3\n"
484 " fs movl %%ebp, %5\n"
485 " fs movl %%esi, %6\n"
486 " fs movl %%edi, %7\n"
489 " movl %%eax, %%ecx\n"
490 " andl $0x400, %%ecx\n"
492 " andl $0x8d5, %%eax\n"
493 " fs movl %%eax, %8\n"
495 " subl %%ecx, %%eax\n"
496 " fs movl %%eax, %11\n"
497 " fs movl %9, %%ebx\n" /* get T0 value */
500 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
501 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
502 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
503 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
504 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
505 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
506 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
507 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
508 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
509 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
511 "m" (*(uint8_t *)offsetof(CPUState, df)),
512 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
520 env->current_tb = NULL;
521 /* reset soft MMU for next block (it can currently
522 only be set by a memory fault) */
523 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
524 if (env->hflags & HF_SOFTMMU_MASK) {
525 env->hflags &= ~HF_SOFTMMU_MASK;
526 /* do not allow linking to another block */
536 #if defined(TARGET_I386)
537 #if defined(USE_CODE_COPY)
538 if (env->native_fp_regs) {
539 save_native_fp_state(env);
542 /* restore flags in standard format */
543 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
545 /* restore global registers */
570 #elif defined(TARGET_ARM)
571 env->cpsr = compute_cpsr();
572 #elif defined(TARGET_SPARC)
573 #elif defined(TARGET_PPC)
575 #error unsupported target CPU
578 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
587 /* must only be called from the generated code as an exception can be
589 void tb_invalidate_page_range(target_ulong start, target_ulong end)
591 target_ulong phys_addr;
592 phys_addr = get_phys_addr_code(env, start);
593 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
596 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
598 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
600 CPUX86State *saved_env;
604 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
606 cpu_x86_load_seg_cache(env, seg_reg, selector,
607 (uint8_t *)(selector << 4), 0xffff, 0);
609 load_seg(seg_reg, selector);
614 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
616 CPUX86State *saved_env;
621 helper_fsave(ptr, data32);
626 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
628 CPUX86State *saved_env;
633 helper_frstor(ptr, data32);
638 #endif /* TARGET_I386 */
640 #if !defined(CONFIG_SOFTMMU)
642 #if defined(TARGET_I386)
644 /* 'pc' is the host PC at which the exception was raised. 'address' is
645 the effective address of the memory exception. 'is_write' is 1 if a
646 write caused the exception and otherwise 0'. 'old_set' is the
647 signal set which should be restored */
648 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
649 int is_write, sigset_t *old_set,
652 TranslationBlock *tb;
656 env = cpu_single_env; /* XXX: find a correct solution for multithread */
657 #if defined(DEBUG_SIGNAL)
658 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
659 pc, address, is_write, *(unsigned long *)old_set);
661 /* XXX: locking issue */
662 if (is_write && page_unprotect(address, pc, puc)) {
666 /* see if it is an MMU fault */
667 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
668 ((env->hflags & HF_CPL_MASK) == 3), 0);
670 return 0; /* not an MMU fault */
672 return 1; /* the MMU fault was handled without causing real CPU fault */
673 /* now we have a real cpu fault */
676 /* the PC is inside the translated code. It means that we have
677 a virtual CPU fault */
678 cpu_restore_state(tb, env, pc, puc);
682 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
683 env->eip, env->cr[2], env->error_code);
685 /* we restore the process signal mask as the sigreturn should
686 do it (XXX: use sigsetjmp) */
687 sigprocmask(SIG_SETMASK, old_set, NULL);
688 raise_exception_err(EXCP0E_PAGE, env->error_code);
690 /* activate soft MMU for this block */
691 env->hflags |= HF_SOFTMMU_MASK;
692 cpu_resume_from_signal(env, puc);
694 /* never comes here */
698 #elif defined(TARGET_ARM)
699 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
700 int is_write, sigset_t *old_set,
706 #elif defined(TARGET_SPARC)
707 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
708 int is_write, sigset_t *old_set,
711 /* XXX: locking issue */
712 if (is_write && page_unprotect(address, pc, puc)) {
717 #elif defined (TARGET_PPC)
718 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
719 int is_write, sigset_t *old_set,
722 TranslationBlock *tb;
727 env = cpu_single_env; /* XXX: find a correct solution for multithread */
729 #if defined(DEBUG_SIGNAL)
730 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
731 pc, address, is_write, *(unsigned long *)old_set);
733 /* XXX: locking issue */
734 if (is_write && page_unprotect(address, pc, puc)) {
738 /* see if it is an MMU fault */
739 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
741 return 0; /* not an MMU fault */
743 return 1; /* the MMU fault was handled without causing real CPU fault */
745 /* now we have a real cpu fault */
748 /* the PC is inside the translated code. It means that we have
749 a virtual CPU fault */
750 cpu_restore_state(tb, env, pc, puc);
754 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
755 env->nip, env->error_code, tb);
757 /* we restore the process signal mask as the sigreturn should
758 do it (XXX: use sigsetjmp) */
759 sigprocmask(SIG_SETMASK, old_set, NULL);
760 do_queue_exception_err(env->exception_index, env->error_code);
762 /* activate soft MMU for this block */
763 cpu_resume_from_signal(env, puc);
765 /* never comes here */
769 #error unsupported target CPU
772 #if defined(__i386__)
774 #if defined(USE_CODE_COPY)
775 static void cpu_send_trap(unsigned long pc, int trap,
778 TranslationBlock *tb;
781 env = cpu_single_env; /* XXX: find a correct solution for multithread */
782 /* now we have a real cpu fault */
785 /* the PC is inside the translated code. It means that we have
786 a virtual CPU fault */
787 cpu_restore_state(tb, env, pc, uc);
789 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
790 raise_exception_err(trap, env->error_code);
794 int cpu_signal_handler(int host_signum, struct siginfo *info,
797 struct ucontext *uc = puc;
805 #define REG_TRAPNO TRAPNO
807 pc = uc->uc_mcontext.gregs[REG_EIP];
808 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
809 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
810 if (trapno == 0x00 || trapno == 0x05) {
811 /* send division by zero or bound exception */
812 cpu_send_trap(pc, trapno, uc);
816 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
818 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
819 &uc->uc_sigmask, puc);
822 #elif defined(__x86_64__)
824 int cpu_signal_handler(int host_signum, struct siginfo *info,
827 struct ucontext *uc = puc;
830 pc = uc->uc_mcontext.gregs[REG_RIP];
831 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
832 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
833 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
834 &uc->uc_sigmask, puc);
837 #elif defined(__powerpc)
839 int cpu_signal_handler(int host_signum, struct siginfo *info,
842 struct ucontext *uc = puc;
843 struct pt_regs *regs = uc->uc_mcontext.regs;
851 if (regs->dsisr & 0x00800000)
854 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
857 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
858 is_write, &uc->uc_sigmask, puc);
861 #elif defined(__alpha__)
863 int cpu_signal_handler(int host_signum, struct siginfo *info,
866 struct ucontext *uc = puc;
867 uint32_t *pc = uc->uc_mcontext.sc_pc;
871 /* XXX: need kernel patch to get write flag faster */
872 switch (insn >> 26) {
887 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
888 is_write, &uc->uc_sigmask, puc);
890 #elif defined(__sparc__)
892 int cpu_signal_handler(int host_signum, struct siginfo *info,
895 uint32_t *regs = (uint32_t *)(info + 1);
896 void *sigmask = (regs + 20);
901 /* XXX: is there a standard glibc define ? */
903 /* XXX: need kernel patch to get write flag faster */
905 insn = *(uint32_t *)pc;
906 if ((insn >> 30) == 3) {
907 switch((insn >> 19) & 0x3f) {
919 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
920 is_write, sigmask, NULL);
923 #elif defined(__arm__)
925 int cpu_signal_handler(int host_signum, struct siginfo *info,
928 struct ucontext *uc = puc;
932 pc = uc->uc_mcontext.gregs[R15];
933 /* XXX: compute is_write */
935 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
940 #elif defined(__mc68000)
942 int cpu_signal_handler(int host_signum, struct siginfo *info,
945 struct ucontext *uc = puc;
949 pc = uc->uc_mcontext.gregs[16];
950 /* XXX: compute is_write */
952 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
954 &uc->uc_sigmask, puc);
959 #error host CPU specific signal handler needed
963 #endif /* !defined(CONFIG_SOFTMMU) */