]> Git Repo - qemu.git/blob - cpus.c
qga-win: report disk serial number
[qemu.git] / cpus.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/block-backend.h"
36 #include "exec/gdbstub.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/hax.h"
41 #include "sysemu/hvf.h"
42 #include "sysemu/whpx.h"
43 #include "exec/exec-all.h"
44
45 #include "qemu/thread.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/qtest.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/option.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/seqlock.h"
52 #include "tcg.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
56
57 #ifdef CONFIG_LINUX
58
59 #include <sys/prctl.h>
60
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
64
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
68
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
72
73 #endif /* CONFIG_LINUX */
74
75 int64_t max_delay;
76 int64_t max_advance;
77
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
81
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
85
86 bool cpu_is_stopped(CPUState *cpu)
87 {
88     return cpu->stopped || !runstate_is_running();
89 }
90
91 static bool cpu_thread_is_idle(CPUState *cpu)
92 {
93     if (cpu->stop || cpu->queued_work_first) {
94         return false;
95     }
96     if (cpu_is_stopped(cpu)) {
97         return true;
98     }
99     if (!cpu->halted || cpu_has_work(cpu) ||
100         kvm_halt_in_kernel()) {
101         return false;
102     }
103     return true;
104 }
105
106 static bool all_cpu_threads_idle(void)
107 {
108     CPUState *cpu;
109
110     CPU_FOREACH(cpu) {
111         if (!cpu_thread_is_idle(cpu)) {
112             return false;
113         }
114     }
115     return true;
116 }
117
118 /***********************************************************/
119 /* guest cycle counter */
120
121 /* Protected by TimersState seqlock */
122
123 static bool icount_sleep = true;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
125 #define MAX_ICOUNT_SHIFT 10
126
127 typedef struct TimersState {
128     /* Protected by BQL.  */
129     int64_t cpu_ticks_prev;
130     int64_t cpu_ticks_offset;
131
132     /* Protect fields that can be respectively read outside the
133      * BQL, and written from multiple threads.
134      */
135     QemuSeqLock vm_clock_seqlock;
136     QemuSpin vm_clock_lock;
137
138     int16_t cpu_ticks_enabled;
139
140     /* Conversion factor from emulated instructions to virtual clock ticks.  */
141     int16_t icount_time_shift;
142
143     /* Compensate for varying guest execution speed.  */
144     int64_t qemu_icount_bias;
145
146     int64_t vm_clock_warp_start;
147     int64_t cpu_clock_offset;
148
149     /* Only written by TCG thread */
150     int64_t qemu_icount;
151
152     /* for adjusting icount */
153     QEMUTimer *icount_rt_timer;
154     QEMUTimer *icount_vm_timer;
155     QEMUTimer *icount_warp_timer;
156 } TimersState;
157
158 static TimersState timers_state;
159 bool mttcg_enabled;
160
161 /*
162  * We default to false if we know other options have been enabled
163  * which are currently incompatible with MTTCG. Otherwise when each
164  * guest (target) has been updated to support:
165  *   - atomic instructions
166  *   - memory ordering primitives (barriers)
167  * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
168  *
169  * Once a guest architecture has been converted to the new primitives
170  * there are two remaining limitations to check.
171  *
172  * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
173  * - The host must have a stronger memory order than the guest
174  *
175  * It may be possible in future to support strong guests on weak hosts
176  * but that will require tagging all load/stores in a guest with their
177  * implicit memory order requirements which would likely slow things
178  * down a lot.
179  */
180
181 static bool check_tcg_memory_orders_compatible(void)
182 {
183 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
184     return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
185 #else
186     return false;
187 #endif
188 }
189
190 static bool default_mttcg_enabled(void)
191 {
192     if (use_icount || TCG_OVERSIZED_GUEST) {
193         return false;
194     } else {
195 #ifdef TARGET_SUPPORTS_MTTCG
196         return check_tcg_memory_orders_compatible();
197 #else
198         return false;
199 #endif
200     }
201 }
202
203 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
204 {
205     const char *t = qemu_opt_get(opts, "thread");
206     if (t) {
207         if (strcmp(t, "multi") == 0) {
208             if (TCG_OVERSIZED_GUEST) {
209                 error_setg(errp, "No MTTCG when guest word size > hosts");
210             } else if (use_icount) {
211                 error_setg(errp, "No MTTCG when icount is enabled");
212             } else {
213 #ifndef TARGET_SUPPORTS_MTTCG
214                 warn_report("Guest not yet converted to MTTCG - "
215                             "you may get unexpected results");
216 #endif
217                 if (!check_tcg_memory_orders_compatible()) {
218                     warn_report("Guest expects a stronger memory ordering "
219                                 "than the host provides");
220                     error_printf("This may cause strange/hard to debug errors\n");
221                 }
222                 mttcg_enabled = true;
223             }
224         } else if (strcmp(t, "single") == 0) {
225             mttcg_enabled = false;
226         } else {
227             error_setg(errp, "Invalid 'thread' setting %s", t);
228         }
229     } else {
230         mttcg_enabled = default_mttcg_enabled();
231     }
232 }
233
234 /* The current number of executed instructions is based on what we
235  * originally budgeted minus the current state of the decrementing
236  * icount counters in extra/u16.low.
237  */
238 static int64_t cpu_get_icount_executed(CPUState *cpu)
239 {
240     return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
241 }
242
243 /*
244  * Update the global shared timer_state.qemu_icount to take into
245  * account executed instructions. This is done by the TCG vCPU
246  * thread so the main-loop can see time has moved forward.
247  */
248 static void cpu_update_icount_locked(CPUState *cpu)
249 {
250     int64_t executed = cpu_get_icount_executed(cpu);
251     cpu->icount_budget -= executed;
252
253     atomic_set_i64(&timers_state.qemu_icount,
254                    timers_state.qemu_icount + executed);
255 }
256
257 /*
258  * Update the global shared timer_state.qemu_icount to take into
259  * account executed instructions. This is done by the TCG vCPU
260  * thread so the main-loop can see time has moved forward.
261  */
262 void cpu_update_icount(CPUState *cpu)
263 {
264     seqlock_write_lock(&timers_state.vm_clock_seqlock,
265                        &timers_state.vm_clock_lock);
266     cpu_update_icount_locked(cpu);
267     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
268                          &timers_state.vm_clock_lock);
269 }
270
271 static int64_t cpu_get_icount_raw_locked(void)
272 {
273     CPUState *cpu = current_cpu;
274
275     if (cpu && cpu->running) {
276         if (!cpu->can_do_io) {
277             error_report("Bad icount read");
278             exit(1);
279         }
280         /* Take into account what has run */
281         cpu_update_icount_locked(cpu);
282     }
283     /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
284     return atomic_read_i64(&timers_state.qemu_icount);
285 }
286
287 static int64_t cpu_get_icount_locked(void)
288 {
289     int64_t icount = cpu_get_icount_raw_locked();
290     return atomic_read_i64(&timers_state.qemu_icount_bias) +
291         cpu_icount_to_ns(icount);
292 }
293
294 int64_t cpu_get_icount_raw(void)
295 {
296     int64_t icount;
297     unsigned start;
298
299     do {
300         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
301         icount = cpu_get_icount_raw_locked();
302     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
303
304     return icount;
305 }
306
307 /* Return the virtual CPU time, based on the instruction counter.  */
308 int64_t cpu_get_icount(void)
309 {
310     int64_t icount;
311     unsigned start;
312
313     do {
314         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
315         icount = cpu_get_icount_locked();
316     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
317
318     return icount;
319 }
320
321 int64_t cpu_icount_to_ns(int64_t icount)
322 {
323     return icount << atomic_read(&timers_state.icount_time_shift);
324 }
325
326 static int64_t cpu_get_ticks_locked(void)
327 {
328     int64_t ticks = timers_state.cpu_ticks_offset;
329     if (timers_state.cpu_ticks_enabled) {
330         ticks += cpu_get_host_ticks();
331     }
332
333     if (timers_state.cpu_ticks_prev > ticks) {
334         /* Non increasing ticks may happen if the host uses software suspend.  */
335         timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
336         ticks = timers_state.cpu_ticks_prev;
337     }
338
339     timers_state.cpu_ticks_prev = ticks;
340     return ticks;
341 }
342
343 /* return the time elapsed in VM between vm_start and vm_stop.  Unless
344  * icount is active, cpu_get_ticks() uses units of the host CPU cycle
345  * counter.
346  */
347 int64_t cpu_get_ticks(void)
348 {
349     int64_t ticks;
350
351     if (use_icount) {
352         return cpu_get_icount();
353     }
354
355     qemu_spin_lock(&timers_state.vm_clock_lock);
356     ticks = cpu_get_ticks_locked();
357     qemu_spin_unlock(&timers_state.vm_clock_lock);
358     return ticks;
359 }
360
361 static int64_t cpu_get_clock_locked(void)
362 {
363     int64_t time;
364
365     time = timers_state.cpu_clock_offset;
366     if (timers_state.cpu_ticks_enabled) {
367         time += get_clock();
368     }
369
370     return time;
371 }
372
373 /* Return the monotonic time elapsed in VM, i.e.,
374  * the time between vm_start and vm_stop
375  */
376 int64_t cpu_get_clock(void)
377 {
378     int64_t ti;
379     unsigned start;
380
381     do {
382         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
383         ti = cpu_get_clock_locked();
384     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
385
386     return ti;
387 }
388
389 /* enable cpu_get_ticks()
390  * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
391  */
392 void cpu_enable_ticks(void)
393 {
394     seqlock_write_lock(&timers_state.vm_clock_seqlock,
395                        &timers_state.vm_clock_lock);
396     if (!timers_state.cpu_ticks_enabled) {
397         timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
398         timers_state.cpu_clock_offset -= get_clock();
399         timers_state.cpu_ticks_enabled = 1;
400     }
401     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
402                        &timers_state.vm_clock_lock);
403 }
404
405 /* disable cpu_get_ticks() : the clock is stopped. You must not call
406  * cpu_get_ticks() after that.
407  * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
408  */
409 void cpu_disable_ticks(void)
410 {
411     seqlock_write_lock(&timers_state.vm_clock_seqlock,
412                        &timers_state.vm_clock_lock);
413     if (timers_state.cpu_ticks_enabled) {
414         timers_state.cpu_ticks_offset += cpu_get_host_ticks();
415         timers_state.cpu_clock_offset = cpu_get_clock_locked();
416         timers_state.cpu_ticks_enabled = 0;
417     }
418     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
419                          &timers_state.vm_clock_lock);
420 }
421
422 /* Correlation between real and virtual time is always going to be
423    fairly approximate, so ignore small variation.
424    When the guest is idle real and virtual time will be aligned in
425    the IO wait loop.  */
426 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
427
428 static void icount_adjust(void)
429 {
430     int64_t cur_time;
431     int64_t cur_icount;
432     int64_t delta;
433
434     /* Protected by TimersState mutex.  */
435     static int64_t last_delta;
436
437     /* If the VM is not running, then do nothing.  */
438     if (!runstate_is_running()) {
439         return;
440     }
441
442     seqlock_write_lock(&timers_state.vm_clock_seqlock,
443                        &timers_state.vm_clock_lock);
444     cur_time = cpu_get_clock_locked();
445     cur_icount = cpu_get_icount_locked();
446
447     delta = cur_icount - cur_time;
448     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
449     if (delta > 0
450         && last_delta + ICOUNT_WOBBLE < delta * 2
451         && timers_state.icount_time_shift > 0) {
452         /* The guest is getting too far ahead.  Slow time down.  */
453         atomic_set(&timers_state.icount_time_shift,
454                    timers_state.icount_time_shift - 1);
455     }
456     if (delta < 0
457         && last_delta - ICOUNT_WOBBLE > delta * 2
458         && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
459         /* The guest is getting too far behind.  Speed time up.  */
460         atomic_set(&timers_state.icount_time_shift,
461                    timers_state.icount_time_shift + 1);
462     }
463     last_delta = delta;
464     atomic_set_i64(&timers_state.qemu_icount_bias,
465                    cur_icount - (timers_state.qemu_icount
466                                  << timers_state.icount_time_shift));
467     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
468                          &timers_state.vm_clock_lock);
469 }
470
471 static void icount_adjust_rt(void *opaque)
472 {
473     timer_mod(timers_state.icount_rt_timer,
474               qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
475     icount_adjust();
476 }
477
478 static void icount_adjust_vm(void *opaque)
479 {
480     timer_mod(timers_state.icount_vm_timer,
481                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
482                    NANOSECONDS_PER_SECOND / 10);
483     icount_adjust();
484 }
485
486 static int64_t qemu_icount_round(int64_t count)
487 {
488     int shift = atomic_read(&timers_state.icount_time_shift);
489     return (count + (1 << shift) - 1) >> shift;
490 }
491
492 static void icount_warp_rt(void)
493 {
494     unsigned seq;
495     int64_t warp_start;
496
497     /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
498      * changes from -1 to another value, so the race here is okay.
499      */
500     do {
501         seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
502         warp_start = timers_state.vm_clock_warp_start;
503     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
504
505     if (warp_start == -1) {
506         return;
507     }
508
509     seqlock_write_lock(&timers_state.vm_clock_seqlock,
510                        &timers_state.vm_clock_lock);
511     if (runstate_is_running()) {
512         int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
513                                             cpu_get_clock_locked());
514         int64_t warp_delta;
515
516         warp_delta = clock - timers_state.vm_clock_warp_start;
517         if (use_icount == 2) {
518             /*
519              * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
520              * far ahead of real time.
521              */
522             int64_t cur_icount = cpu_get_icount_locked();
523             int64_t delta = clock - cur_icount;
524             warp_delta = MIN(warp_delta, delta);
525         }
526         atomic_set_i64(&timers_state.qemu_icount_bias,
527                        timers_state.qemu_icount_bias + warp_delta);
528     }
529     timers_state.vm_clock_warp_start = -1;
530     seqlock_write_unlock(&timers_state.vm_clock_seqlock,
531                        &timers_state.vm_clock_lock);
532
533     if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
534         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
535     }
536 }
537
538 static void icount_timer_cb(void *opaque)
539 {
540     /* No need for a checkpoint because the timer already synchronizes
541      * with CHECKPOINT_CLOCK_VIRTUAL_RT.
542      */
543     icount_warp_rt();
544 }
545
546 void qtest_clock_warp(int64_t dest)
547 {
548     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
549     AioContext *aio_context;
550     assert(qtest_enabled());
551     aio_context = qemu_get_aio_context();
552     while (clock < dest) {
553         int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
554         int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
555
556         seqlock_write_lock(&timers_state.vm_clock_seqlock,
557                            &timers_state.vm_clock_lock);
558         atomic_set_i64(&timers_state.qemu_icount_bias,
559                        timers_state.qemu_icount_bias + warp);
560         seqlock_write_unlock(&timers_state.vm_clock_seqlock,
561                              &timers_state.vm_clock_lock);
562
563         qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
564         timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
565         clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
566     }
567     qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
568 }
569
570 void qemu_start_warp_timer(void)
571 {
572     int64_t clock;
573     int64_t deadline;
574
575     if (!use_icount) {
576         return;
577     }
578
579     /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
580      * do not fire, so computing the deadline does not make sense.
581      */
582     if (!runstate_is_running()) {
583         return;
584     }
585
586     if (replay_mode != REPLAY_MODE_PLAY) {
587         if (!all_cpu_threads_idle()) {
588             return;
589         }
590
591         if (qtest_enabled()) {
592             /* When testing, qtest commands advance icount.  */
593             return;
594         }
595
596         replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
597     } else {
598         /* warp clock deterministically in record/replay mode */
599         if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
600             /* vCPU is sleeping and warp can't be started.
601                It is probably a race condition: notification sent
602                to vCPU was processed in advance and vCPU went to sleep.
603                Therefore we have to wake it up for doing someting. */
604             if (replay_has_checkpoint()) {
605                 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
606             }
607             return;
608         }
609     }
610
611     /* We want to use the earliest deadline from ALL vm_clocks */
612     clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
613     deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
614     if (deadline < 0) {
615         static bool notified;
616         if (!icount_sleep && !notified) {
617             warn_report("icount sleep disabled and no active timers");
618             notified = true;
619         }
620         return;
621     }
622
623     if (deadline > 0) {
624         /*
625          * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
626          * sleep.  Otherwise, the CPU might be waiting for a future timer
627          * interrupt to wake it up, but the interrupt never comes because
628          * the vCPU isn't running any insns and thus doesn't advance the
629          * QEMU_CLOCK_VIRTUAL.
630          */
631         if (!icount_sleep) {
632             /*
633              * We never let VCPUs sleep in no sleep icount mode.
634              * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
635              * to the next QEMU_CLOCK_VIRTUAL event and notify it.
636              * It is useful when we want a deterministic execution time,
637              * isolated from host latencies.
638              */
639             seqlock_write_lock(&timers_state.vm_clock_seqlock,
640                                &timers_state.vm_clock_lock);
641             atomic_set_i64(&timers_state.qemu_icount_bias,
642                            timers_state.qemu_icount_bias + deadline);
643             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
644                                  &timers_state.vm_clock_lock);
645             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
646         } else {
647             /*
648              * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
649              * "real" time, (related to the time left until the next event) has
650              * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
651              * This avoids that the warps are visible externally; for example,
652              * you will not be sending network packets continuously instead of
653              * every 100ms.
654              */
655             seqlock_write_lock(&timers_state.vm_clock_seqlock,
656                                &timers_state.vm_clock_lock);
657             if (timers_state.vm_clock_warp_start == -1
658                 || timers_state.vm_clock_warp_start > clock) {
659                 timers_state.vm_clock_warp_start = clock;
660             }
661             seqlock_write_unlock(&timers_state.vm_clock_seqlock,
662                                  &timers_state.vm_clock_lock);
663             timer_mod_anticipate(timers_state.icount_warp_timer,
664                                  clock + deadline);
665         }
666     } else if (deadline == 0) {
667         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
668     }
669 }
670
671 static void qemu_account_warp_timer(void)
672 {
673     if (!use_icount || !icount_sleep) {
674         return;
675     }
676
677     /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
678      * do not fire, so computing the deadline does not make sense.
679      */
680     if (!runstate_is_running()) {
681         return;
682     }
683
684     /* warp clock deterministically in record/replay mode */
685     if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
686         return;
687     }
688
689     timer_del(timers_state.icount_warp_timer);
690     icount_warp_rt();
691 }
692
693 static bool icount_state_needed(void *opaque)
694 {
695     return use_icount;
696 }
697
698 static bool warp_timer_state_needed(void *opaque)
699 {
700     TimersState *s = opaque;
701     return s->icount_warp_timer != NULL;
702 }
703
704 static bool adjust_timers_state_needed(void *opaque)
705 {
706     TimersState *s = opaque;
707     return s->icount_rt_timer != NULL;
708 }
709
710 /*
711  * Subsection for warp timer migration is optional, because may not be created
712  */
713 static const VMStateDescription icount_vmstate_warp_timer = {
714     .name = "timer/icount/warp_timer",
715     .version_id = 1,
716     .minimum_version_id = 1,
717     .needed = warp_timer_state_needed,
718     .fields = (VMStateField[]) {
719         VMSTATE_INT64(vm_clock_warp_start, TimersState),
720         VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
721         VMSTATE_END_OF_LIST()
722     }
723 };
724
725 static const VMStateDescription icount_vmstate_adjust_timers = {
726     .name = "timer/icount/timers",
727     .version_id = 1,
728     .minimum_version_id = 1,
729     .needed = adjust_timers_state_needed,
730     .fields = (VMStateField[]) {
731         VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
732         VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
733         VMSTATE_END_OF_LIST()
734     }
735 };
736
737 /*
738  * This is a subsection for icount migration.
739  */
740 static const VMStateDescription icount_vmstate_timers = {
741     .name = "timer/icount",
742     .version_id = 1,
743     .minimum_version_id = 1,
744     .needed = icount_state_needed,
745     .fields = (VMStateField[]) {
746         VMSTATE_INT64(qemu_icount_bias, TimersState),
747         VMSTATE_INT64(qemu_icount, TimersState),
748         VMSTATE_END_OF_LIST()
749     },
750     .subsections = (const VMStateDescription*[]) {
751         &icount_vmstate_warp_timer,
752         &icount_vmstate_adjust_timers,
753         NULL
754     }
755 };
756
757 static const VMStateDescription vmstate_timers = {
758     .name = "timer",
759     .version_id = 2,
760     .minimum_version_id = 1,
761     .fields = (VMStateField[]) {
762         VMSTATE_INT64(cpu_ticks_offset, TimersState),
763         VMSTATE_UNUSED(8),
764         VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
765         VMSTATE_END_OF_LIST()
766     },
767     .subsections = (const VMStateDescription*[]) {
768         &icount_vmstate_timers,
769         NULL
770     }
771 };
772
773 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
774 {
775     double pct;
776     double throttle_ratio;
777     long sleeptime_ns;
778
779     if (!cpu_throttle_get_percentage()) {
780         return;
781     }
782
783     pct = (double)cpu_throttle_get_percentage()/100;
784     throttle_ratio = pct / (1 - pct);
785     sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
786
787     qemu_mutex_unlock_iothread();
788     g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
789     qemu_mutex_lock_iothread();
790     atomic_set(&cpu->throttle_thread_scheduled, 0);
791 }
792
793 static void cpu_throttle_timer_tick(void *opaque)
794 {
795     CPUState *cpu;
796     double pct;
797
798     /* Stop the timer if needed */
799     if (!cpu_throttle_get_percentage()) {
800         return;
801     }
802     CPU_FOREACH(cpu) {
803         if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
804             async_run_on_cpu(cpu, cpu_throttle_thread,
805                              RUN_ON_CPU_NULL);
806         }
807     }
808
809     pct = (double)cpu_throttle_get_percentage()/100;
810     timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
811                                    CPU_THROTTLE_TIMESLICE_NS / (1-pct));
812 }
813
814 void cpu_throttle_set(int new_throttle_pct)
815 {
816     /* Ensure throttle percentage is within valid range */
817     new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
818     new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
819
820     atomic_set(&throttle_percentage, new_throttle_pct);
821
822     timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
823                                        CPU_THROTTLE_TIMESLICE_NS);
824 }
825
826 void cpu_throttle_stop(void)
827 {
828     atomic_set(&throttle_percentage, 0);
829 }
830
831 bool cpu_throttle_active(void)
832 {
833     return (cpu_throttle_get_percentage() != 0);
834 }
835
836 int cpu_throttle_get_percentage(void)
837 {
838     return atomic_read(&throttle_percentage);
839 }
840
841 void cpu_ticks_init(void)
842 {
843     seqlock_init(&timers_state.vm_clock_seqlock);
844     qemu_spin_init(&timers_state.vm_clock_lock);
845     vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
846     throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
847                                            cpu_throttle_timer_tick, NULL);
848 }
849
850 void configure_icount(QemuOpts *opts, Error **errp)
851 {
852     const char *option;
853     char *rem_str = NULL;
854
855     option = qemu_opt_get(opts, "shift");
856     if (!option) {
857         if (qemu_opt_get(opts, "align") != NULL) {
858             error_setg(errp, "Please specify shift option when using align");
859         }
860         return;
861     }
862
863     icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
864     if (icount_sleep) {
865         timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
866                                          icount_timer_cb, NULL);
867     }
868
869     icount_align_option = qemu_opt_get_bool(opts, "align", false);
870
871     if (icount_align_option && !icount_sleep) {
872         error_setg(errp, "align=on and sleep=off are incompatible");
873     }
874     if (strcmp(option, "auto") != 0) {
875         errno = 0;
876         timers_state.icount_time_shift = strtol(option, &rem_str, 0);
877         if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
878             error_setg(errp, "icount: Invalid shift value");
879         }
880         use_icount = 1;
881         return;
882     } else if (icount_align_option) {
883         error_setg(errp, "shift=auto and align=on are incompatible");
884     } else if (!icount_sleep) {
885         error_setg(errp, "shift=auto and sleep=off are incompatible");
886     }
887
888     use_icount = 2;
889
890     /* 125MIPS seems a reasonable initial guess at the guest speed.
891        It will be corrected fairly quickly anyway.  */
892     timers_state.icount_time_shift = 3;
893
894     /* Have both realtime and virtual time triggers for speed adjustment.
895        The realtime trigger catches emulated time passing too slowly,
896        the virtual time trigger catches emulated time passing too fast.
897        Realtime triggers occur even when idle, so use them less frequently
898        than VM triggers.  */
899     timers_state.vm_clock_warp_start = -1;
900     timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
901                                    icount_adjust_rt, NULL);
902     timer_mod(timers_state.icount_rt_timer,
903                    qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
904     timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
905                                         icount_adjust_vm, NULL);
906     timer_mod(timers_state.icount_vm_timer,
907                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
908                    NANOSECONDS_PER_SECOND / 10);
909 }
910
911 /***********************************************************/
912 /* TCG vCPU kick timer
913  *
914  * The kick timer is responsible for moving single threaded vCPU
915  * emulation on to the next vCPU. If more than one vCPU is running a
916  * timer event with force a cpu->exit so the next vCPU can get
917  * scheduled.
918  *
919  * The timer is removed if all vCPUs are idle and restarted again once
920  * idleness is complete.
921  */
922
923 static QEMUTimer *tcg_kick_vcpu_timer;
924 static CPUState *tcg_current_rr_cpu;
925
926 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
927
928 static inline int64_t qemu_tcg_next_kick(void)
929 {
930     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
931 }
932
933 /* Kick the currently round-robin scheduled vCPU */
934 static void qemu_cpu_kick_rr_cpu(void)
935 {
936     CPUState *cpu;
937     do {
938         cpu = atomic_mb_read(&tcg_current_rr_cpu);
939         if (cpu) {
940             cpu_exit(cpu);
941         }
942     } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
943 }
944
945 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
946 {
947 }
948
949 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
950 {
951     if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
952         qemu_notify_event();
953         return;
954     }
955
956     if (qemu_in_vcpu_thread()) {
957         /* A CPU is currently running; kick it back out to the
958          * tcg_cpu_exec() loop so it will recalculate its
959          * icount deadline immediately.
960          */
961         qemu_cpu_kick(current_cpu);
962     } else if (first_cpu) {
963         /* qemu_cpu_kick is not enough to kick a halted CPU out of
964          * qemu_tcg_wait_io_event.  async_run_on_cpu, instead,
965          * causes cpu_thread_is_idle to return false.  This way,
966          * handle_icount_deadline can run.
967          * If we have no CPUs at all for some reason, we don't
968          * need to do anything.
969          */
970         async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
971     }
972 }
973
974 static void kick_tcg_thread(void *opaque)
975 {
976     timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
977     qemu_cpu_kick_rr_cpu();
978 }
979
980 static void start_tcg_kick_timer(void)
981 {
982     assert(!mttcg_enabled);
983     if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
984         tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
985                                            kick_tcg_thread, NULL);
986     }
987     if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
988         timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
989     }
990 }
991
992 static void stop_tcg_kick_timer(void)
993 {
994     assert(!mttcg_enabled);
995     if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
996         timer_del(tcg_kick_vcpu_timer);
997     }
998 }
999
1000 /***********************************************************/
1001 void hw_error(const char *fmt, ...)
1002 {
1003     va_list ap;
1004     CPUState *cpu;
1005
1006     va_start(ap, fmt);
1007     fprintf(stderr, "qemu: hardware error: ");
1008     vfprintf(stderr, fmt, ap);
1009     fprintf(stderr, "\n");
1010     CPU_FOREACH(cpu) {
1011         fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
1012         cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
1013     }
1014     va_end(ap);
1015     abort();
1016 }
1017
1018 void cpu_synchronize_all_states(void)
1019 {
1020     CPUState *cpu;
1021
1022     CPU_FOREACH(cpu) {
1023         cpu_synchronize_state(cpu);
1024         /* TODO: move to cpu_synchronize_state() */
1025         if (hvf_enabled()) {
1026             hvf_cpu_synchronize_state(cpu);
1027         }
1028     }
1029 }
1030
1031 void cpu_synchronize_all_post_reset(void)
1032 {
1033     CPUState *cpu;
1034
1035     CPU_FOREACH(cpu) {
1036         cpu_synchronize_post_reset(cpu);
1037         /* TODO: move to cpu_synchronize_post_reset() */
1038         if (hvf_enabled()) {
1039             hvf_cpu_synchronize_post_reset(cpu);
1040         }
1041     }
1042 }
1043
1044 void cpu_synchronize_all_post_init(void)
1045 {
1046     CPUState *cpu;
1047
1048     CPU_FOREACH(cpu) {
1049         cpu_synchronize_post_init(cpu);
1050         /* TODO: move to cpu_synchronize_post_init() */
1051         if (hvf_enabled()) {
1052             hvf_cpu_synchronize_post_init(cpu);
1053         }
1054     }
1055 }
1056
1057 void cpu_synchronize_all_pre_loadvm(void)
1058 {
1059     CPUState *cpu;
1060
1061     CPU_FOREACH(cpu) {
1062         cpu_synchronize_pre_loadvm(cpu);
1063     }
1064 }
1065
1066 static int do_vm_stop(RunState state, bool send_stop)
1067 {
1068     int ret = 0;
1069
1070     if (runstate_is_running()) {
1071         cpu_disable_ticks();
1072         pause_all_vcpus();
1073         runstate_set(state);
1074         vm_state_notify(0, state);
1075         if (send_stop) {
1076             qapi_event_send_stop();
1077         }
1078     }
1079
1080     bdrv_drain_all();
1081     replay_disable_events();
1082     ret = bdrv_flush_all();
1083
1084     return ret;
1085 }
1086
1087 /* Special vm_stop() variant for terminating the process.  Historically clients
1088  * did not expect a QMP STOP event and so we need to retain compatibility.
1089  */
1090 int vm_shutdown(void)
1091 {
1092     return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1093 }
1094
1095 static bool cpu_can_run(CPUState *cpu)
1096 {
1097     if (cpu->stop) {
1098         return false;
1099     }
1100     if (cpu_is_stopped(cpu)) {
1101         return false;
1102     }
1103     return true;
1104 }
1105
1106 static void cpu_handle_guest_debug(CPUState *cpu)
1107 {
1108     gdb_set_stop_cpu(cpu);
1109     qemu_system_debug_request();
1110     cpu->stopped = true;
1111 }
1112
1113 #ifdef CONFIG_LINUX
1114 static void sigbus_reraise(void)
1115 {
1116     sigset_t set;
1117     struct sigaction action;
1118
1119     memset(&action, 0, sizeof(action));
1120     action.sa_handler = SIG_DFL;
1121     if (!sigaction(SIGBUS, &action, NULL)) {
1122         raise(SIGBUS);
1123         sigemptyset(&set);
1124         sigaddset(&set, SIGBUS);
1125         pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1126     }
1127     perror("Failed to re-raise SIGBUS!\n");
1128     abort();
1129 }
1130
1131 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1132 {
1133     if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1134         sigbus_reraise();
1135     }
1136
1137     if (current_cpu) {
1138         /* Called asynchronously in VCPU thread.  */
1139         if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1140             sigbus_reraise();
1141         }
1142     } else {
1143         /* Called synchronously (via signalfd) in main thread.  */
1144         if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1145             sigbus_reraise();
1146         }
1147     }
1148 }
1149
1150 static void qemu_init_sigbus(void)
1151 {
1152     struct sigaction action;
1153
1154     memset(&action, 0, sizeof(action));
1155     action.sa_flags = SA_SIGINFO;
1156     action.sa_sigaction = sigbus_handler;
1157     sigaction(SIGBUS, &action, NULL);
1158
1159     prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1160 }
1161 #else /* !CONFIG_LINUX */
1162 static void qemu_init_sigbus(void)
1163 {
1164 }
1165 #endif /* !CONFIG_LINUX */
1166
1167 static QemuMutex qemu_global_mutex;
1168
1169 static QemuThread io_thread;
1170
1171 /* cpu creation */
1172 static QemuCond qemu_cpu_cond;
1173 /* system init */
1174 static QemuCond qemu_pause_cond;
1175
1176 void qemu_init_cpu_loop(void)
1177 {
1178     qemu_init_sigbus();
1179     qemu_cond_init(&qemu_cpu_cond);
1180     qemu_cond_init(&qemu_pause_cond);
1181     qemu_mutex_init(&qemu_global_mutex);
1182
1183     qemu_thread_get_self(&io_thread);
1184 }
1185
1186 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1187 {
1188     do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1189 }
1190
1191 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1192 {
1193     if (kvm_destroy_vcpu(cpu) < 0) {
1194         error_report("kvm_destroy_vcpu failed");
1195         exit(EXIT_FAILURE);
1196     }
1197 }
1198
1199 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1200 {
1201 }
1202
1203 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1204 {
1205     g_assert(qemu_cpu_is_self(cpu));
1206     cpu->stop = false;
1207     cpu->stopped = true;
1208     if (exit) {
1209         cpu_exit(cpu);
1210     }
1211     qemu_cond_broadcast(&qemu_pause_cond);
1212 }
1213
1214 static void qemu_wait_io_event_common(CPUState *cpu)
1215 {
1216     atomic_mb_set(&cpu->thread_kicked, false);
1217     if (cpu->stop) {
1218         qemu_cpu_stop(cpu, false);
1219     }
1220     process_queued_cpu_work(cpu);
1221 }
1222
1223 static void qemu_tcg_rr_wait_io_event(CPUState *cpu)
1224 {
1225     while (all_cpu_threads_idle()) {
1226         stop_tcg_kick_timer();
1227         qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1228     }
1229
1230     start_tcg_kick_timer();
1231
1232     qemu_wait_io_event_common(cpu);
1233 }
1234
1235 static void qemu_wait_io_event(CPUState *cpu)
1236 {
1237     while (cpu_thread_is_idle(cpu)) {
1238         qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1239     }
1240
1241 #ifdef _WIN32
1242     /* Eat dummy APC queued by qemu_cpu_kick_thread.  */
1243     if (!tcg_enabled()) {
1244         SleepEx(0, TRUE);
1245     }
1246 #endif
1247     qemu_wait_io_event_common(cpu);
1248 }
1249
1250 static void *qemu_kvm_cpu_thread_fn(void *arg)
1251 {
1252     CPUState *cpu = arg;
1253     int r;
1254
1255     rcu_register_thread();
1256
1257     qemu_mutex_lock_iothread();
1258     qemu_thread_get_self(cpu->thread);
1259     cpu->thread_id = qemu_get_thread_id();
1260     cpu->can_do_io = 1;
1261     current_cpu = cpu;
1262
1263     r = kvm_init_vcpu(cpu);
1264     if (r < 0) {
1265         error_report("kvm_init_vcpu failed: %s", strerror(-r));
1266         exit(1);
1267     }
1268
1269     kvm_init_cpu_signals(cpu);
1270
1271     /* signal CPU creation */
1272     cpu->created = true;
1273     qemu_cond_signal(&qemu_cpu_cond);
1274
1275     do {
1276         if (cpu_can_run(cpu)) {
1277             r = kvm_cpu_exec(cpu);
1278             if (r == EXCP_DEBUG) {
1279                 cpu_handle_guest_debug(cpu);
1280             }
1281         }
1282         qemu_wait_io_event(cpu);
1283     } while (!cpu->unplug || cpu_can_run(cpu));
1284
1285     qemu_kvm_destroy_vcpu(cpu);
1286     cpu->created = false;
1287     qemu_cond_signal(&qemu_cpu_cond);
1288     qemu_mutex_unlock_iothread();
1289     rcu_unregister_thread();
1290     return NULL;
1291 }
1292
1293 static void *qemu_dummy_cpu_thread_fn(void *arg)
1294 {
1295 #ifdef _WIN32
1296     error_report("qtest is not supported under Windows");
1297     exit(1);
1298 #else
1299     CPUState *cpu = arg;
1300     sigset_t waitset;
1301     int r;
1302
1303     rcu_register_thread();
1304
1305     qemu_mutex_lock_iothread();
1306     qemu_thread_get_self(cpu->thread);
1307     cpu->thread_id = qemu_get_thread_id();
1308     cpu->can_do_io = 1;
1309     current_cpu = cpu;
1310
1311     sigemptyset(&waitset);
1312     sigaddset(&waitset, SIG_IPI);
1313
1314     /* signal CPU creation */
1315     cpu->created = true;
1316     qemu_cond_signal(&qemu_cpu_cond);
1317
1318     do {
1319         qemu_mutex_unlock_iothread();
1320         do {
1321             int sig;
1322             r = sigwait(&waitset, &sig);
1323         } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1324         if (r == -1) {
1325             perror("sigwait");
1326             exit(1);
1327         }
1328         qemu_mutex_lock_iothread();
1329         qemu_wait_io_event(cpu);
1330     } while (!cpu->unplug);
1331
1332     rcu_unregister_thread();
1333     return NULL;
1334 #endif
1335 }
1336
1337 static int64_t tcg_get_icount_limit(void)
1338 {
1339     int64_t deadline;
1340
1341     if (replay_mode != REPLAY_MODE_PLAY) {
1342         deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1343
1344         /* Maintain prior (possibly buggy) behaviour where if no deadline
1345          * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1346          * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1347          * nanoseconds.
1348          */
1349         if ((deadline < 0) || (deadline > INT32_MAX)) {
1350             deadline = INT32_MAX;
1351         }
1352
1353         return qemu_icount_round(deadline);
1354     } else {
1355         return replay_get_instructions();
1356     }
1357 }
1358
1359 static void handle_icount_deadline(void)
1360 {
1361     assert(qemu_in_vcpu_thread());
1362     if (use_icount) {
1363         int64_t deadline =
1364             qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1365
1366         if (deadline == 0) {
1367             /* Wake up other AioContexts.  */
1368             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1369             qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1370         }
1371     }
1372 }
1373
1374 static void prepare_icount_for_run(CPUState *cpu)
1375 {
1376     if (use_icount) {
1377         int insns_left;
1378
1379         /* These should always be cleared by process_icount_data after
1380          * each vCPU execution. However u16.high can be raised
1381          * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1382          */
1383         g_assert(cpu->icount_decr.u16.low == 0);
1384         g_assert(cpu->icount_extra == 0);
1385
1386         cpu->icount_budget = tcg_get_icount_limit();
1387         insns_left = MIN(0xffff, cpu->icount_budget);
1388         cpu->icount_decr.u16.low = insns_left;
1389         cpu->icount_extra = cpu->icount_budget - insns_left;
1390
1391         replay_mutex_lock();
1392     }
1393 }
1394
1395 static void process_icount_data(CPUState *cpu)
1396 {
1397     if (use_icount) {
1398         /* Account for executed instructions */
1399         cpu_update_icount(cpu);
1400
1401         /* Reset the counters */
1402         cpu->icount_decr.u16.low = 0;
1403         cpu->icount_extra = 0;
1404         cpu->icount_budget = 0;
1405
1406         replay_account_executed_instructions();
1407
1408         replay_mutex_unlock();
1409     }
1410 }
1411
1412
1413 static int tcg_cpu_exec(CPUState *cpu)
1414 {
1415     int ret;
1416 #ifdef CONFIG_PROFILER
1417     int64_t ti;
1418 #endif
1419
1420     assert(tcg_enabled());
1421 #ifdef CONFIG_PROFILER
1422     ti = profile_getclock();
1423 #endif
1424     cpu_exec_start(cpu);
1425     ret = cpu_exec(cpu);
1426     cpu_exec_end(cpu);
1427 #ifdef CONFIG_PROFILER
1428     atomic_set(&tcg_ctx->prof.cpu_exec_time,
1429                tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
1430 #endif
1431     return ret;
1432 }
1433
1434 /* Destroy any remaining vCPUs which have been unplugged and have
1435  * finished running
1436  */
1437 static void deal_with_unplugged_cpus(void)
1438 {
1439     CPUState *cpu;
1440
1441     CPU_FOREACH(cpu) {
1442         if (cpu->unplug && !cpu_can_run(cpu)) {
1443             qemu_tcg_destroy_vcpu(cpu);
1444             cpu->created = false;
1445             qemu_cond_signal(&qemu_cpu_cond);
1446             break;
1447         }
1448     }
1449 }
1450
1451 /* Single-threaded TCG
1452  *
1453  * In the single-threaded case each vCPU is simulated in turn. If
1454  * there is more than a single vCPU we create a simple timer to kick
1455  * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1456  * This is done explicitly rather than relying on side-effects
1457  * elsewhere.
1458  */
1459
1460 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1461 {
1462     CPUState *cpu = arg;
1463
1464     assert(tcg_enabled());
1465     rcu_register_thread();
1466     tcg_register_thread();
1467
1468     qemu_mutex_lock_iothread();
1469     qemu_thread_get_self(cpu->thread);
1470
1471     cpu->thread_id = qemu_get_thread_id();
1472     cpu->created = true;
1473     cpu->can_do_io = 1;
1474     qemu_cond_signal(&qemu_cpu_cond);
1475
1476     /* wait for initial kick-off after machine start */
1477     while (first_cpu->stopped) {
1478         qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1479
1480         /* process any pending work */
1481         CPU_FOREACH(cpu) {
1482             current_cpu = cpu;
1483             qemu_wait_io_event_common(cpu);
1484         }
1485     }
1486
1487     start_tcg_kick_timer();
1488
1489     cpu = first_cpu;
1490
1491     /* process any pending work */
1492     cpu->exit_request = 1;
1493
1494     while (1) {
1495         qemu_mutex_unlock_iothread();
1496         replay_mutex_lock();
1497         qemu_mutex_lock_iothread();
1498         /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
1499         qemu_account_warp_timer();
1500
1501         /* Run the timers here.  This is much more efficient than
1502          * waking up the I/O thread and waiting for completion.
1503          */
1504         handle_icount_deadline();
1505
1506         replay_mutex_unlock();
1507
1508         if (!cpu) {
1509             cpu = first_cpu;
1510         }
1511
1512         while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1513
1514             atomic_mb_set(&tcg_current_rr_cpu, cpu);
1515             current_cpu = cpu;
1516
1517             qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1518                               (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1519
1520             if (cpu_can_run(cpu)) {
1521                 int r;
1522
1523                 qemu_mutex_unlock_iothread();
1524                 prepare_icount_for_run(cpu);
1525
1526                 r = tcg_cpu_exec(cpu);
1527
1528                 process_icount_data(cpu);
1529                 qemu_mutex_lock_iothread();
1530
1531                 if (r == EXCP_DEBUG) {
1532                     cpu_handle_guest_debug(cpu);
1533                     break;
1534                 } else if (r == EXCP_ATOMIC) {
1535                     qemu_mutex_unlock_iothread();
1536                     cpu_exec_step_atomic(cpu);
1537                     qemu_mutex_lock_iothread();
1538                     break;
1539                 }
1540             } else if (cpu->stop) {
1541                 if (cpu->unplug) {
1542                     cpu = CPU_NEXT(cpu);
1543                 }
1544                 break;
1545             }
1546
1547             cpu = CPU_NEXT(cpu);
1548         } /* while (cpu && !cpu->exit_request).. */
1549
1550         /* Does not need atomic_mb_set because a spurious wakeup is okay.  */
1551         atomic_set(&tcg_current_rr_cpu, NULL);
1552
1553         if (cpu && cpu->exit_request) {
1554             atomic_mb_set(&cpu->exit_request, 0);
1555         }
1556
1557         qemu_tcg_rr_wait_io_event(cpu ? cpu : first_cpu);
1558         deal_with_unplugged_cpus();
1559     }
1560
1561     rcu_unregister_thread();
1562     return NULL;
1563 }
1564
1565 static void *qemu_hax_cpu_thread_fn(void *arg)
1566 {
1567     CPUState *cpu = arg;
1568     int r;
1569
1570     rcu_register_thread();
1571     qemu_mutex_lock_iothread();
1572     qemu_thread_get_self(cpu->thread);
1573
1574     cpu->thread_id = qemu_get_thread_id();
1575     cpu->created = true;
1576     cpu->halted = 0;
1577     current_cpu = cpu;
1578
1579     hax_init_vcpu(cpu);
1580     qemu_cond_signal(&qemu_cpu_cond);
1581
1582     do {
1583         if (cpu_can_run(cpu)) {
1584             r = hax_smp_cpu_exec(cpu);
1585             if (r == EXCP_DEBUG) {
1586                 cpu_handle_guest_debug(cpu);
1587             }
1588         }
1589
1590         qemu_wait_io_event(cpu);
1591     } while (!cpu->unplug || cpu_can_run(cpu));
1592     rcu_unregister_thread();
1593     return NULL;
1594 }
1595
1596 /* The HVF-specific vCPU thread function. This one should only run when the host
1597  * CPU supports the VMX "unrestricted guest" feature. */
1598 static void *qemu_hvf_cpu_thread_fn(void *arg)
1599 {
1600     CPUState *cpu = arg;
1601
1602     int r;
1603
1604     assert(hvf_enabled());
1605
1606     rcu_register_thread();
1607
1608     qemu_mutex_lock_iothread();
1609     qemu_thread_get_self(cpu->thread);
1610
1611     cpu->thread_id = qemu_get_thread_id();
1612     cpu->can_do_io = 1;
1613     current_cpu = cpu;
1614
1615     hvf_init_vcpu(cpu);
1616
1617     /* signal CPU creation */
1618     cpu->created = true;
1619     qemu_cond_signal(&qemu_cpu_cond);
1620
1621     do {
1622         if (cpu_can_run(cpu)) {
1623             r = hvf_vcpu_exec(cpu);
1624             if (r == EXCP_DEBUG) {
1625                 cpu_handle_guest_debug(cpu);
1626             }
1627         }
1628         qemu_wait_io_event(cpu);
1629     } while (!cpu->unplug || cpu_can_run(cpu));
1630
1631     hvf_vcpu_destroy(cpu);
1632     cpu->created = false;
1633     qemu_cond_signal(&qemu_cpu_cond);
1634     qemu_mutex_unlock_iothread();
1635     rcu_unregister_thread();
1636     return NULL;
1637 }
1638
1639 static void *qemu_whpx_cpu_thread_fn(void *arg)
1640 {
1641     CPUState *cpu = arg;
1642     int r;
1643
1644     rcu_register_thread();
1645
1646     qemu_mutex_lock_iothread();
1647     qemu_thread_get_self(cpu->thread);
1648     cpu->thread_id = qemu_get_thread_id();
1649     current_cpu = cpu;
1650
1651     r = whpx_init_vcpu(cpu);
1652     if (r < 0) {
1653         fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1654         exit(1);
1655     }
1656
1657     /* signal CPU creation */
1658     cpu->created = true;
1659     qemu_cond_signal(&qemu_cpu_cond);
1660
1661     do {
1662         if (cpu_can_run(cpu)) {
1663             r = whpx_vcpu_exec(cpu);
1664             if (r == EXCP_DEBUG) {
1665                 cpu_handle_guest_debug(cpu);
1666             }
1667         }
1668         while (cpu_thread_is_idle(cpu)) {
1669             qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1670         }
1671         qemu_wait_io_event_common(cpu);
1672     } while (!cpu->unplug || cpu_can_run(cpu));
1673
1674     whpx_destroy_vcpu(cpu);
1675     cpu->created = false;
1676     qemu_cond_signal(&qemu_cpu_cond);
1677     qemu_mutex_unlock_iothread();
1678     rcu_unregister_thread();
1679     return NULL;
1680 }
1681
1682 #ifdef _WIN32
1683 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1684 {
1685 }
1686 #endif
1687
1688 /* Multi-threaded TCG
1689  *
1690  * In the multi-threaded case each vCPU has its own thread. The TLS
1691  * variable current_cpu can be used deep in the code to find the
1692  * current CPUState for a given thread.
1693  */
1694
1695 static void *qemu_tcg_cpu_thread_fn(void *arg)
1696 {
1697     CPUState *cpu = arg;
1698
1699     assert(tcg_enabled());
1700     g_assert(!use_icount);
1701
1702     rcu_register_thread();
1703     tcg_register_thread();
1704
1705     qemu_mutex_lock_iothread();
1706     qemu_thread_get_self(cpu->thread);
1707
1708     cpu->thread_id = qemu_get_thread_id();
1709     cpu->created = true;
1710     cpu->can_do_io = 1;
1711     current_cpu = cpu;
1712     qemu_cond_signal(&qemu_cpu_cond);
1713
1714     /* process any pending work */
1715     cpu->exit_request = 1;
1716
1717     do {
1718         if (cpu_can_run(cpu)) {
1719             int r;
1720             qemu_mutex_unlock_iothread();
1721             r = tcg_cpu_exec(cpu);
1722             qemu_mutex_lock_iothread();
1723             switch (r) {
1724             case EXCP_DEBUG:
1725                 cpu_handle_guest_debug(cpu);
1726                 break;
1727             case EXCP_HALTED:
1728                 /* during start-up the vCPU is reset and the thread is
1729                  * kicked several times. If we don't ensure we go back
1730                  * to sleep in the halted state we won't cleanly
1731                  * start-up when the vCPU is enabled.
1732                  *
1733                  * cpu->halted should ensure we sleep in wait_io_event
1734                  */
1735                 g_assert(cpu->halted);
1736                 break;
1737             case EXCP_ATOMIC:
1738                 qemu_mutex_unlock_iothread();
1739                 cpu_exec_step_atomic(cpu);
1740                 qemu_mutex_lock_iothread();
1741             default:
1742                 /* Ignore everything else? */
1743                 break;
1744             }
1745         }
1746
1747         atomic_mb_set(&cpu->exit_request, 0);
1748         qemu_wait_io_event(cpu);
1749     } while (!cpu->unplug || cpu_can_run(cpu));
1750
1751     qemu_tcg_destroy_vcpu(cpu);
1752     cpu->created = false;
1753     qemu_cond_signal(&qemu_cpu_cond);
1754     qemu_mutex_unlock_iothread();
1755     rcu_unregister_thread();
1756     return NULL;
1757 }
1758
1759 static void qemu_cpu_kick_thread(CPUState *cpu)
1760 {
1761 #ifndef _WIN32
1762     int err;
1763
1764     if (cpu->thread_kicked) {
1765         return;
1766     }
1767     cpu->thread_kicked = true;
1768     err = pthread_kill(cpu->thread->thread, SIG_IPI);
1769     if (err) {
1770         fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1771         exit(1);
1772     }
1773 #else /* _WIN32 */
1774     if (!qemu_cpu_is_self(cpu)) {
1775         if (whpx_enabled()) {
1776             whpx_vcpu_kick(cpu);
1777         } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1778             fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1779                     __func__, GetLastError());
1780             exit(1);
1781         }
1782     }
1783 #endif
1784 }
1785
1786 void qemu_cpu_kick(CPUState *cpu)
1787 {
1788     qemu_cond_broadcast(cpu->halt_cond);
1789     if (tcg_enabled()) {
1790         cpu_exit(cpu);
1791         /* NOP unless doing single-thread RR */
1792         qemu_cpu_kick_rr_cpu();
1793     } else {
1794         if (hax_enabled()) {
1795             /*
1796              * FIXME: race condition with the exit_request check in
1797              * hax_vcpu_hax_exec
1798              */
1799             cpu->exit_request = 1;
1800         }
1801         qemu_cpu_kick_thread(cpu);
1802     }
1803 }
1804
1805 void qemu_cpu_kick_self(void)
1806 {
1807     assert(current_cpu);
1808     qemu_cpu_kick_thread(current_cpu);
1809 }
1810
1811 bool qemu_cpu_is_self(CPUState *cpu)
1812 {
1813     return qemu_thread_is_self(cpu->thread);
1814 }
1815
1816 bool qemu_in_vcpu_thread(void)
1817 {
1818     return current_cpu && qemu_cpu_is_self(current_cpu);
1819 }
1820
1821 static __thread bool iothread_locked = false;
1822
1823 bool qemu_mutex_iothread_locked(void)
1824 {
1825     return iothread_locked;
1826 }
1827
1828 /*
1829  * The BQL is taken from so many places that it is worth profiling the
1830  * callers directly, instead of funneling them all through a single function.
1831  */
1832 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1833 {
1834     QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1835
1836     g_assert(!qemu_mutex_iothread_locked());
1837     bql_lock(&qemu_global_mutex, file, line);
1838     iothread_locked = true;
1839 }
1840
1841 void qemu_mutex_unlock_iothread(void)
1842 {
1843     g_assert(qemu_mutex_iothread_locked());
1844     iothread_locked = false;
1845     qemu_mutex_unlock(&qemu_global_mutex);
1846 }
1847
1848 static bool all_vcpus_paused(void)
1849 {
1850     CPUState *cpu;
1851
1852     CPU_FOREACH(cpu) {
1853         if (!cpu->stopped) {
1854             return false;
1855         }
1856     }
1857
1858     return true;
1859 }
1860
1861 void pause_all_vcpus(void)
1862 {
1863     CPUState *cpu;
1864
1865     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1866     CPU_FOREACH(cpu) {
1867         if (qemu_cpu_is_self(cpu)) {
1868             qemu_cpu_stop(cpu, true);
1869         } else {
1870             cpu->stop = true;
1871             qemu_cpu_kick(cpu);
1872         }
1873     }
1874
1875     /* We need to drop the replay_lock so any vCPU threads woken up
1876      * can finish their replay tasks
1877      */
1878     replay_mutex_unlock();
1879
1880     while (!all_vcpus_paused()) {
1881         qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1882         CPU_FOREACH(cpu) {
1883             qemu_cpu_kick(cpu);
1884         }
1885     }
1886
1887     qemu_mutex_unlock_iothread();
1888     replay_mutex_lock();
1889     qemu_mutex_lock_iothread();
1890 }
1891
1892 void cpu_resume(CPUState *cpu)
1893 {
1894     cpu->stop = false;
1895     cpu->stopped = false;
1896     qemu_cpu_kick(cpu);
1897 }
1898
1899 void resume_all_vcpus(void)
1900 {
1901     CPUState *cpu;
1902
1903     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1904     CPU_FOREACH(cpu) {
1905         cpu_resume(cpu);
1906     }
1907 }
1908
1909 void cpu_remove_sync(CPUState *cpu)
1910 {
1911     cpu->stop = true;
1912     cpu->unplug = true;
1913     qemu_cpu_kick(cpu);
1914     qemu_mutex_unlock_iothread();
1915     qemu_thread_join(cpu->thread);
1916     qemu_mutex_lock_iothread();
1917 }
1918
1919 /* For temporary buffers for forming a name */
1920 #define VCPU_THREAD_NAME_SIZE 16
1921
1922 static void qemu_tcg_init_vcpu(CPUState *cpu)
1923 {
1924     char thread_name[VCPU_THREAD_NAME_SIZE];
1925     static QemuCond *single_tcg_halt_cond;
1926     static QemuThread *single_tcg_cpu_thread;
1927     static int tcg_region_inited;
1928
1929     assert(tcg_enabled());
1930     /*
1931      * Initialize TCG regions--once. Now is a good time, because:
1932      * (1) TCG's init context, prologue and target globals have been set up.
1933      * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1934      *     -accel flag is processed, so the check doesn't work then).
1935      */
1936     if (!tcg_region_inited) {
1937         tcg_region_inited = 1;
1938         tcg_region_init();
1939     }
1940
1941     if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1942         cpu->thread = g_malloc0(sizeof(QemuThread));
1943         cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1944         qemu_cond_init(cpu->halt_cond);
1945
1946         if (qemu_tcg_mttcg_enabled()) {
1947             /* create a thread per vCPU with TCG (MTTCG) */
1948             parallel_cpus = true;
1949             snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1950                  cpu->cpu_index);
1951
1952             qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1953                                cpu, QEMU_THREAD_JOINABLE);
1954
1955         } else {
1956             /* share a single thread for all cpus with TCG */
1957             snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1958             qemu_thread_create(cpu->thread, thread_name,
1959                                qemu_tcg_rr_cpu_thread_fn,
1960                                cpu, QEMU_THREAD_JOINABLE);
1961
1962             single_tcg_halt_cond = cpu->halt_cond;
1963             single_tcg_cpu_thread = cpu->thread;
1964         }
1965 #ifdef _WIN32
1966         cpu->hThread = qemu_thread_get_handle(cpu->thread);
1967 #endif
1968     } else {
1969         /* For non-MTTCG cases we share the thread */
1970         cpu->thread = single_tcg_cpu_thread;
1971         cpu->halt_cond = single_tcg_halt_cond;
1972         cpu->thread_id = first_cpu->thread_id;
1973         cpu->can_do_io = 1;
1974         cpu->created = true;
1975     }
1976 }
1977
1978 static void qemu_hax_start_vcpu(CPUState *cpu)
1979 {
1980     char thread_name[VCPU_THREAD_NAME_SIZE];
1981
1982     cpu->thread = g_malloc0(sizeof(QemuThread));
1983     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1984     qemu_cond_init(cpu->halt_cond);
1985
1986     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1987              cpu->cpu_index);
1988     qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1989                        cpu, QEMU_THREAD_JOINABLE);
1990 #ifdef _WIN32
1991     cpu->hThread = qemu_thread_get_handle(cpu->thread);
1992 #endif
1993 }
1994
1995 static void qemu_kvm_start_vcpu(CPUState *cpu)
1996 {
1997     char thread_name[VCPU_THREAD_NAME_SIZE];
1998
1999     cpu->thread = g_malloc0(sizeof(QemuThread));
2000     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2001     qemu_cond_init(cpu->halt_cond);
2002     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
2003              cpu->cpu_index);
2004     qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
2005                        cpu, QEMU_THREAD_JOINABLE);
2006 }
2007
2008 static void qemu_hvf_start_vcpu(CPUState *cpu)
2009 {
2010     char thread_name[VCPU_THREAD_NAME_SIZE];
2011
2012     /* HVF currently does not support TCG, and only runs in
2013      * unrestricted-guest mode. */
2014     assert(hvf_enabled());
2015
2016     cpu->thread = g_malloc0(sizeof(QemuThread));
2017     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2018     qemu_cond_init(cpu->halt_cond);
2019
2020     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2021              cpu->cpu_index);
2022     qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2023                        cpu, QEMU_THREAD_JOINABLE);
2024 }
2025
2026 static void qemu_whpx_start_vcpu(CPUState *cpu)
2027 {
2028     char thread_name[VCPU_THREAD_NAME_SIZE];
2029
2030     cpu->thread = g_malloc0(sizeof(QemuThread));
2031     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2032     qemu_cond_init(cpu->halt_cond);
2033     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2034              cpu->cpu_index);
2035     qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2036                        cpu, QEMU_THREAD_JOINABLE);
2037 #ifdef _WIN32
2038     cpu->hThread = qemu_thread_get_handle(cpu->thread);
2039 #endif
2040 }
2041
2042 static void qemu_dummy_start_vcpu(CPUState *cpu)
2043 {
2044     char thread_name[VCPU_THREAD_NAME_SIZE];
2045
2046     cpu->thread = g_malloc0(sizeof(QemuThread));
2047     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2048     qemu_cond_init(cpu->halt_cond);
2049     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2050              cpu->cpu_index);
2051     qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2052                        QEMU_THREAD_JOINABLE);
2053 }
2054
2055 void qemu_init_vcpu(CPUState *cpu)
2056 {
2057     cpu->nr_cores = smp_cores;
2058     cpu->nr_threads = smp_threads;
2059     cpu->stopped = true;
2060
2061     if (!cpu->as) {
2062         /* If the target cpu hasn't set up any address spaces itself,
2063          * give it the default one.
2064          */
2065         cpu->num_ases = 1;
2066         cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2067     }
2068
2069     if (kvm_enabled()) {
2070         qemu_kvm_start_vcpu(cpu);
2071     } else if (hax_enabled()) {
2072         qemu_hax_start_vcpu(cpu);
2073     } else if (hvf_enabled()) {
2074         qemu_hvf_start_vcpu(cpu);
2075     } else if (tcg_enabled()) {
2076         qemu_tcg_init_vcpu(cpu);
2077     } else if (whpx_enabled()) {
2078         qemu_whpx_start_vcpu(cpu);
2079     } else {
2080         qemu_dummy_start_vcpu(cpu);
2081     }
2082
2083     while (!cpu->created) {
2084         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2085     }
2086 }
2087
2088 void cpu_stop_current(void)
2089 {
2090     if (current_cpu) {
2091         qemu_cpu_stop(current_cpu, true);
2092     }
2093 }
2094
2095 int vm_stop(RunState state)
2096 {
2097     if (qemu_in_vcpu_thread()) {
2098         qemu_system_vmstop_request_prepare();
2099         qemu_system_vmstop_request(state);
2100         /*
2101          * FIXME: should not return to device code in case
2102          * vm_stop() has been requested.
2103          */
2104         cpu_stop_current();
2105         return 0;
2106     }
2107
2108     return do_vm_stop(state, true);
2109 }
2110
2111 /**
2112  * Prepare for (re)starting the VM.
2113  * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2114  * running or in case of an error condition), 0 otherwise.
2115  */
2116 int vm_prepare_start(void)
2117 {
2118     RunState requested;
2119
2120     qemu_vmstop_requested(&requested);
2121     if (runstate_is_running() && requested == RUN_STATE__MAX) {
2122         return -1;
2123     }
2124
2125     /* Ensure that a STOP/RESUME pair of events is emitted if a
2126      * vmstop request was pending.  The BLOCK_IO_ERROR event, for
2127      * example, according to documentation is always followed by
2128      * the STOP event.
2129      */
2130     if (runstate_is_running()) {
2131         qapi_event_send_stop();
2132         qapi_event_send_resume();
2133         return -1;
2134     }
2135
2136     /* We are sending this now, but the CPUs will be resumed shortly later */
2137     qapi_event_send_resume();
2138
2139     replay_enable_events();
2140     cpu_enable_ticks();
2141     runstate_set(RUN_STATE_RUNNING);
2142     vm_state_notify(1, RUN_STATE_RUNNING);
2143     return 0;
2144 }
2145
2146 void vm_start(void)
2147 {
2148     if (!vm_prepare_start()) {
2149         resume_all_vcpus();
2150     }
2151 }
2152
2153 /* does a state transition even if the VM is already stopped,
2154    current state is forgotten forever */
2155 int vm_stop_force_state(RunState state)
2156 {
2157     if (runstate_is_running()) {
2158         return vm_stop(state);
2159     } else {
2160         runstate_set(state);
2161
2162         bdrv_drain_all();
2163         /* Make sure to return an error if the flush in a previous vm_stop()
2164          * failed. */
2165         return bdrv_flush_all();
2166     }
2167 }
2168
2169 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2170 {
2171     /* XXX: implement xxx_cpu_list for targets that still miss it */
2172 #if defined(cpu_list)
2173     cpu_list(f, cpu_fprintf);
2174 #endif
2175 }
2176
2177 CpuInfoList *qmp_query_cpus(Error **errp)
2178 {
2179     MachineState *ms = MACHINE(qdev_get_machine());
2180     MachineClass *mc = MACHINE_GET_CLASS(ms);
2181     CpuInfoList *head = NULL, *cur_item = NULL;
2182     CPUState *cpu;
2183
2184     CPU_FOREACH(cpu) {
2185         CpuInfoList *info;
2186 #if defined(TARGET_I386)
2187         X86CPU *x86_cpu = X86_CPU(cpu);
2188         CPUX86State *env = &x86_cpu->env;
2189 #elif defined(TARGET_PPC)
2190         PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2191         CPUPPCState *env = &ppc_cpu->env;
2192 #elif defined(TARGET_SPARC)
2193         SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2194         CPUSPARCState *env = &sparc_cpu->env;
2195 #elif defined(TARGET_RISCV)
2196         RISCVCPU *riscv_cpu = RISCV_CPU(cpu);
2197         CPURISCVState *env = &riscv_cpu->env;
2198 #elif defined(TARGET_MIPS)
2199         MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2200         CPUMIPSState *env = &mips_cpu->env;
2201 #elif defined(TARGET_TRICORE)
2202         TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2203         CPUTriCoreState *env = &tricore_cpu->env;
2204 #elif defined(TARGET_S390X)
2205         S390CPU *s390_cpu = S390_CPU(cpu);
2206         CPUS390XState *env = &s390_cpu->env;
2207 #endif
2208
2209         cpu_synchronize_state(cpu);
2210
2211         info = g_malloc0(sizeof(*info));
2212         info->value = g_malloc0(sizeof(*info->value));
2213         info->value->CPU = cpu->cpu_index;
2214         info->value->current = (cpu == first_cpu);
2215         info->value->halted = cpu->halted;
2216         info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2217         info->value->thread_id = cpu->thread_id;
2218 #if defined(TARGET_I386)
2219         info->value->arch = CPU_INFO_ARCH_X86;
2220         info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2221 #elif defined(TARGET_PPC)
2222         info->value->arch = CPU_INFO_ARCH_PPC;
2223         info->value->u.ppc.nip = env->nip;
2224 #elif defined(TARGET_SPARC)
2225         info->value->arch = CPU_INFO_ARCH_SPARC;
2226         info->value->u.q_sparc.pc = env->pc;
2227         info->value->u.q_sparc.npc = env->npc;
2228 #elif defined(TARGET_MIPS)
2229         info->value->arch = CPU_INFO_ARCH_MIPS;
2230         info->value->u.q_mips.PC = env->active_tc.PC;
2231 #elif defined(TARGET_TRICORE)
2232         info->value->arch = CPU_INFO_ARCH_TRICORE;
2233         info->value->u.tricore.PC = env->PC;
2234 #elif defined(TARGET_S390X)
2235         info->value->arch = CPU_INFO_ARCH_S390;
2236         info->value->u.s390.cpu_state = env->cpu_state;
2237 #elif defined(TARGET_RISCV)
2238         info->value->arch = CPU_INFO_ARCH_RISCV;
2239         info->value->u.riscv.pc = env->pc;
2240 #else
2241         info->value->arch = CPU_INFO_ARCH_OTHER;
2242 #endif
2243         info->value->has_props = !!mc->cpu_index_to_instance_props;
2244         if (info->value->has_props) {
2245             CpuInstanceProperties *props;
2246             props = g_malloc0(sizeof(*props));
2247             *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2248             info->value->props = props;
2249         }
2250
2251         /* XXX: waiting for the qapi to support GSList */
2252         if (!cur_item) {
2253             head = cur_item = info;
2254         } else {
2255             cur_item->next = info;
2256             cur_item = info;
2257         }
2258     }
2259
2260     return head;
2261 }
2262
2263 static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target)
2264 {
2265     /*
2266      * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the
2267      * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script.
2268      */
2269     switch (target) {
2270     case SYS_EMU_TARGET_I386:
2271     case SYS_EMU_TARGET_X86_64:
2272         return CPU_INFO_ARCH_X86;
2273
2274     case SYS_EMU_TARGET_PPC:
2275     case SYS_EMU_TARGET_PPC64:
2276         return CPU_INFO_ARCH_PPC;
2277
2278     case SYS_EMU_TARGET_SPARC:
2279     case SYS_EMU_TARGET_SPARC64:
2280         return CPU_INFO_ARCH_SPARC;
2281
2282     case SYS_EMU_TARGET_MIPS:
2283     case SYS_EMU_TARGET_MIPSEL:
2284     case SYS_EMU_TARGET_MIPS64:
2285     case SYS_EMU_TARGET_MIPS64EL:
2286         return CPU_INFO_ARCH_MIPS;
2287
2288     case SYS_EMU_TARGET_TRICORE:
2289         return CPU_INFO_ARCH_TRICORE;
2290
2291     case SYS_EMU_TARGET_S390X:
2292         return CPU_INFO_ARCH_S390;
2293
2294     case SYS_EMU_TARGET_RISCV32:
2295     case SYS_EMU_TARGET_RISCV64:
2296         return CPU_INFO_ARCH_RISCV;
2297
2298     default:
2299         return CPU_INFO_ARCH_OTHER;
2300     }
2301 }
2302
2303 static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu)
2304 {
2305 #ifdef TARGET_S390X
2306     S390CPU *s390_cpu = S390_CPU(cpu);
2307     CPUS390XState *env = &s390_cpu->env;
2308
2309     info->cpu_state = env->cpu_state;
2310 #else
2311     abort();
2312 #endif
2313 }
2314
2315 /*
2316  * fast means: we NEVER interrupt vCPU threads to retrieve
2317  * information from KVM.
2318  */
2319 CpuInfoFastList *qmp_query_cpus_fast(Error **errp)
2320 {
2321     MachineState *ms = MACHINE(qdev_get_machine());
2322     MachineClass *mc = MACHINE_GET_CLASS(ms);
2323     CpuInfoFastList *head = NULL, *cur_item = NULL;
2324     SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME,
2325                                           -1, &error_abort);
2326     CPUState *cpu;
2327
2328     CPU_FOREACH(cpu) {
2329         CpuInfoFastList *info = g_malloc0(sizeof(*info));
2330         info->value = g_malloc0(sizeof(*info->value));
2331
2332         info->value->cpu_index = cpu->cpu_index;
2333         info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2334         info->value->thread_id = cpu->thread_id;
2335
2336         info->value->has_props = !!mc->cpu_index_to_instance_props;
2337         if (info->value->has_props) {
2338             CpuInstanceProperties *props;
2339             props = g_malloc0(sizeof(*props));
2340             *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2341             info->value->props = props;
2342         }
2343
2344         info->value->arch = sysemu_target_to_cpuinfo_arch(target);
2345         info->value->target = target;
2346         if (target == SYS_EMU_TARGET_S390X) {
2347             cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu);
2348         }
2349
2350         if (!cur_item) {
2351             head = cur_item = info;
2352         } else {
2353             cur_item->next = info;
2354             cur_item = info;
2355         }
2356     }
2357
2358     return head;
2359 }
2360
2361 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2362                  bool has_cpu, int64_t cpu_index, Error **errp)
2363 {
2364     FILE *f;
2365     uint32_t l;
2366     CPUState *cpu;
2367     uint8_t buf[1024];
2368     int64_t orig_addr = addr, orig_size = size;
2369
2370     if (!has_cpu) {
2371         cpu_index = 0;
2372     }
2373
2374     cpu = qemu_get_cpu(cpu_index);
2375     if (cpu == NULL) {
2376         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2377                    "a CPU number");
2378         return;
2379     }
2380
2381     f = fopen(filename, "wb");
2382     if (!f) {
2383         error_setg_file_open(errp, errno, filename);
2384         return;
2385     }
2386
2387     while (size != 0) {
2388         l = sizeof(buf);
2389         if (l > size)
2390             l = size;
2391         if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2392             error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2393                              " specified", orig_addr, orig_size);
2394             goto exit;
2395         }
2396         if (fwrite(buf, 1, l, f) != l) {
2397             error_setg(errp, QERR_IO_ERROR);
2398             goto exit;
2399         }
2400         addr += l;
2401         size -= l;
2402     }
2403
2404 exit:
2405     fclose(f);
2406 }
2407
2408 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2409                   Error **errp)
2410 {
2411     FILE *f;
2412     uint32_t l;
2413     uint8_t buf[1024];
2414
2415     f = fopen(filename, "wb");
2416     if (!f) {
2417         error_setg_file_open(errp, errno, filename);
2418         return;
2419     }
2420
2421     while (size != 0) {
2422         l = sizeof(buf);
2423         if (l > size)
2424             l = size;
2425         cpu_physical_memory_read(addr, buf, l);
2426         if (fwrite(buf, 1, l, f) != l) {
2427             error_setg(errp, QERR_IO_ERROR);
2428             goto exit;
2429         }
2430         addr += l;
2431         size -= l;
2432     }
2433
2434 exit:
2435     fclose(f);
2436 }
2437
2438 void qmp_inject_nmi(Error **errp)
2439 {
2440     nmi_monitor_handle(monitor_get_cpu_index(), errp);
2441 }
2442
2443 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2444 {
2445     if (!use_icount) {
2446         return;
2447     }
2448
2449     cpu_fprintf(f, "Host - Guest clock  %"PRIi64" ms\n",
2450                 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2451     if (icount_align_option) {
2452         cpu_fprintf(f, "Max guest delay     %"PRIi64" ms\n", -max_delay/SCALE_MS);
2453         cpu_fprintf(f, "Max guest advance   %"PRIi64" ms\n", max_advance/SCALE_MS);
2454     } else {
2455         cpu_fprintf(f, "Max guest delay     NA\n");
2456         cpu_fprintf(f, "Max guest advance   NA\n");
2457     }
2458 }
This page took 0.155513 seconds and 4 git commands to generate.