2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "qapi/error.h"
44 #include "qemu/timer.h"
45 #include "qemu/bitops.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/host-utils.h"
48 #include "hw/sysbus.h"
49 #include "sysemu/sysemu.h"
51 #define PFLASH_BUG(fmt, ...) \
53 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
57 /* #define PFLASH_DEBUG */
59 #define DPRINTF(fmt, ...) \
61 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
64 #define DPRINTF(fmt, ...) do { } while (0)
67 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
68 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
71 #define PFLASH_SECURE 1
75 SysBusDevice parent_obj;
82 uint8_t device_width; /* If 0, device width not specified. */
83 uint8_t max_device_width; /* max device width in bytes */
85 uint8_t wcycle; /* if 0, the flash is read normally */
94 uint8_t cfi_table[0x52];
96 unsigned int writeblock_size;
101 VMChangeStateEntry *vmstate;
104 static int pflash_post_load(void *opaque, int version_id);
106 static const VMStateDescription vmstate_pflash = {
107 .name = "pflash_cfi01",
109 .minimum_version_id = 1,
110 .post_load = pflash_post_load,
111 .fields = (VMStateField[]) {
112 VMSTATE_UINT8(wcycle, pflash_t),
113 VMSTATE_UINT8(cmd, pflash_t),
114 VMSTATE_UINT8(status, pflash_t),
115 VMSTATE_UINT64(counter, pflash_t),
116 VMSTATE_END_OF_LIST()
120 static void pflash_timer (void *opaque)
122 pflash_t *pfl = opaque;
124 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
127 memory_region_rom_device_set_romd(&pfl->mem, true);
132 /* Perform a CFI query based on the bank width of the flash.
133 * If this code is called we know we have a device_width set for
136 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
142 /* Adjust incoming offset to match expected device-width
143 * addressing. CFI query addresses are always specified in terms of
144 * the maximum supported width of the device. This means that x8
145 * devices and x8/x16 devices in x8 mode behave differently. For
146 * devices that are not used at their max width, we will be
147 * provided with addresses that use higher address bits than
148 * expected (based on the max width), so we will shift them lower
149 * so that they will match the addresses used when
150 * device_width==max_device_width.
152 boff = offset >> (ctz32(pfl->bank_width) +
153 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
155 if (boff > pfl->cfi_len) {
158 /* Now we will construct the CFI response generated by a single
159 * device, then replicate that for all devices that make up the
160 * bus. For wide parts used in x8 mode, CFI query responses
161 * are different than native byte-wide parts.
163 resp = pfl->cfi_table[boff];
164 if (pfl->device_width != pfl->max_device_width) {
165 /* The only case currently supported is x8 mode for a
168 if (pfl->device_width != 1 || pfl->bank_width > 4) {
169 DPRINTF("%s: Unsupported device configuration: "
170 "device_width=%d, max_device_width=%d\n",
171 __func__, pfl->device_width,
172 pfl->max_device_width);
175 /* CFI query data is repeated, rather than zero padded for
176 * wide devices used in x8 mode.
178 for (i = 1; i < pfl->max_device_width; i++) {
179 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
182 /* Replicate responses for each device in bank. */
183 if (pfl->device_width < pfl->bank_width) {
184 for (i = pfl->device_width;
185 i < pfl->bank_width; i += pfl->device_width) {
186 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
195 /* Perform a device id query based on the bank width of the flash. */
196 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
202 /* Adjust incoming offset to match expected device-width
203 * addressing. Device ID read addresses are always specified in
204 * terms of the maximum supported width of the device. This means
205 * that x8 devices and x8/x16 devices in x8 mode behave
206 * differently. For devices that are not used at their max width,
207 * we will be provided with addresses that use higher address bits
208 * than expected (based on the max width), so we will shift them
209 * lower so that they will match the addresses used when
210 * device_width==max_device_width.
212 boff = offset >> (ctz32(pfl->bank_width) +
213 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
215 /* Mask off upper bits which may be used in to query block
216 * or sector lock status at other addresses.
217 * Offsets 2/3 are block lock status, is not emulated.
219 switch (boff & 0xFF) {
222 DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
226 DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
229 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
234 /* Replicate responses for each device in bank. */
235 if (pfl->device_width < pfl->bank_width) {
236 for (i = pfl->device_width;
237 i < pfl->bank_width; i += pfl->device_width) {
238 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
245 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
255 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
256 __func__, offset, ret);
260 ret = p[offset] << 8;
261 ret |= p[offset + 1];
264 ret |= p[offset + 1] << 8;
266 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
267 __func__, offset, ret);
271 ret = p[offset] << 24;
272 ret |= p[offset + 1] << 16;
273 ret |= p[offset + 2] << 8;
274 ret |= p[offset + 3];
277 ret |= p[offset + 1] << 8;
278 ret |= p[offset + 2] << 16;
279 ret |= p[offset + 3] << 24;
281 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
282 __func__, offset, ret);
285 DPRINTF("BUG in %s\n", __func__);
291 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
300 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
301 __func__, offset, pfl->cmd, width);
305 /* This should never happen : reset state & treat it as a read */
306 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
309 /* fall through to read code */
311 /* Flash area read */
312 ret = pflash_data_read(pfl, offset, width, be);
314 case 0x10: /* Single byte program */
315 case 0x20: /* Block erase */
316 case 0x28: /* Block erase */
317 case 0x40: /* single byte program */
318 case 0x50: /* Clear status register */
319 case 0x60: /* Block /un)lock */
320 case 0x70: /* Status Register */
321 case 0xe8: /* Write block */
322 /* Status register read. Return status from each device in
326 if (pfl->device_width && width > pfl->device_width) {
327 int shift = pfl->device_width * 8;
328 while (shift + pfl->device_width * 8 <= width * 8) {
329 ret |= pfl->status << shift;
330 shift += pfl->device_width * 8;
332 } else if (!pfl->device_width && width > 2) {
333 /* Handle 32 bit flash cases where device width is not
334 * set. (Existing behavior before device width added.)
336 ret |= pfl->status << 16;
338 DPRINTF("%s: status %x\n", __func__, ret);
341 if (!pfl->device_width) {
342 /* Preserve old behavior if device width not specified */
343 boff = offset & 0xFF;
344 if (pfl->bank_width == 2) {
346 } else if (pfl->bank_width == 4) {
352 ret = pfl->ident0 << 8 | pfl->ident1;
353 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
356 ret = pfl->ident2 << 8 | pfl->ident3;
357 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
360 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
366 /* If we have a read larger than the bank_width, combine multiple
367 * manufacturer/device ID queries into a single response.
370 for (i = 0; i < width; i += pfl->bank_width) {
371 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
372 pflash_devid_query(pfl,
373 offset + i * pfl->bank_width));
377 case 0x98: /* Query mode */
378 if (!pfl->device_width) {
379 /* Preserve old behavior if device width not specified */
380 boff = offset & 0xFF;
381 if (pfl->bank_width == 2) {
383 } else if (pfl->bank_width == 4) {
387 if (boff > pfl->cfi_len) {
390 ret = pfl->cfi_table[boff];
393 /* If we have a read larger than the bank_width, combine multiple
394 * CFI queries into a single response.
397 for (i = 0; i < width; i += pfl->bank_width) {
398 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
399 pflash_cfi_query(pfl,
400 offset + i * pfl->bank_width));
409 /* update flash content on disk */
410 static void pflash_update(pflash_t *pfl, int offset,
415 offset_end = offset + size;
416 /* round to sectors */
417 offset = offset >> 9;
418 offset_end = (offset_end + 511) >> 9;
419 blk_write(pfl->blk, offset, pfl->storage + (offset << 9),
420 offset_end - offset);
424 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
425 uint32_t value, int width, int be)
427 uint8_t *p = pfl->storage;
429 DPRINTF("%s: block write offset " TARGET_FMT_plx
430 " value %x counter %016" PRIx64 "\n",
431 __func__, offset, value, pfl->counter);
438 p[offset] = value >> 8;
439 p[offset + 1] = value;
442 p[offset + 1] = value >> 8;
447 p[offset] = value >> 24;
448 p[offset + 1] = value >> 16;
449 p[offset + 2] = value >> 8;
450 p[offset + 3] = value;
453 p[offset + 1] = value >> 8;
454 p[offset + 2] = value >> 16;
455 p[offset + 3] = value >> 24;
462 static void pflash_write(pflash_t *pfl, hwaddr offset,
463 uint32_t value, int width, int be)
470 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
471 __func__, offset, value, width, pfl->wcycle);
474 /* Set the device in I/O access mode */
475 memory_region_rom_device_set_romd(&pfl->mem, false);
478 switch (pfl->wcycle) {
484 case 0x10: /* Single Byte Program */
485 case 0x40: /* Single Byte Program */
486 DPRINTF("%s: Single Byte Program\n", __func__);
488 case 0x20: /* Block erase */
490 offset &= ~(pfl->sector_len - 1);
492 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
493 __func__, offset, (unsigned)pfl->sector_len);
496 memset(p + offset, 0xff, pfl->sector_len);
497 pflash_update(pfl, offset, pfl->sector_len);
499 pfl->status |= 0x20; /* Block erase error */
501 pfl->status |= 0x80; /* Ready! */
503 case 0x50: /* Clear status bits */
504 DPRINTF("%s: Clear status bits\n", __func__);
507 case 0x60: /* Block (un)lock */
508 DPRINTF("%s: Block unlock\n", __func__);
510 case 0x70: /* Status Register */
511 DPRINTF("%s: Read status register\n", __func__);
514 case 0x90: /* Read Device ID */
515 DPRINTF("%s: Read Device information\n", __func__);
518 case 0x98: /* CFI query */
519 DPRINTF("%s: CFI query\n", __func__);
521 case 0xe8: /* Write to buffer */
522 DPRINTF("%s: Write to buffer\n", __func__);
523 pfl->status |= 0x80; /* Ready! */
525 case 0xf0: /* Probe for AMD flash */
526 DPRINTF("%s: Probe for AMD flash\n", __func__);
528 case 0xff: /* Read array mode */
529 DPRINTF("%s: Read array mode\n", __func__);
539 case 0x10: /* Single Byte Program */
540 case 0x40: /* Single Byte Program */
541 DPRINTF("%s: Single Byte Program\n", __func__);
543 pflash_data_write(pfl, offset, value, width, be);
544 pflash_update(pfl, offset, width);
546 pfl->status |= 0x10; /* Programming error */
548 pfl->status |= 0x80; /* Ready! */
551 case 0x20: /* Block erase */
553 if (cmd == 0xd0) { /* confirm */
556 } else if (cmd == 0xff) { /* read array mode */
563 /* Mask writeblock size based on device width, or bank width if
564 * device width not specified.
566 if (pfl->device_width) {
567 value = extract32(value, 0, pfl->device_width * 8);
569 value = extract32(value, 0, pfl->bank_width * 8);
571 DPRINTF("%s: block write of %x bytes\n", __func__, value);
572 pfl->counter = value;
579 } else if (cmd == 0x01) {
582 } else if (cmd == 0xff) {
585 DPRINTF("%s: Unknown (un)locking command\n", __func__);
593 DPRINTF("%s: leaving query mode\n", __func__);
602 case 0xe8: /* Block write */
604 pflash_data_write(pfl, offset, value, width, be);
606 pfl->status |= 0x10; /* Programming error */
612 hwaddr mask = pfl->writeblock_size - 1;
615 DPRINTF("%s: block write finished\n", __func__);
618 /* Flush the entire write buffer onto backing storage. */
619 pflash_update(pfl, offset & mask, pfl->writeblock_size);
621 pfl->status |= 0x10; /* Programming error */
631 case 3: /* Confirm mode */
633 case 0xe8: /* Block write */
638 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
639 PFLASH_BUG("Write block confirm");
648 /* Should never happen */
649 DPRINTF("%s: invalid write state\n", __func__);
655 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
656 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
657 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
660 memory_region_rom_device_set_romd(&pfl->mem, true);
667 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
668 unsigned len, MemTxAttrs attrs)
670 pflash_t *pfl = opaque;
671 bool be = !!(pfl->features & (1 << PFLASH_BE));
673 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
674 *value = pflash_data_read(opaque, addr, len, be);
676 *value = pflash_read(opaque, addr, len, be);
681 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
682 unsigned len, MemTxAttrs attrs)
684 pflash_t *pfl = opaque;
685 bool be = !!(pfl->features & (1 << PFLASH_BE));
687 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
690 pflash_write(opaque, addr, value, len, be);
695 static const MemoryRegionOps pflash_cfi01_ops = {
696 .read_with_attrs = pflash_mem_read_with_attrs,
697 .write_with_attrs = pflash_mem_write_with_attrs,
698 .endianness = DEVICE_NATIVE_ENDIAN,
701 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
703 pflash_t *pfl = CFI_PFLASH01(dev);
706 uint64_t blocks_per_device, device_len;
708 Error *local_err = NULL;
710 total_len = pfl->sector_len * pfl->nb_blocs;
712 /* These are only used to expose the parameters of each device
713 * in the cfi_table[].
715 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
716 blocks_per_device = pfl->nb_blocs / num_devices;
717 device_len = pfl->sector_len * blocks_per_device;
719 /* XXX: to be fixed */
721 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
722 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
726 memory_region_init_rom_device(
727 &pfl->mem, OBJECT(dev),
730 pfl->name, total_len, &local_err);
732 error_propagate(errp, local_err);
736 vmstate_register_ram(&pfl->mem, DEVICE(pfl));
737 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
738 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
741 /* read the initial flash content */
742 ret = blk_read(pfl->blk, 0, pfl->storage, total_len >> 9);
745 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
746 error_setg(errp, "failed to read the initial flash content");
752 pfl->ro = blk_is_read_only(pfl->blk);
757 /* Default to devices being used at their maximum device width. This was
758 * assumed before the device_width support was added.
760 if (!pfl->max_device_width) {
761 pfl->max_device_width = pfl->device_width;
764 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
768 /* Hardcoded CFI table */
770 /* Standard "QRY" string */
771 pfl->cfi_table[0x10] = 'Q';
772 pfl->cfi_table[0x11] = 'R';
773 pfl->cfi_table[0x12] = 'Y';
774 /* Command set (Intel) */
775 pfl->cfi_table[0x13] = 0x01;
776 pfl->cfi_table[0x14] = 0x00;
777 /* Primary extended table address (none) */
778 pfl->cfi_table[0x15] = 0x31;
779 pfl->cfi_table[0x16] = 0x00;
780 /* Alternate command set (none) */
781 pfl->cfi_table[0x17] = 0x00;
782 pfl->cfi_table[0x18] = 0x00;
783 /* Alternate extended table (none) */
784 pfl->cfi_table[0x19] = 0x00;
785 pfl->cfi_table[0x1A] = 0x00;
787 pfl->cfi_table[0x1B] = 0x45;
789 pfl->cfi_table[0x1C] = 0x55;
790 /* Vpp min (no Vpp pin) */
791 pfl->cfi_table[0x1D] = 0x00;
792 /* Vpp max (no Vpp pin) */
793 pfl->cfi_table[0x1E] = 0x00;
795 pfl->cfi_table[0x1F] = 0x07;
796 /* Timeout for min size buffer write */
797 pfl->cfi_table[0x20] = 0x07;
798 /* Typical timeout for block erase */
799 pfl->cfi_table[0x21] = 0x0a;
800 /* Typical timeout for full chip erase (4096 ms) */
801 pfl->cfi_table[0x22] = 0x00;
803 pfl->cfi_table[0x23] = 0x04;
804 /* Max timeout for buffer write */
805 pfl->cfi_table[0x24] = 0x04;
806 /* Max timeout for block erase */
807 pfl->cfi_table[0x25] = 0x04;
808 /* Max timeout for chip erase */
809 pfl->cfi_table[0x26] = 0x00;
811 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
812 /* Flash device interface (8 & 16 bits) */
813 pfl->cfi_table[0x28] = 0x02;
814 pfl->cfi_table[0x29] = 0x00;
815 /* Max number of bytes in multi-bytes write */
816 if (pfl->bank_width == 1) {
817 pfl->cfi_table[0x2A] = 0x08;
819 pfl->cfi_table[0x2A] = 0x0B;
821 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
823 pfl->cfi_table[0x2B] = 0x00;
824 /* Number of erase block regions (uniform) */
825 pfl->cfi_table[0x2C] = 0x01;
826 /* Erase block region 1 */
827 pfl->cfi_table[0x2D] = blocks_per_device - 1;
828 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
829 pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
830 pfl->cfi_table[0x30] = pfl->sector_len >> 16;
833 pfl->cfi_table[0x31] = 'P';
834 pfl->cfi_table[0x32] = 'R';
835 pfl->cfi_table[0x33] = 'I';
837 pfl->cfi_table[0x34] = '1';
838 pfl->cfi_table[0x35] = '0';
840 pfl->cfi_table[0x36] = 0x00;
841 pfl->cfi_table[0x37] = 0x00;
842 pfl->cfi_table[0x38] = 0x00;
843 pfl->cfi_table[0x39] = 0x00;
845 pfl->cfi_table[0x3a] = 0x00;
847 pfl->cfi_table[0x3b] = 0x00;
848 pfl->cfi_table[0x3c] = 0x00;
850 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
853 static Property pflash_cfi01_properties[] = {
854 DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
855 /* num-blocks is the number of blocks actually visible to the guest,
856 * ie the total size of the device divided by the sector length.
857 * If we're emulating flash devices wired in parallel the actual
858 * number of blocks per indvidual device will differ.
860 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
861 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
862 /* width here is the overall width of this QEMU device in bytes.
863 * The QEMU device may be emulating a number of flash devices
864 * wired up in parallel; the width of each individual flash
865 * device should be specified via device-width. If the individual
866 * devices have a maximum width which is greater than the width
867 * they are being used for, this maximum width should be set via
868 * max-device-width (which otherwise defaults to device-width).
869 * So for instance a 32-bit wide QEMU flash device made from four
870 * 16-bit flash devices used in 8-bit wide mode would be configured
871 * with width = 4, device-width = 1, max-device-width = 2.
873 * If device-width is not specified we default to backwards
874 * compatible behaviour which is a bad emulation of two
875 * 16 bit devices making up a 32 bit wide QEMU device. This
876 * is deprecated for new uses of this device.
878 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
879 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
880 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
881 DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
882 DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
883 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
884 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
885 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
886 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
887 DEFINE_PROP_STRING("name", struct pflash_t, name),
888 DEFINE_PROP_END_OF_LIST(),
891 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
893 DeviceClass *dc = DEVICE_CLASS(klass);
895 dc->realize = pflash_cfi01_realize;
896 dc->props = pflash_cfi01_properties;
897 dc->vmsd = &vmstate_pflash;
898 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
902 static const TypeInfo pflash_cfi01_info = {
903 .name = TYPE_CFI_PFLASH01,
904 .parent = TYPE_SYS_BUS_DEVICE,
905 .instance_size = sizeof(struct pflash_t),
906 .class_init = pflash_cfi01_class_init,
909 static void pflash_cfi01_register_types(void)
911 type_register_static(&pflash_cfi01_info);
914 type_init(pflash_cfi01_register_types)
916 pflash_t *pflash_cfi01_register(hwaddr base,
917 DeviceState *qdev, const char *name,
920 uint32_t sector_len, int nb_blocs,
921 int bank_width, uint16_t id0, uint16_t id1,
922 uint16_t id2, uint16_t id3, int be)
924 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
927 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
929 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
930 qdev_prop_set_uint64(dev, "sector-length", sector_len);
931 qdev_prop_set_uint8(dev, "width", bank_width);
932 qdev_prop_set_bit(dev, "big-endian", !!be);
933 qdev_prop_set_uint16(dev, "id0", id0);
934 qdev_prop_set_uint16(dev, "id1", id1);
935 qdev_prop_set_uint16(dev, "id2", id2);
936 qdev_prop_set_uint16(dev, "id3", id3);
937 qdev_prop_set_string(dev, "name", name);
938 qdev_init_nofail(dev);
940 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
941 return CFI_PFLASH01(dev);
944 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
949 static void postload_update_cb(void *opaque, int running, RunState state)
951 pflash_t *pfl = opaque;
953 /* This is called after bdrv_invalidate_cache_all. */
954 qemu_del_vm_change_state_handler(pfl->vmstate);
957 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
958 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
961 static int pflash_post_load(void *opaque, int version_id)
963 pflash_t *pfl = opaque;
966 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,