4 #include "host-utils.h"
7 #ifndef CONFIG_USER_ONLY
8 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9 int access_type, int is_user,
10 uint32_t *phys_ptr, int *prot,
11 target_ulong *page_size);
14 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 /* VFP data registers are always little-endian. */
19 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 stfq_le_p(buf, env->vfp.regs[reg]);
24 if (arm_feature(env, ARM_FEATURE_NEON)) {
25 /* Aliases for Q regs. */
28 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
29 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
33 switch (reg - nregs) {
34 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
35 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
36 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
41 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 env->vfp.regs[reg] = ldfq_le_p(buf);
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
54 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
58 switch (reg - nregs) {
59 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
60 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
61 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
66 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
69 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
73 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 if (env->cp15.c13_fcse != value) {
76 /* Unlike real hardware the qemu TLB uses virtual addresses,
77 * not modified virtual addresses, so this causes a TLB flush.
80 env->cp15.c13_fcse = value;
84 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
87 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
88 /* For VMSA (when not using the LPAE long descriptor page table
89 * format) this register includes the ASID, so do a TLB flush.
90 * For PMSA it is purely a process ID and no action is needed.
94 env->cp15.c13_context = value;
98 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
101 /* Invalidate all (TLBIALL) */
106 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
109 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
110 tlb_flush_page(env, value & TARGET_PAGE_MASK);
114 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
117 /* Invalidate by ASID (TLBIASID) */
118 tlb_flush(env, value == 0);
122 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
125 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
126 tlb_flush_page(env, value & TARGET_PAGE_MASK);
130 static const ARMCPRegInfo cp_reginfo[] = {
131 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
132 * version" bits will read as a reserved value, which should cause
133 * Linux to not try to use the debug hardware.
135 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
136 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
137 /* MMU Domain access control / MPU write buffer control */
138 { .name = "DACR", .cp = 15,
139 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
140 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
141 .resetvalue = 0, .writefn = dacr_write },
142 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
143 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
144 .resetvalue = 0, .writefn = fcse_write },
145 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
147 .resetvalue = 0, .writefn = contextidr_write },
148 /* ??? This covers not just the impdef TLB lockdown registers but also
149 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
152 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
153 /* MMU TLB control. Note that the wildcarding means we cover not just
154 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
157 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
158 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
159 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
160 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
161 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
162 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
163 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
164 /* Cache maintenance ops; some of this space may be overridden later. */
165 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
166 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
167 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
171 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
172 /* Not all pre-v6 cores implemented this WFI, so this is slightly
175 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
176 .access = PL1_W, .type = ARM_CP_WFI },
180 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
181 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
182 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
185 .access = PL1_W, .type = ARM_CP_WFI },
186 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
187 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
188 * OMAPCP will override this space.
190 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
194 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
197 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
198 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
202 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204 if (env->cp15.c1_coproc != value) {
205 env->cp15.c1_coproc = value;
206 /* ??? Is this safe when called from within a TB? */
212 static const ARMCPRegInfo v6_cp_reginfo[] = {
213 /* prefetch by MVA in v6, NOP in v7 */
214 { .name = "MVA_prefetch",
215 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
216 .access = PL1_W, .type = ARM_CP_NOP },
217 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
218 .access = PL0_W, .type = ARM_CP_NOP },
219 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
220 .access = PL0_W, .type = ARM_CP_NOP },
221 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
222 .access = PL0_W, .type = ARM_CP_NOP },
223 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
224 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 /* Watchpoint Fault Address Register : should actually only be present
227 * for 1136, 1176, 11MPCore.
229 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
230 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
231 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
232 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
233 .resetvalue = 0, .writefn = cpacr_write },
237 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
240 /* Generic performance monitor register read function for where
241 * user access may be allowed by PMUSERENR.
243 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
246 *value = CPREG_FIELD32(env, ri);
250 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
253 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
256 /* only the DP, X, D and E bits are writable */
257 env->cp15.c9_pmcr &= ~0x39;
258 env->cp15.c9_pmcr |= (value & 0x39);
262 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
265 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
269 env->cp15.c9_pmcnten |= value;
273 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
276 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
280 env->cp15.c9_pmcnten &= ~value;
284 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
287 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
290 env->cp15.c9_pmovsr &= ~value;
294 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
297 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
300 env->cp15.c9_pmxevtyper = value & 0xff;
304 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
307 env->cp15.c9_pmuserenr = value & 1;
311 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
314 /* We have no event counters so only the C bit can be changed */
316 env->cp15.c9_pminten |= value;
320 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
324 env->cp15.c9_pminten &= ~value;
328 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
331 ARMCPU *cpu = arm_env_get_cpu(env);
332 *value = cpu->ccsidr[env->cp15.c0_cssel];
336 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
339 env->cp15.c0_cssel = value & 0xf;
343 static const ARMCPRegInfo v7_cp_reginfo[] = {
344 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
347 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
350 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
351 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
352 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
353 .access = PL1_W, .type = ARM_CP_NOP },
354 /* Performance monitors are implementation defined in v7,
355 * but with an ARM recommended set of registers, which we
356 * follow (although we don't actually implement any counters)
358 * Performance registers fall into three categories:
359 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
360 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
361 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
362 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
363 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
366 .access = PL0_RW, .resetvalue = 0,
367 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
368 .readfn = pmreg_read, .writefn = pmcntenset_write },
369 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
370 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
371 .readfn = pmreg_read, .writefn = pmcntenclr_write },
372 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
373 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
374 .readfn = pmreg_read, .writefn = pmovsr_write },
375 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
378 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
379 .access = PL0_W, .type = ARM_CP_NOP },
380 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
381 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
384 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
385 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
386 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
387 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
388 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
391 .readfn = pmreg_read, .writefn = pmxevtyper_write },
392 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
393 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
394 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
395 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
396 .access = PL0_R | PL1_RW,
397 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .writefn = pmuserenr_write },
400 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .writefn = pmintenset_write },
405 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .writefn = pmintenclr_write },
410 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
414 .access = PL1_R, .readfn = ccsidr_read },
415 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
417 .writefn = csselr_write, .resetvalue = 0 },
418 /* Auxiliary ID register: this actually has an IMPDEF value but for now
419 * just RAZ for all cores:
421 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
426 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
433 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
436 /* This is a helper function because the user access rights
437 * depend on the value of the TEECR.
439 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
442 *value = env->teehbr;
446 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
449 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
456 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
457 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
458 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .writefn = teecr_write },
461 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
462 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .readfn = teehbr_read, .writefn = teehbr_write },
468 static const ARMCPRegInfo v6k_cp_reginfo[] = {
469 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
474 .access = PL0_R|PL1_W,
475 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
484 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
485 /* Dummy implementation: RAZ/WI the whole crn=14 space */
486 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
487 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
488 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
492 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494 if (arm_feature(env, ARM_FEATURE_V7)) {
495 env->cp15.c7_par = value & 0xfffff6ff;
497 env->cp15.c7_par = value & 0xfffff1ff;
502 #ifndef CONFIG_USER_ONLY
503 /* get_phys_addr() isn't present for user-mode-only targets */
504 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
507 target_ulong page_size;
509 int ret, is_user = ri->opc2 & 2;
510 int access_type = ri->opc2 & 1;
513 /* Other states are only available with TrustZone */
516 ret = get_phys_addr(env, value, access_type, is_user,
517 &phys_addr, &prot, &page_size);
519 /* We do not set any attribute bits in the PAR */
520 if (page_size == (1 << 24)
521 && arm_feature(env, ARM_FEATURE_V7)) {
522 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
524 env->cp15.c7_par = phys_addr & 0xfffff000;
527 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
528 ((ret & (12 << 1)) >> 6) |
529 ((ret & 0xf) << 1) | 1;
535 static const ARMCPRegInfo vapa_cp_reginfo[] = {
536 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
537 .access = PL1_RW, .resetvalue = 0,
538 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
539 .writefn = par_write },
540 #ifndef CONFIG_USER_ONLY
541 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
542 .access = PL1_W, .writefn = ats_write },
547 /* Return basic MPU access permission bits. */
548 static uint32_t simple_mpu_ap_bits(uint32_t val)
555 for (i = 0; i < 16; i += 2) {
556 ret |= (val >> i) & mask;
562 /* Pad basic MPU access permission bits to extended format. */
563 static uint32_t extended_mpu_ap_bits(uint32_t val)
570 for (i = 0; i < 16; i += 2) {
571 ret |= (val & mask) << i;
577 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 env->cp15.c5_data = extended_mpu_ap_bits(value);
584 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
587 *value = simple_mpu_ap_bits(env->cp15.c5_data);
591 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
594 env->cp15.c5_insn = extended_mpu_ap_bits(value);
598 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
601 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
605 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
611 *value = env->cp15.c6_region[ri->crm];
615 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
621 env->cp15.c6_region[ri->crm] = value;
625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
628 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
632 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
636 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
639 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
640 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
642 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
643 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
645 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
646 /* Protection region base and size registers */
647 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
648 .opc2 = CP_ANY, .access = PL1_RW,
649 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
653 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
657 env->cp15.c2_control = value;
658 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
659 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
663 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
665 env->cp15.c2_base_mask = 0xffffc000u;
666 env->cp15.c2_control = 0;
667 env->cp15.c2_mask = 0;
670 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
671 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
673 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
674 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
677 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
679 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
680 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
683 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
684 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
685 .resetfn = vmsa_ttbcr_reset,
686 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
687 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
688 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
693 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
696 env->cp15.c15_ticonfig = value & 0xe7;
697 /* The OS_TYPE bit in this register changes the reported CPUID! */
698 env->cp15.c0_cpuid = (value & (1 << 5)) ?
699 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
703 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
706 env->cp15.c15_threadid = value & 0xffff;
710 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 /* Wait-for-interrupt (deprecated) */
714 cpu_interrupt(env, CPU_INTERRUPT_HALT);
718 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
721 /* On OMAP there are registers indicating the max/min index of dcache lines
722 * containing a dirty line; cache flush operations have to reset these.
724 env->cp15.c15_i_max = 0x000;
725 env->cp15.c15_i_min = 0xff0;
729 static const ARMCPRegInfo omap_cp_reginfo[] = {
730 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
732 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
733 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
734 .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
737 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
738 .writefn = omap_ticonfig_write },
739 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
741 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
742 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
743 .access = PL1_RW, .resetvalue = 0xff0,
744 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
745 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
747 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
748 .writefn = omap_threadid_write },
749 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
750 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
751 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
752 /* TODO: Peripheral port remap register:
753 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
754 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
757 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
758 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
759 .writefn = omap_cachemaint_write },
760 { .name = "C9", .cp = 15, .crn = 9,
761 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
762 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
766 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
770 if (env->cp15.c15_cpar != value) {
771 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
773 env->cp15.c15_cpar = value;
778 static const ARMCPRegInfo xscale_cp_reginfo[] = {
779 { .name = "XSCALE_CPAR",
780 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
781 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
782 .writefn = xscale_cpar_write, },
783 { .name = "XSCALE_AUXCR",
784 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
785 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
790 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
791 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
792 * implementation of this implementation-defined space.
793 * Ideally this should eventually disappear in favour of actually
794 * implementing the correct behaviour for all cores.
796 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
797 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
798 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
802 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
803 /* Cache status: RAZ because we have no cache so it's always clean */
804 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
805 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
809 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
810 /* We never have a a block transfer operation in progress */
811 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
812 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
813 /* The cache ops themselves: these all NOP for QEMU */
814 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
815 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
816 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
817 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
818 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
819 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
820 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
821 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
822 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
823 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
824 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
825 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
829 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
830 /* The cache test-and-clean instructions always return (1 << 30)
831 * to indicate that there are no dirty cache lines.
833 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
834 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
835 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
836 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
840 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
841 /* Ignore ReadBuffer accesses */
842 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
843 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
844 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
849 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
852 uint32_t mpidr = env->cpu_index;
853 /* We don't support setting cluster ID ([8..11])
854 * so these bits always RAZ.
856 if (arm_feature(env, ARM_FEATURE_V7MP)) {
858 /* Cores which are uniprocessor (non-coherent)
859 * but still implement the MP extensions set
860 * bit 30. (For instance, A9UP.) However we do
861 * not currently model any of those cores.
868 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
869 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
870 .access = PL1_R, .readfn = mpidr_read },
874 static const ARMCPRegInfo lpae_cp_reginfo[] = {
875 /* NOP AMAIR0/1: the override is because these clash with tha rather
876 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
878 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
879 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
881 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
882 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
884 /* 64 bit access versions of the (dummy) debug registers */
885 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
886 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
887 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
888 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
892 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
894 env->cp15.c1_sys = value;
895 /* ??? Lots of these bits are not implemented. */
896 /* This may enable/disable the MMU, so do a TLB flush. */
901 void register_cp_regs_for_features(ARMCPU *cpu)
903 /* Register all the coprocessor registers based on feature bits */
904 CPUARMState *env = &cpu->env;
905 if (arm_feature(env, ARM_FEATURE_M)) {
906 /* M profile has no coprocessor registers */
910 define_arm_cp_regs(cpu, cp_reginfo);
911 if (arm_feature(env, ARM_FEATURE_V6)) {
912 /* The ID registers all have impdef reset values */
913 ARMCPRegInfo v6_idregs[] = {
914 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
915 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
916 .resetvalue = cpu->id_pfr0 },
917 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
918 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
919 .resetvalue = cpu->id_pfr1 },
920 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
921 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
922 .resetvalue = cpu->id_dfr0 },
923 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
924 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
925 .resetvalue = cpu->id_afr0 },
926 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
927 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
928 .resetvalue = cpu->id_mmfr0 },
929 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
930 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
931 .resetvalue = cpu->id_mmfr1 },
932 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
933 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
934 .resetvalue = cpu->id_mmfr2 },
935 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
936 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
937 .resetvalue = cpu->id_mmfr3 },
938 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
939 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
940 .resetvalue = cpu->id_isar0 },
941 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
942 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
943 .resetvalue = cpu->id_isar1 },
944 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
945 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
946 .resetvalue = cpu->id_isar2 },
947 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
948 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
949 .resetvalue = cpu->id_isar3 },
950 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
951 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
952 .resetvalue = cpu->id_isar4 },
953 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
954 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
955 .resetvalue = cpu->id_isar5 },
956 /* 6..7 are as yet unallocated and must RAZ */
957 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
958 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
960 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
961 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
965 define_arm_cp_regs(cpu, v6_idregs);
966 define_arm_cp_regs(cpu, v6_cp_reginfo);
968 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
970 if (arm_feature(env, ARM_FEATURE_V6K)) {
971 define_arm_cp_regs(cpu, v6k_cp_reginfo);
973 if (arm_feature(env, ARM_FEATURE_V7)) {
974 /* v7 performance monitor control register: same implementor
975 * field as main ID register, and we implement no event counters.
977 ARMCPRegInfo pmcr = {
978 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
979 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
980 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
981 .readfn = pmreg_read, .writefn = pmcr_write
983 ARMCPRegInfo clidr = {
984 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
985 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
987 define_one_arm_cp_reg(cpu, &pmcr);
988 define_one_arm_cp_reg(cpu, &clidr);
989 define_arm_cp_regs(cpu, v7_cp_reginfo);
991 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
993 if (arm_feature(env, ARM_FEATURE_MPU)) {
994 /* These are the MPU registers prior to PMSAv6. Any new
995 * PMSA core later than the ARM946 will require that we
996 * implement the PMSAv6 or PMSAv7 registers, which are
997 * completely different.
999 assert(!arm_feature(env, ARM_FEATURE_V6));
1000 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1002 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1004 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1005 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1007 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1008 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1010 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1011 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1013 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1014 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1016 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1017 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1019 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1020 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1022 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1023 define_arm_cp_regs(cpu, omap_cp_reginfo);
1025 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1026 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1028 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1029 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1031 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1032 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1034 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1035 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1037 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1038 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1040 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1041 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1042 * be read-only (ie write causes UNDEF exception).
1045 ARMCPRegInfo id_cp_reginfo[] = {
1046 /* Note that the MIDR isn't a simple constant register because
1047 * of the TI925 behaviour where writes to another register can
1048 * cause the MIDR value to change.
1051 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1052 .access = PL1_R, .resetvalue = cpu->midr,
1053 .writefn = arm_cp_write_ignore,
1054 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1059 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1062 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1063 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1064 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1066 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1067 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1069 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1070 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1072 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1075 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1076 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1078 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1079 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1082 ARMCPRegInfo crn0_wi_reginfo = {
1083 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1084 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1085 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1087 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1088 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1090 /* Register the blanket "writes ignored" value first to cover the
1091 * whole space. Then define the specific ID registers, but update
1092 * their access field to allow write access, so that they ignore
1093 * writes rather than causing them to UNDEF.
1095 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1096 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1098 define_one_arm_cp_reg(cpu, r);
1101 /* Just register the standard ID registers (read-only, meaning
1102 * that writes will UNDEF).
1104 define_arm_cp_regs(cpu, id_cp_reginfo);
1108 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1109 ARMCPRegInfo auxcr = {
1110 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1111 .access = PL1_RW, .type = ARM_CP_CONST,
1112 .resetvalue = cpu->reset_auxcr
1114 define_one_arm_cp_reg(cpu, &auxcr);
1117 /* Generic registers whose values depend on the implementation */
1119 ARMCPRegInfo sctlr = {
1120 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1121 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1122 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1124 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1125 /* Normally we would always end the TB on an SCTLR write, but Linux
1126 * arch/arm/mach-pxa/sleep.S expects two instructions following
1127 * an MMU enable to execute from cache. Imitate this behaviour.
1129 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1131 define_one_arm_cp_reg(cpu, &sctlr);
1135 ARMCPU *cpu_arm_init(const char *cpu_model)
1139 static int inited = 0;
1141 if (!object_class_by_name(cpu_model)) {
1144 cpu = ARM_CPU(object_new(cpu_model));
1146 env->cpu_model_str = cpu_model;
1147 arm_cpu_realize(cpu);
1149 if (tcg_enabled() && !inited) {
1151 arm_translate_init();
1154 cpu_reset(CPU(cpu));
1155 if (arm_feature(env, ARM_FEATURE_NEON)) {
1156 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1157 51, "arm-neon.xml", 0);
1158 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1159 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1160 35, "arm-vfp3.xml", 0);
1161 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1162 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1163 19, "arm-vfp.xml", 0);
1165 qemu_init_vcpu(env);
1169 typedef struct ARMCPUListState {
1170 fprintf_function cpu_fprintf;
1174 /* Sort alphabetically by type name, except for "any". */
1175 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1177 ObjectClass *class_a = (ObjectClass *)a;
1178 ObjectClass *class_b = (ObjectClass *)b;
1179 const char *name_a, *name_b;
1181 name_a = object_class_get_name(class_a);
1182 name_b = object_class_get_name(class_b);
1183 if (strcmp(name_a, "any") == 0) {
1185 } else if (strcmp(name_b, "any") == 0) {
1188 return strcmp(name_a, name_b);
1192 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1194 ObjectClass *oc = data;
1195 ARMCPUListState *s = user_data;
1197 (*s->cpu_fprintf)(s->file, " %s\n",
1198 object_class_get_name(oc));
1201 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1203 ARMCPUListState s = {
1205 .cpu_fprintf = cpu_fprintf,
1209 list = object_class_get_list(TYPE_ARM_CPU, false);
1210 list = g_slist_sort(list, arm_cpu_list_compare);
1211 (*cpu_fprintf)(f, "Available CPUs:\n");
1212 g_slist_foreach(list, arm_cpu_list_entry, &s);
1216 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1217 const ARMCPRegInfo *r, void *opaque)
1219 /* Define implementations of coprocessor registers.
1220 * We store these in a hashtable because typically
1221 * there are less than 150 registers in a space which
1222 * is 16*16*16*8*8 = 262144 in size.
1223 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1224 * If a register is defined twice then the second definition is
1225 * used, so this can be used to define some generic registers and
1226 * then override them with implementation specific variations.
1227 * At least one of the original and the second definition should
1228 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1229 * against accidental use.
1231 int crm, opc1, opc2;
1232 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1233 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1234 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1235 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1236 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1237 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1238 /* 64 bit registers have only CRm and Opc1 fields */
1239 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1240 /* Check that the register definition has enough info to handle
1241 * reads and writes if they are permitted.
1243 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1244 if (r->access & PL3_R) {
1245 assert(r->fieldoffset || r->readfn);
1247 if (r->access & PL3_W) {
1248 assert(r->fieldoffset || r->writefn);
1251 /* Bad type field probably means missing sentinel at end of reg list */
1252 assert(cptype_valid(r->type));
1253 for (crm = crmmin; crm <= crmmax; crm++) {
1254 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1255 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1256 uint32_t *key = g_new(uint32_t, 1);
1257 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1258 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1259 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1260 r2->opaque = opaque;
1261 /* Make sure reginfo passed to helpers for wildcarded regs
1262 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1267 /* Overriding of an existing definition must be explicitly
1270 if (!(r->type & ARM_CP_OVERRIDE)) {
1271 ARMCPRegInfo *oldreg;
1272 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1273 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1274 fprintf(stderr, "Register redefined: cp=%d %d bit "
1275 "crn=%d crm=%d opc1=%d opc2=%d, "
1276 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1277 r2->crn, r2->crm, r2->opc1, r2->opc2,
1278 oldreg->name, r2->name);
1282 g_hash_table_insert(cpu->cp_regs, key, r2);
1288 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1289 const ARMCPRegInfo *regs, void *opaque)
1291 /* Define a whole list of registers */
1292 const ARMCPRegInfo *r;
1293 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1294 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1298 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1300 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1303 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1306 /* Helper coprocessor write function for write-ignore registers */
1310 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1312 /* Helper coprocessor write function for read-as-zero registers */
1317 static int bad_mode_switch(CPUARMState *env, int mode)
1319 /* Return true if it is not valid for us to switch to
1320 * this CPU mode (ie all the UNPREDICTABLE cases in
1321 * the ARM ARM CPSRWriteByInstr pseudocode).
1324 case ARM_CPU_MODE_USR:
1325 case ARM_CPU_MODE_SYS:
1326 case ARM_CPU_MODE_SVC:
1327 case ARM_CPU_MODE_ABT:
1328 case ARM_CPU_MODE_UND:
1329 case ARM_CPU_MODE_IRQ:
1330 case ARM_CPU_MODE_FIQ:
1337 uint32_t cpsr_read(CPUARMState *env)
1340 ZF = (env->ZF == 0);
1341 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1342 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1343 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1344 | ((env->condexec_bits & 0xfc) << 8)
1348 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1350 if (mask & CPSR_NZCV) {
1351 env->ZF = (~val) & CPSR_Z;
1353 env->CF = (val >> 29) & 1;
1354 env->VF = (val << 3) & 0x80000000;
1357 env->QF = ((val & CPSR_Q) != 0);
1359 env->thumb = ((val & CPSR_T) != 0);
1360 if (mask & CPSR_IT_0_1) {
1361 env->condexec_bits &= ~3;
1362 env->condexec_bits |= (val >> 25) & 3;
1364 if (mask & CPSR_IT_2_7) {
1365 env->condexec_bits &= 3;
1366 env->condexec_bits |= (val >> 8) & 0xfc;
1368 if (mask & CPSR_GE) {
1369 env->GE = (val >> 16) & 0xf;
1372 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1373 if (bad_mode_switch(env, val & CPSR_M)) {
1374 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1375 * We choose to ignore the attempt and leave the CPSR M field
1380 switch_mode(env, val & CPSR_M);
1383 mask &= ~CACHED_CPSR_BITS;
1384 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1387 /* Sign/zero extend */
1388 uint32_t HELPER(sxtb16)(uint32_t x)
1391 res = (uint16_t)(int8_t)x;
1392 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1396 uint32_t HELPER(uxtb16)(uint32_t x)
1399 res = (uint16_t)(uint8_t)x;
1400 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1404 uint32_t HELPER(clz)(uint32_t x)
1409 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1413 if (num == INT_MIN && den == -1)
1418 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1425 uint32_t HELPER(rbit)(uint32_t x)
1427 x = ((x & 0xff000000) >> 24)
1428 | ((x & 0x00ff0000) >> 8)
1429 | ((x & 0x0000ff00) << 8)
1430 | ((x & 0x000000ff) << 24);
1431 x = ((x & 0xf0f0f0f0) >> 4)
1432 | ((x & 0x0f0f0f0f) << 4);
1433 x = ((x & 0x88888888) >> 3)
1434 | ((x & 0x44444444) >> 1)
1435 | ((x & 0x22222222) << 1)
1436 | ((x & 0x11111111) << 3);
1440 uint32_t HELPER(abs)(uint32_t x)
1442 return ((int32_t)x < 0) ? -x : x;
1445 #if defined(CONFIG_USER_ONLY)
1447 void do_interrupt (CPUARMState *env)
1449 env->exception_index = -1;
1452 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1456 env->exception_index = EXCP_PREFETCH_ABORT;
1457 env->cp15.c6_insn = address;
1459 env->exception_index = EXCP_DATA_ABORT;
1460 env->cp15.c6_data = address;
1465 /* These should probably raise undefined insn exceptions. */
1466 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1468 cpu_abort(env, "v7m_mrs %d\n", reg);
1471 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1473 cpu_abort(env, "v7m_mrs %d\n", reg);
1477 void switch_mode(CPUARMState *env, int mode)
1479 if (mode != ARM_CPU_MODE_USR)
1480 cpu_abort(env, "Tried to switch out of user mode\n");
1483 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1485 cpu_abort(env, "banked r13 write\n");
1488 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1490 cpu_abort(env, "banked r13 read\n");
1496 /* Map CPU modes onto saved register banks. */
1497 static inline int bank_number(CPUARMState *env, int mode)
1500 case ARM_CPU_MODE_USR:
1501 case ARM_CPU_MODE_SYS:
1503 case ARM_CPU_MODE_SVC:
1505 case ARM_CPU_MODE_ABT:
1507 case ARM_CPU_MODE_UND:
1509 case ARM_CPU_MODE_IRQ:
1511 case ARM_CPU_MODE_FIQ:
1514 cpu_abort(env, "Bad mode %x\n", mode);
1518 void switch_mode(CPUARMState *env, int mode)
1523 old_mode = env->uncached_cpsr & CPSR_M;
1524 if (mode == old_mode)
1527 if (old_mode == ARM_CPU_MODE_FIQ) {
1528 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1529 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1530 } else if (mode == ARM_CPU_MODE_FIQ) {
1531 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1532 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1535 i = bank_number(env, old_mode);
1536 env->banked_r13[i] = env->regs[13];
1537 env->banked_r14[i] = env->regs[14];
1538 env->banked_spsr[i] = env->spsr;
1540 i = bank_number(env, mode);
1541 env->regs[13] = env->banked_r13[i];
1542 env->regs[14] = env->banked_r14[i];
1543 env->spsr = env->banked_spsr[i];
1546 static void v7m_push(CPUARMState *env, uint32_t val)
1549 stl_phys(env->regs[13], val);
1552 static uint32_t v7m_pop(CPUARMState *env)
1555 val = ldl_phys(env->regs[13]);
1560 /* Switch to V7M main or process stack pointer. */
1561 static void switch_v7m_sp(CPUARMState *env, int process)
1564 if (env->v7m.current_sp != process) {
1565 tmp = env->v7m.other_sp;
1566 env->v7m.other_sp = env->regs[13];
1567 env->regs[13] = tmp;
1568 env->v7m.current_sp = process;
1572 static void do_v7m_exception_exit(CPUARMState *env)
1577 type = env->regs[15];
1578 if (env->v7m.exception != 0)
1579 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1581 /* Switch to the target stack. */
1582 switch_v7m_sp(env, (type & 4) != 0);
1583 /* Pop registers. */
1584 env->regs[0] = v7m_pop(env);
1585 env->regs[1] = v7m_pop(env);
1586 env->regs[2] = v7m_pop(env);
1587 env->regs[3] = v7m_pop(env);
1588 env->regs[12] = v7m_pop(env);
1589 env->regs[14] = v7m_pop(env);
1590 env->regs[15] = v7m_pop(env);
1591 xpsr = v7m_pop(env);
1592 xpsr_write(env, xpsr, 0xfffffdff);
1593 /* Undo stack alignment. */
1596 /* ??? The exception return type specifies Thread/Handler mode. However
1597 this is also implied by the xPSR value. Not sure what to do
1598 if there is a mismatch. */
1599 /* ??? Likewise for mismatches between the CONTROL register and the stack
1603 static void do_interrupt_v7m(CPUARMState *env)
1605 uint32_t xpsr = xpsr_read(env);
1610 if (env->v7m.current_sp)
1612 if (env->v7m.exception == 0)
1615 /* For exceptions we just mark as pending on the NVIC, and let that
1617 /* TODO: Need to escalate if the current priority is higher than the
1618 one we're raising. */
1619 switch (env->exception_index) {
1621 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1625 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1627 case EXCP_PREFETCH_ABORT:
1628 case EXCP_DATA_ABORT:
1629 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1632 if (semihosting_enabled) {
1634 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1637 env->regs[0] = do_arm_semihosting(env);
1641 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1644 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1646 case EXCP_EXCEPTION_EXIT:
1647 do_v7m_exception_exit(env);
1650 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1651 return; /* Never happens. Keep compiler happy. */
1654 /* Align stack pointer. */
1655 /* ??? Should only do this if Configuration Control Register
1656 STACKALIGN bit is set. */
1657 if (env->regs[13] & 4) {
1661 /* Switch to the handler mode. */
1662 v7m_push(env, xpsr);
1663 v7m_push(env, env->regs[15]);
1664 v7m_push(env, env->regs[14]);
1665 v7m_push(env, env->regs[12]);
1666 v7m_push(env, env->regs[3]);
1667 v7m_push(env, env->regs[2]);
1668 v7m_push(env, env->regs[1]);
1669 v7m_push(env, env->regs[0]);
1670 switch_v7m_sp(env, 0);
1672 env->condexec_bits = 0;
1674 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1675 env->regs[15] = addr & 0xfffffffe;
1676 env->thumb = addr & 1;
1679 /* Handle a CPU exception. */
1680 void do_interrupt(CPUARMState *env)
1688 do_interrupt_v7m(env);
1691 /* TODO: Vectored interrupt controller. */
1692 switch (env->exception_index) {
1694 new_mode = ARM_CPU_MODE_UND;
1703 if (semihosting_enabled) {
1704 /* Check for semihosting interrupt. */
1706 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
1708 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
1711 /* Only intercept calls from privileged modes, to provide some
1712 semblance of security. */
1713 if (((mask == 0x123456 && !env->thumb)
1714 || (mask == 0xab && env->thumb))
1715 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1716 env->regs[0] = do_arm_semihosting(env);
1720 new_mode = ARM_CPU_MODE_SVC;
1723 /* The PC already points to the next instruction. */
1727 /* See if this is a semihosting syscall. */
1728 if (env->thumb && semihosting_enabled) {
1729 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1731 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1733 env->regs[0] = do_arm_semihosting(env);
1737 env->cp15.c5_insn = 2;
1738 /* Fall through to prefetch abort. */
1739 case EXCP_PREFETCH_ABORT:
1740 new_mode = ARM_CPU_MODE_ABT;
1742 mask = CPSR_A | CPSR_I;
1745 case EXCP_DATA_ABORT:
1746 new_mode = ARM_CPU_MODE_ABT;
1748 mask = CPSR_A | CPSR_I;
1752 new_mode = ARM_CPU_MODE_IRQ;
1754 /* Disable IRQ and imprecise data aborts. */
1755 mask = CPSR_A | CPSR_I;
1759 new_mode = ARM_CPU_MODE_FIQ;
1761 /* Disable FIQ, IRQ and imprecise data aborts. */
1762 mask = CPSR_A | CPSR_I | CPSR_F;
1766 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1767 return; /* Never happens. Keep compiler happy. */
1770 if (env->cp15.c1_sys & (1 << 13)) {
1773 switch_mode (env, new_mode);
1774 env->spsr = cpsr_read(env);
1775 /* Clear IT bits. */
1776 env->condexec_bits = 0;
1777 /* Switch to the new mode, and to the correct instruction set. */
1778 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1779 env->uncached_cpsr |= mask;
1780 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1781 * and we should just guard the thumb mode on V4 */
1782 if (arm_feature(env, ARM_FEATURE_V4T)) {
1783 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1785 env->regs[14] = env->regs[15] + offset;
1786 env->regs[15] = addr;
1787 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1790 /* Check section/page access permissions.
1791 Returns the page protection flags, or zero if the access is not
1793 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1794 int access_type, int is_user)
1798 if (domain_prot == 3) {
1799 return PAGE_READ | PAGE_WRITE;
1802 if (access_type == 1)
1805 prot_ro = PAGE_READ;
1809 if (access_type == 1)
1811 switch ((env->cp15.c1_sys >> 8) & 3) {
1813 return is_user ? 0 : PAGE_READ;
1820 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1825 return PAGE_READ | PAGE_WRITE;
1827 return PAGE_READ | PAGE_WRITE;
1828 case 4: /* Reserved. */
1831 return is_user ? 0 : prot_ro;
1835 if (!arm_feature (env, ARM_FEATURE_V6K))
1843 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1847 if (address & env->cp15.c2_mask)
1848 table = env->cp15.c2_base1 & 0xffffc000;
1850 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1852 table |= (address >> 18) & 0x3ffc;
1856 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1857 int is_user, uint32_t *phys_ptr, int *prot,
1858 target_ulong *page_size)
1869 /* Pagetable walk. */
1870 /* Lookup l1 descriptor. */
1871 table = get_level1_table_address(env, address);
1872 desc = ldl_phys(table);
1874 domain = (desc >> 5) & 0x0f;
1875 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1877 /* Section translation fault. */
1881 if (domain_prot == 0 || domain_prot == 2) {
1883 code = 9; /* Section domain fault. */
1885 code = 11; /* Page domain fault. */
1890 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1891 ap = (desc >> 10) & 3;
1893 *page_size = 1024 * 1024;
1895 /* Lookup l2 entry. */
1897 /* Coarse pagetable. */
1898 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1900 /* Fine pagetable. */
1901 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1903 desc = ldl_phys(table);
1905 case 0: /* Page translation fault. */
1908 case 1: /* 64k page. */
1909 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1910 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1911 *page_size = 0x10000;
1913 case 2: /* 4k page. */
1914 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1915 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1916 *page_size = 0x1000;
1918 case 3: /* 1k page. */
1920 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1921 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1923 /* Page translation fault. */
1928 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1930 ap = (desc >> 4) & 3;
1934 /* Never happens, but compiler isn't smart enough to tell. */
1939 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1941 /* Access permission fault. */
1945 *phys_ptr = phys_addr;
1948 return code | (domain << 4);
1951 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1952 int is_user, uint32_t *phys_ptr, int *prot,
1953 target_ulong *page_size)
1966 /* Pagetable walk. */
1967 /* Lookup l1 descriptor. */
1968 table = get_level1_table_address(env, address);
1969 desc = ldl_phys(table);
1971 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
1972 /* Section translation fault, or attempt to use the encoding
1973 * which is Reserved on implementations without PXN.
1978 if ((type == 1) || !(desc & (1 << 18))) {
1979 /* Page or Section. */
1980 domain = (desc >> 5) & 0x0f;
1982 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1983 if (domain_prot == 0 || domain_prot == 2) {
1985 code = 9; /* Section domain fault. */
1987 code = 11; /* Page domain fault. */
1992 if (desc & (1 << 18)) {
1994 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1995 *page_size = 0x1000000;
1998 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1999 *page_size = 0x100000;
2001 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2002 xn = desc & (1 << 4);
2006 if (arm_feature(env, ARM_FEATURE_PXN)) {
2007 pxn = (desc >> 2) & 1;
2009 /* Lookup l2 entry. */
2010 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2011 desc = ldl_phys(table);
2012 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2014 case 0: /* Page translation fault. */
2017 case 1: /* 64k page. */
2018 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2019 xn = desc & (1 << 15);
2020 *page_size = 0x10000;
2022 case 2: case 3: /* 4k page. */
2023 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2025 *page_size = 0x1000;
2028 /* Never happens, but compiler isn't smart enough to tell. */
2033 if (domain_prot == 3) {
2034 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2036 if (pxn && !is_user) {
2039 if (xn && access_type == 2)
2042 /* The simplified model uses AP[0] as an access control bit. */
2043 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2044 /* Access flag fault. */
2045 code = (code == 15) ? 6 : 3;
2048 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2050 /* Access permission fault. */
2057 *phys_ptr = phys_addr;
2060 return code | (domain << 4);
2063 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
2064 int is_user, uint32_t *phys_ptr, int *prot)
2070 *phys_ptr = address;
2071 for (n = 7; n >= 0; n--) {
2072 base = env->cp15.c6_region[n];
2073 if ((base & 1) == 0)
2075 mask = 1 << ((base >> 1) & 0x1f);
2076 /* Keep this shift separate from the above to avoid an
2077 (undefined) << 32. */
2078 mask = (mask << 1) - 1;
2079 if (((base ^ address) & ~mask) == 0)
2085 if (access_type == 2) {
2086 mask = env->cp15.c5_insn;
2088 mask = env->cp15.c5_data;
2090 mask = (mask >> (n * 4)) & 0xf;
2097 *prot = PAGE_READ | PAGE_WRITE;
2102 *prot |= PAGE_WRITE;
2105 *prot = PAGE_READ | PAGE_WRITE;
2116 /* Bad permission. */
2123 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2124 int access_type, int is_user,
2125 uint32_t *phys_ptr, int *prot,
2126 target_ulong *page_size)
2128 /* Fast Context Switch Extension. */
2129 if (address < 0x02000000)
2130 address += env->cp15.c13_fcse;
2132 if ((env->cp15.c1_sys & 1) == 0) {
2133 /* MMU/MPU disabled. */
2134 *phys_ptr = address;
2135 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2136 *page_size = TARGET_PAGE_SIZE;
2138 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2139 *page_size = TARGET_PAGE_SIZE;
2140 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2142 } else if (env->cp15.c1_sys & (1 << 23)) {
2143 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2146 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2151 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2152 int access_type, int mmu_idx)
2155 target_ulong page_size;
2159 is_user = mmu_idx == MMU_USER_IDX;
2160 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2163 /* Map a single [sub]page. */
2164 phys_addr &= ~(uint32_t)0x3ff;
2165 address &= ~(uint32_t)0x3ff;
2166 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2170 if (access_type == 2) {
2171 env->cp15.c5_insn = ret;
2172 env->cp15.c6_insn = address;
2173 env->exception_index = EXCP_PREFETCH_ABORT;
2175 env->cp15.c5_data = ret;
2176 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2177 env->cp15.c5_data |= (1 << 11);
2178 env->cp15.c6_data = address;
2179 env->exception_index = EXCP_DATA_ABORT;
2184 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2187 target_ulong page_size;
2191 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2199 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2201 if ((env->uncached_cpsr & CPSR_M) == mode) {
2202 env->regs[13] = val;
2204 env->banked_r13[bank_number(env, mode)] = val;
2208 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2210 if ((env->uncached_cpsr & CPSR_M) == mode) {
2211 return env->regs[13];
2213 return env->banked_r13[bank_number(env, mode)];
2217 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2221 return xpsr_read(env) & 0xf8000000;
2223 return xpsr_read(env) & 0xf80001ff;
2225 return xpsr_read(env) & 0xff00fc00;
2227 return xpsr_read(env) & 0xff00fdff;
2229 return xpsr_read(env) & 0x000001ff;
2231 return xpsr_read(env) & 0x0700fc00;
2233 return xpsr_read(env) & 0x0700edff;
2235 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2237 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2238 case 16: /* PRIMASK */
2239 return (env->uncached_cpsr & CPSR_I) != 0;
2240 case 17: /* BASEPRI */
2241 case 18: /* BASEPRI_MAX */
2242 return env->v7m.basepri;
2243 case 19: /* FAULTMASK */
2244 return (env->uncached_cpsr & CPSR_F) != 0;
2245 case 20: /* CONTROL */
2246 return env->v7m.control;
2248 /* ??? For debugging only. */
2249 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2254 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2258 xpsr_write(env, val, 0xf8000000);
2261 xpsr_write(env, val, 0xf8000000);
2264 xpsr_write(env, val, 0xfe00fc00);
2267 xpsr_write(env, val, 0xfe00fc00);
2270 /* IPSR bits are readonly. */
2273 xpsr_write(env, val, 0x0600fc00);
2276 xpsr_write(env, val, 0x0600fc00);
2279 if (env->v7m.current_sp)
2280 env->v7m.other_sp = val;
2282 env->regs[13] = val;
2285 if (env->v7m.current_sp)
2286 env->regs[13] = val;
2288 env->v7m.other_sp = val;
2290 case 16: /* PRIMASK */
2292 env->uncached_cpsr |= CPSR_I;
2294 env->uncached_cpsr &= ~CPSR_I;
2296 case 17: /* BASEPRI */
2297 env->v7m.basepri = val & 0xff;
2299 case 18: /* BASEPRI_MAX */
2301 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2302 env->v7m.basepri = val;
2304 case 19: /* FAULTMASK */
2306 env->uncached_cpsr |= CPSR_F;
2308 env->uncached_cpsr &= ~CPSR_F;
2310 case 20: /* CONTROL */
2311 env->v7m.control = val & 3;
2312 switch_v7m_sp(env, (val & 2) != 0);
2315 /* ??? For debugging only. */
2316 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2323 /* Note that signed overflow is undefined in C. The following routines are
2324 careful to use unsigned types where modulo arithmetic is required.
2325 Failure to do so _will_ break on newer gcc. */
2327 /* Signed saturating arithmetic. */
2329 /* Perform 16-bit signed saturating addition. */
2330 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2335 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2344 /* Perform 8-bit signed saturating addition. */
2345 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2350 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2359 /* Perform 16-bit signed saturating subtraction. */
2360 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2365 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2374 /* Perform 8-bit signed saturating subtraction. */
2375 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2380 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2389 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2390 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2391 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2392 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2395 #include "op_addsub.h"
2397 /* Unsigned saturating arithmetic. */
2398 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2407 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2415 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2424 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2432 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2433 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2434 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2435 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2438 #include "op_addsub.h"
2440 /* Signed modulo arithmetic. */
2441 #define SARITH16(a, b, n, op) do { \
2443 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2444 RESULT(sum, n, 16); \
2446 ge |= 3 << (n * 2); \
2449 #define SARITH8(a, b, n, op) do { \
2451 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2452 RESULT(sum, n, 8); \
2458 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2459 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2460 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2461 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2465 #include "op_addsub.h"
2467 /* Unsigned modulo arithmetic. */
2468 #define ADD16(a, b, n) do { \
2470 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2471 RESULT(sum, n, 16); \
2472 if ((sum >> 16) == 1) \
2473 ge |= 3 << (n * 2); \
2476 #define ADD8(a, b, n) do { \
2478 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2479 RESULT(sum, n, 8); \
2480 if ((sum >> 8) == 1) \
2484 #define SUB16(a, b, n) do { \
2486 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2487 RESULT(sum, n, 16); \
2488 if ((sum >> 16) == 0) \
2489 ge |= 3 << (n * 2); \
2492 #define SUB8(a, b, n) do { \
2494 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2495 RESULT(sum, n, 8); \
2496 if ((sum >> 8) == 0) \
2503 #include "op_addsub.h"
2505 /* Halved signed arithmetic. */
2506 #define ADD16(a, b, n) \
2507 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2508 #define SUB16(a, b, n) \
2509 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2510 #define ADD8(a, b, n) \
2511 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2512 #define SUB8(a, b, n) \
2513 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2516 #include "op_addsub.h"
2518 /* Halved unsigned arithmetic. */
2519 #define ADD16(a, b, n) \
2520 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2521 #define SUB16(a, b, n) \
2522 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2523 #define ADD8(a, b, n) \
2524 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2525 #define SUB8(a, b, n) \
2526 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2529 #include "op_addsub.h"
2531 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2539 /* Unsigned sum of absolute byte differences. */
2540 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2543 sum = do_usad(a, b);
2544 sum += do_usad(a >> 8, b >> 8);
2545 sum += do_usad(a >> 16, b >>16);
2546 sum += do_usad(a >> 24, b >> 24);
2550 /* For ARMv6 SEL instruction. */
2551 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2564 return (a & mask) | (b & ~mask);
2567 uint32_t HELPER(logicq_cc)(uint64_t val)
2569 return (val >> 32) | (val != 0);
2572 /* VFP support. We follow the convention used for VFP instrunctions:
2573 Single precition routines have a "s" suffix, double precision a
2576 /* Convert host exception flags to vfp form. */
2577 static inline int vfp_exceptbits_from_host(int host_bits)
2579 int target_bits = 0;
2581 if (host_bits & float_flag_invalid)
2583 if (host_bits & float_flag_divbyzero)
2585 if (host_bits & float_flag_overflow)
2587 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2589 if (host_bits & float_flag_inexact)
2590 target_bits |= 0x10;
2591 if (host_bits & float_flag_input_denormal)
2592 target_bits |= 0x80;
2596 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2601 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2602 | (env->vfp.vec_len << 16)
2603 | (env->vfp.vec_stride << 20);
2604 i = get_float_exception_flags(&env->vfp.fp_status);
2605 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2606 fpscr |= vfp_exceptbits_from_host(i);
2610 uint32_t vfp_get_fpscr(CPUARMState *env)
2612 return HELPER(vfp_get_fpscr)(env);
2615 /* Convert vfp exception flags to target form. */
2616 static inline int vfp_exceptbits_to_host(int target_bits)
2620 if (target_bits & 1)
2621 host_bits |= float_flag_invalid;
2622 if (target_bits & 2)
2623 host_bits |= float_flag_divbyzero;
2624 if (target_bits & 4)
2625 host_bits |= float_flag_overflow;
2626 if (target_bits & 8)
2627 host_bits |= float_flag_underflow;
2628 if (target_bits & 0x10)
2629 host_bits |= float_flag_inexact;
2630 if (target_bits & 0x80)
2631 host_bits |= float_flag_input_denormal;
2635 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2640 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2641 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2642 env->vfp.vec_len = (val >> 16) & 7;
2643 env->vfp.vec_stride = (val >> 20) & 3;
2646 if (changed & (3 << 22)) {
2647 i = (val >> 22) & 3;
2650 i = float_round_nearest_even;
2656 i = float_round_down;
2659 i = float_round_to_zero;
2662 set_float_rounding_mode(i, &env->vfp.fp_status);
2664 if (changed & (1 << 24)) {
2665 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2666 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2668 if (changed & (1 << 25))
2669 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2671 i = vfp_exceptbits_to_host(val);
2672 set_float_exception_flags(i, &env->vfp.fp_status);
2673 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2676 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2678 HELPER(vfp_set_fpscr)(env, val);
2681 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2683 #define VFP_BINOP(name) \
2684 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2686 float_status *fpst = fpstp; \
2687 return float32_ ## name(a, b, fpst); \
2689 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2691 float_status *fpst = fpstp; \
2692 return float64_ ## name(a, b, fpst); \
2700 float32 VFP_HELPER(neg, s)(float32 a)
2702 return float32_chs(a);
2705 float64 VFP_HELPER(neg, d)(float64 a)
2707 return float64_chs(a);
2710 float32 VFP_HELPER(abs, s)(float32 a)
2712 return float32_abs(a);
2715 float64 VFP_HELPER(abs, d)(float64 a)
2717 return float64_abs(a);
2720 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2722 return float32_sqrt(a, &env->vfp.fp_status);
2725 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2727 return float64_sqrt(a, &env->vfp.fp_status);
2730 /* XXX: check quiet/signaling case */
2731 #define DO_VFP_cmp(p, type) \
2732 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2735 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2736 case 0: flags = 0x6; break; \
2737 case -1: flags = 0x8; break; \
2738 case 1: flags = 0x2; break; \
2739 default: case 2: flags = 0x3; break; \
2741 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2742 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2744 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2747 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2748 case 0: flags = 0x6; break; \
2749 case -1: flags = 0x8; break; \
2750 case 1: flags = 0x2; break; \
2751 default: case 2: flags = 0x3; break; \
2753 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2754 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2756 DO_VFP_cmp(s, float32)
2757 DO_VFP_cmp(d, float64)
2760 /* Integer to float and float to integer conversions */
2762 #define CONV_ITOF(name, fsz, sign) \
2763 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2765 float_status *fpst = fpstp; \
2766 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2769 #define CONV_FTOI(name, fsz, sign, round) \
2770 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2772 float_status *fpst = fpstp; \
2773 if (float##fsz##_is_any_nan(x)) { \
2774 float_raise(float_flag_invalid, fpst); \
2777 return float##fsz##_to_##sign##int32##round(x, fpst); \
2780 #define FLOAT_CONVS(name, p, fsz, sign) \
2781 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2782 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2783 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2785 FLOAT_CONVS(si, s, 32, )
2786 FLOAT_CONVS(si, d, 64, )
2787 FLOAT_CONVS(ui, s, 32, u)
2788 FLOAT_CONVS(ui, d, 64, u)
2794 /* floating point conversion */
2795 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2797 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2798 /* ARM requires that S<->D conversion of any kind of NaN generates
2799 * a quiet NaN by forcing the most significant frac bit to 1.
2801 return float64_maybe_silence_nan(r);
2804 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2806 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2807 /* ARM requires that S<->D conversion of any kind of NaN generates
2808 * a quiet NaN by forcing the most significant frac bit to 1.
2810 return float32_maybe_silence_nan(r);
2813 /* VFP3 fixed point conversion. */
2814 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2815 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2818 float_status *fpst = fpstp; \
2820 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2821 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2823 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2826 float_status *fpst = fpstp; \
2828 if (float##fsz##_is_any_nan(x)) { \
2829 float_raise(float_flag_invalid, fpst); \
2832 tmp = float##fsz##_scalbn(x, shift, fpst); \
2833 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2836 VFP_CONV_FIX(sh, d, 64, int16, )
2837 VFP_CONV_FIX(sl, d, 64, int32, )
2838 VFP_CONV_FIX(uh, d, 64, uint16, u)
2839 VFP_CONV_FIX(ul, d, 64, uint32, u)
2840 VFP_CONV_FIX(sh, s, 32, int16, )
2841 VFP_CONV_FIX(sl, s, 32, int32, )
2842 VFP_CONV_FIX(uh, s, 32, uint16, u)
2843 VFP_CONV_FIX(ul, s, 32, uint32, u)
2846 /* Half precision conversions. */
2847 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2849 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2850 float32 r = float16_to_float32(make_float16(a), ieee, s);
2852 return float32_maybe_silence_nan(r);
2857 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2859 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2860 float16 r = float32_to_float16(a, ieee, s);
2862 r = float16_maybe_silence_nan(r);
2864 return float16_val(r);
2867 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2869 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2872 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2874 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2877 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2879 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2882 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2884 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2887 #define float32_two make_float32(0x40000000)
2888 #define float32_three make_float32(0x40400000)
2889 #define float32_one_point_five make_float32(0x3fc00000)
2891 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2893 float_status *s = &env->vfp.standard_fp_status;
2894 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2895 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2896 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2897 float_raise(float_flag_input_denormal, s);
2901 return float32_sub(float32_two, float32_mul(a, b, s), s);
2904 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2906 float_status *s = &env->vfp.standard_fp_status;
2908 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2909 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2910 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2911 float_raise(float_flag_input_denormal, s);
2913 return float32_one_point_five;
2915 product = float32_mul(a, b, s);
2916 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2921 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2922 * int->float conversions at run-time. */
2923 #define float64_256 make_float64(0x4070000000000000LL)
2924 #define float64_512 make_float64(0x4080000000000000LL)
2926 /* The algorithm that must be used to calculate the estimate
2927 * is specified by the ARM ARM.
2929 static float64 recip_estimate(float64 a, CPUARMState *env)
2931 /* These calculations mustn't set any fp exception flags,
2932 * so we use a local copy of the fp_status.
2934 float_status dummy_status = env->vfp.standard_fp_status;
2935 float_status *s = &dummy_status;
2936 /* q = (int)(a * 512.0) */
2937 float64 q = float64_mul(float64_512, a, s);
2938 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2940 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2941 q = int64_to_float64(q_int, s);
2942 q = float64_add(q, float64_half, s);
2943 q = float64_div(q, float64_512, s);
2944 q = float64_div(float64_one, q, s);
2946 /* s = (int)(256.0 * r + 0.5) */
2947 q = float64_mul(q, float64_256, s);
2948 q = float64_add(q, float64_half, s);
2949 q_int = float64_to_int64_round_to_zero(q, s);
2951 /* return (double)s / 256.0 */
2952 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2955 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2957 float_status *s = &env->vfp.standard_fp_status;
2959 uint32_t val32 = float32_val(a);
2962 int a_exp = (val32 & 0x7f800000) >> 23;
2963 int sign = val32 & 0x80000000;
2965 if (float32_is_any_nan(a)) {
2966 if (float32_is_signaling_nan(a)) {
2967 float_raise(float_flag_invalid, s);
2969 return float32_default_nan;
2970 } else if (float32_is_infinity(a)) {
2971 return float32_set_sign(float32_zero, float32_is_neg(a));
2972 } else if (float32_is_zero_or_denormal(a)) {
2973 if (!float32_is_zero(a)) {
2974 float_raise(float_flag_input_denormal, s);
2976 float_raise(float_flag_divbyzero, s);
2977 return float32_set_sign(float32_infinity, float32_is_neg(a));
2978 } else if (a_exp >= 253) {
2979 float_raise(float_flag_underflow, s);
2980 return float32_set_sign(float32_zero, float32_is_neg(a));
2983 f64 = make_float64((0x3feULL << 52)
2984 | ((int64_t)(val32 & 0x7fffff) << 29));
2986 result_exp = 253 - a_exp;
2988 f64 = recip_estimate(f64, env);
2991 | ((result_exp & 0xff) << 23)
2992 | ((float64_val(f64) >> 29) & 0x7fffff);
2993 return make_float32(val32);
2996 /* The algorithm that must be used to calculate the estimate
2997 * is specified by the ARM ARM.
2999 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3001 /* These calculations mustn't set any fp exception flags,
3002 * so we use a local copy of the fp_status.
3004 float_status dummy_status = env->vfp.standard_fp_status;
3005 float_status *s = &dummy_status;
3009 if (float64_lt(a, float64_half, s)) {
3010 /* range 0.25 <= a < 0.5 */
3012 /* a in units of 1/512 rounded down */
3013 /* q0 = (int)(a * 512.0); */
3014 q = float64_mul(float64_512, a, s);
3015 q_int = float64_to_int64_round_to_zero(q, s);
3017 /* reciprocal root r */
3018 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3019 q = int64_to_float64(q_int, s);
3020 q = float64_add(q, float64_half, s);
3021 q = float64_div(q, float64_512, s);
3022 q = float64_sqrt(q, s);
3023 q = float64_div(float64_one, q, s);
3025 /* range 0.5 <= a < 1.0 */
3027 /* a in units of 1/256 rounded down */
3028 /* q1 = (int)(a * 256.0); */
3029 q = float64_mul(float64_256, a, s);
3030 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3032 /* reciprocal root r */
3033 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3034 q = int64_to_float64(q_int, s);
3035 q = float64_add(q, float64_half, s);
3036 q = float64_div(q, float64_256, s);
3037 q = float64_sqrt(q, s);
3038 q = float64_div(float64_one, q, s);
3040 /* r in units of 1/256 rounded to nearest */
3041 /* s = (int)(256.0 * r + 0.5); */
3043 q = float64_mul(q, float64_256,s );
3044 q = float64_add(q, float64_half, s);
3045 q_int = float64_to_int64_round_to_zero(q, s);
3047 /* return (double)s / 256.0;*/
3048 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3051 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3053 float_status *s = &env->vfp.standard_fp_status;
3059 val = float32_val(a);
3061 if (float32_is_any_nan(a)) {
3062 if (float32_is_signaling_nan(a)) {
3063 float_raise(float_flag_invalid, s);
3065 return float32_default_nan;
3066 } else if (float32_is_zero_or_denormal(a)) {
3067 if (!float32_is_zero(a)) {
3068 float_raise(float_flag_input_denormal, s);
3070 float_raise(float_flag_divbyzero, s);
3071 return float32_set_sign(float32_infinity, float32_is_neg(a));
3072 } else if (float32_is_neg(a)) {
3073 float_raise(float_flag_invalid, s);
3074 return float32_default_nan;
3075 } else if (float32_is_infinity(a)) {
3076 return float32_zero;
3079 /* Normalize to a double-precision value between 0.25 and 1.0,
3080 * preserving the parity of the exponent. */
3081 if ((val & 0x800000) == 0) {
3082 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3084 | ((uint64_t)(val & 0x7fffff) << 29));
3086 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3088 | ((uint64_t)(val & 0x7fffff) << 29));
3091 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3093 f64 = recip_sqrt_estimate(f64, env);
3095 val64 = float64_val(f64);
3097 val = ((result_exp & 0xff) << 23)
3098 | ((val64 >> 29) & 0x7fffff);
3099 return make_float32(val);
3102 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3106 if ((a & 0x80000000) == 0) {
3110 f64 = make_float64((0x3feULL << 52)
3111 | ((int64_t)(a & 0x7fffffff) << 21));
3113 f64 = recip_estimate (f64, env);
3115 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3118 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3122 if ((a & 0xc0000000) == 0) {
3126 if (a & 0x80000000) {
3127 f64 = make_float64((0x3feULL << 52)
3128 | ((uint64_t)(a & 0x7fffffff) << 21));
3129 } else { /* bits 31-30 == '01' */
3130 f64 = make_float64((0x3fdULL << 52)
3131 | ((uint64_t)(a & 0x3fffffff) << 22));
3134 f64 = recip_sqrt_estimate(f64, env);
3136 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3139 /* VFPv4 fused multiply-accumulate */
3140 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3142 float_status *fpst = fpstp;
3143 return float32_muladd(a, b, c, 0, fpst);
3146 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3148 float_status *fpst = fpstp;
3149 return float64_muladd(a, b, c, 0, fpst);