]> Git Repo - qemu.git/blob - block/qcow2-refcount.c
block: implement the bdrv_reopen_prepare helper for LUKS driver
[qemu.git] / block / qcow2-refcount.c
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61
62
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82
83
84 /*********************************************************/
85 /* refcount handling */
86
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137
138
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226
227
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279
280     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281
282     return 0;
283 }
284
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291
292     return (block_a == block_b);
293 }
294
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312
313     if (refcount_table_index < s->refcount_table_size) {
314
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355
356     *refcount_block = NULL;
357
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366     if (new_block < 0) {
367         return new_block;
368     }
369
370     /* If we're allocating the block at offset 0 then something is wrong */
371     if (new_block == 0) {
372         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
373                                 "allocation of refcount block at offset 0");
374         return -EIO;
375     }
376
377 #ifdef DEBUG_ALLOC2
378     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379         " at %" PRIx64 "\n",
380         refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
382
383     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384         /* Zero the new refcount block before updating it */
385         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386                                     refcount_block);
387         if (ret < 0) {
388             goto fail;
389         }
390
391         memset(*refcount_block, 0, s->cluster_size);
392
393         /* The block describes itself, need to update the cache */
394         int block_index = (new_block >> s->cluster_bits) &
395             (s->refcount_block_size - 1);
396         s->set_refcount(*refcount_block, block_index, 1);
397     } else {
398         /* Described somewhere else. This can recurse at most twice before we
399          * arrive at a block that describes itself. */
400         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401                               QCOW2_DISCARD_NEVER);
402         if (ret < 0) {
403             goto fail;
404         }
405
406         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407         if (ret < 0) {
408             goto fail;
409         }
410
411         /* Initialize the new refcount block only after updating its refcount,
412          * update_refcount uses the refcount cache itself */
413         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414                                     refcount_block);
415         if (ret < 0) {
416             goto fail;
417         }
418
419         memset(*refcount_block, 0, s->cluster_size);
420     }
421
422     /* Now the new refcount block needs to be written to disk */
423     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
425     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426     if (ret < 0) {
427         goto fail;
428     }
429
430     /* If the refcount table is big enough, just hook the block up there */
431     if (refcount_table_index < s->refcount_table_size) {
432         uint64_t data64 = cpu_to_be64(new_block);
433         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434         ret = bdrv_pwrite_sync(bs->file,
435             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436             &data64, sizeof(data64));
437         if (ret < 0) {
438             goto fail;
439         }
440
441         s->refcount_table[refcount_table_index] = new_block;
442         /* If there's a hole in s->refcount_table then it can happen
443          * that refcount_table_index < s->max_refcount_table_index */
444         s->max_refcount_table_index =
445             MAX(s->max_refcount_table_index, refcount_table_index);
446
447         /* The new refcount block may be where the caller intended to put its
448          * data, so let it restart the search. */
449         return -EAGAIN;
450     }
451
452     qcow2_cache_put(s->refcount_block_cache, refcount_block);
453
454     /*
455      * If we come here, we need to grow the refcount table. Again, a new
456      * refcount table needs some space and we can't simply allocate to avoid
457      * endless recursion.
458      *
459      * Therefore let's grab new refcount blocks at the end of the image, which
460      * will describe themselves and the new refcount table. This way we can
461      * reference them only in the new table and do the switch to the new
462      * refcount table at once without producing an inconsistent state in
463      * between.
464      */
465     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
466
467     /* Calculate the number of refcount blocks needed so far; this will be the
468      * basis for calculating the index of the first cluster used for the
469      * self-describing refcount structures which we are about to create.
470      *
471      * Because we reached this point, there cannot be any refcount entries for
472      * cluster_index or higher indices yet. However, because new_block has been
473      * allocated to describe that cluster (and it will assume this role later
474      * on), we cannot use that index; also, new_block may actually have a higher
475      * cluster index than cluster_index, so it needs to be taken into account
476      * here (and 1 needs to be added to its value because that cluster is used).
477      */
478     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
479                                             (new_block >> s->cluster_bits) + 1),
480                                         s->refcount_block_size);
481
482     /* Create the new refcount table and blocks */
483     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
484         s->cluster_size;
485
486     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
487                               refcount_table_index, new_block);
488     if (ret < 0) {
489         return ret;
490     }
491
492     ret = load_refcount_block(bs, new_block, refcount_block);
493     if (ret < 0) {
494         return ret;
495     }
496
497     /* If we were trying to do the initial refcount update for some cluster
498      * allocation, we might have used the same clusters to store newly
499      * allocated metadata. Make the caller search some new space. */
500     return -EAGAIN;
501
502 fail:
503     if (*refcount_block != NULL) {
504         qcow2_cache_put(s->refcount_block_cache, refcount_block);
505     }
506     return ret;
507 }
508
509 /*
510  * Starting at @start_offset, this function creates new self-covering refcount
511  * structures: A new refcount table and refcount blocks which cover all of
512  * themselves, and a number of @additional_clusters beyond their end.
513  * @start_offset must be at the end of the image file, that is, there must be
514  * only empty space beyond it.
515  * If @exact_size is false, the refcount table will have 50 % more entries than
516  * necessary so it will not need to grow again soon.
517  * If @new_refblock_offset is not zero, it contains the offset of a refcount
518  * block that should be entered into the new refcount table at index
519  * @new_refblock_index.
520  *
521  * Returns: The offset after the new refcount structures (i.e. where the
522  *          @additional_clusters may be placed) on success, -errno on error.
523  */
524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
525                             uint64_t additional_clusters, bool exact_size,
526                             int new_refblock_index,
527                             uint64_t new_refblock_offset)
528 {
529     BDRVQcow2State *s = bs->opaque;
530     uint64_t total_refblock_count_u64, additional_refblock_count;
531     int total_refblock_count, table_size, area_reftable_index, table_clusters;
532     int i;
533     uint64_t table_offset, block_offset, end_offset;
534     int ret;
535     uint64_t *new_table;
536
537     assert(!(start_offset % s->cluster_size));
538
539     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
540                                  additional_clusters,
541                                  s->cluster_size, s->refcount_order,
542                                  !exact_size, &total_refblock_count_u64);
543     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
544         return -EFBIG;
545     }
546     total_refblock_count = total_refblock_count_u64;
547
548     /* Index in the refcount table of the first refcount block to cover the area
549      * of refcount structures we are about to create; we know that
550      * @total_refblock_count can cover @start_offset, so this will definitely
551      * fit into an int. */
552     area_reftable_index = (start_offset / s->cluster_size) /
553                           s->refcount_block_size;
554
555     if (exact_size) {
556         table_size = total_refblock_count;
557     } else {
558         table_size = total_refblock_count +
559                      DIV_ROUND_UP(total_refblock_count, 2);
560     }
561     /* The qcow2 file can only store the reftable size in number of clusters */
562     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
563     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
564
565     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
566         return -EFBIG;
567     }
568
569     new_table = g_try_new0(uint64_t, table_size);
570
571     assert(table_size > 0);
572     if (new_table == NULL) {
573         ret = -ENOMEM;
574         goto fail;
575     }
576
577     /* Fill the new refcount table */
578     if (table_size > s->max_refcount_table_index) {
579         /* We're actually growing the reftable */
580         memcpy(new_table, s->refcount_table,
581                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
582     } else {
583         /* Improbable case: We're shrinking the reftable. However, the caller
584          * has assured us that there is only empty space beyond @start_offset,
585          * so we can simply drop all of the refblocks that won't fit into the
586          * new reftable. */
587         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
588     }
589
590     if (new_refblock_offset) {
591         assert(new_refblock_index < total_refblock_count);
592         new_table[new_refblock_index] = new_refblock_offset;
593     }
594
595     /* Count how many new refblocks we have to create */
596     additional_refblock_count = 0;
597     for (i = area_reftable_index; i < total_refblock_count; i++) {
598         if (!new_table[i]) {
599             additional_refblock_count++;
600         }
601     }
602
603     table_offset = start_offset + additional_refblock_count * s->cluster_size;
604     end_offset = table_offset + table_clusters * s->cluster_size;
605
606     /* Fill the refcount blocks, and create new ones, if necessary */
607     block_offset = start_offset;
608     for (i = area_reftable_index; i < total_refblock_count; i++) {
609         void *refblock_data;
610         uint64_t first_offset_covered;
611
612         /* Reuse an existing refblock if possible, create a new one otherwise */
613         if (new_table[i]) {
614             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
615                                   &refblock_data);
616             if (ret < 0) {
617                 goto fail;
618             }
619         } else {
620             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
621                                         block_offset, &refblock_data);
622             if (ret < 0) {
623                 goto fail;
624             }
625             memset(refblock_data, 0, s->cluster_size);
626             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
627                                          refblock_data);
628
629             new_table[i] = block_offset;
630             block_offset += s->cluster_size;
631         }
632
633         /* First host offset covered by this refblock */
634         first_offset_covered = (uint64_t)i * s->refcount_block_size *
635                                s->cluster_size;
636         if (first_offset_covered < end_offset) {
637             int j, end_index;
638
639             /* Set the refcount of all of the new refcount structures to 1 */
640
641             if (first_offset_covered < start_offset) {
642                 assert(i == area_reftable_index);
643                 j = (start_offset - first_offset_covered) / s->cluster_size;
644                 assert(j < s->refcount_block_size);
645             } else {
646                 j = 0;
647             }
648
649             end_index = MIN((end_offset - first_offset_covered) /
650                             s->cluster_size,
651                             s->refcount_block_size);
652
653             for (; j < end_index; j++) {
654                 /* The caller guaranteed us this space would be empty */
655                 assert(s->get_refcount(refblock_data, j) == 0);
656                 s->set_refcount(refblock_data, j, 1);
657             }
658
659             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
660                                          refblock_data);
661         }
662
663         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
664     }
665
666     assert(block_offset == table_offset);
667
668     /* Write refcount blocks to disk */
669     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
670     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
671     if (ret < 0) {
672         goto fail;
673     }
674
675     /* Write refcount table to disk */
676     for (i = 0; i < total_refblock_count; i++) {
677         cpu_to_be64s(&new_table[i]);
678     }
679
680     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
681     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
682         table_size * sizeof(uint64_t));
683     if (ret < 0) {
684         goto fail;
685     }
686
687     for (i = 0; i < total_refblock_count; i++) {
688         be64_to_cpus(&new_table[i]);
689     }
690
691     /* Hook up the new refcount table in the qcow2 header */
692     struct QEMU_PACKED {
693         uint64_t d64;
694         uint32_t d32;
695     } data;
696     data.d64 = cpu_to_be64(table_offset);
697     data.d32 = cpu_to_be32(table_clusters);
698     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
699     ret = bdrv_pwrite_sync(bs->file,
700                            offsetof(QCowHeader, refcount_table_offset),
701                            &data, sizeof(data));
702     if (ret < 0) {
703         goto fail;
704     }
705
706     /* And switch it in memory */
707     uint64_t old_table_offset = s->refcount_table_offset;
708     uint64_t old_table_size = s->refcount_table_size;
709
710     g_free(s->refcount_table);
711     s->refcount_table = new_table;
712     s->refcount_table_size = table_size;
713     s->refcount_table_offset = table_offset;
714     update_max_refcount_table_index(s);
715
716     /* Free old table. */
717     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
718                         QCOW2_DISCARD_OTHER);
719
720     return end_offset;
721
722 fail:
723     g_free(new_table);
724     return ret;
725 }
726
727 void qcow2_process_discards(BlockDriverState *bs, int ret)
728 {
729     BDRVQcow2State *s = bs->opaque;
730     Qcow2DiscardRegion *d, *next;
731
732     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
733         QTAILQ_REMOVE(&s->discards, d, next);
734
735         /* Discard is optional, ignore the return value */
736         if (ret >= 0) {
737             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
738         }
739
740         g_free(d);
741     }
742 }
743
744 static void update_refcount_discard(BlockDriverState *bs,
745                                     uint64_t offset, uint64_t length)
746 {
747     BDRVQcow2State *s = bs->opaque;
748     Qcow2DiscardRegion *d, *p, *next;
749
750     QTAILQ_FOREACH(d, &s->discards, next) {
751         uint64_t new_start = MIN(offset, d->offset);
752         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
753
754         if (new_end - new_start <= length + d->bytes) {
755             /* There can't be any overlap, areas ending up here have no
756              * references any more and therefore shouldn't get freed another
757              * time. */
758             assert(d->bytes + length == new_end - new_start);
759             d->offset = new_start;
760             d->bytes = new_end - new_start;
761             goto found;
762         }
763     }
764
765     d = g_malloc(sizeof(*d));
766     *d = (Qcow2DiscardRegion) {
767         .bs     = bs,
768         .offset = offset,
769         .bytes  = length,
770     };
771     QTAILQ_INSERT_TAIL(&s->discards, d, next);
772
773 found:
774     /* Merge discard requests if they are adjacent now */
775     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
776         if (p == d
777             || p->offset > d->offset + d->bytes
778             || d->offset > p->offset + p->bytes)
779         {
780             continue;
781         }
782
783         /* Still no overlap possible */
784         assert(p->offset == d->offset + d->bytes
785             || d->offset == p->offset + p->bytes);
786
787         QTAILQ_REMOVE(&s->discards, p, next);
788         d->offset = MIN(d->offset, p->offset);
789         d->bytes += p->bytes;
790         g_free(p);
791     }
792 }
793
794 /* XXX: cache several refcount block clusters ? */
795 /* @addend is the absolute value of the addend; if @decrease is set, @addend
796  * will be subtracted from the current refcount, otherwise it will be added */
797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
798                                                    int64_t offset,
799                                                    int64_t length,
800                                                    uint64_t addend,
801                                                    bool decrease,
802                                                    enum qcow2_discard_type type)
803 {
804     BDRVQcow2State *s = bs->opaque;
805     int64_t start, last, cluster_offset;
806     void *refcount_block = NULL;
807     int64_t old_table_index = -1;
808     int ret;
809
810 #ifdef DEBUG_ALLOC2
811     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
812             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
813             addend);
814 #endif
815     if (length < 0) {
816         return -EINVAL;
817     } else if (length == 0) {
818         return 0;
819     }
820
821     if (decrease) {
822         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
823             s->l2_table_cache);
824     }
825
826     start = start_of_cluster(s, offset);
827     last = start_of_cluster(s, offset + length - 1);
828     for(cluster_offset = start; cluster_offset <= last;
829         cluster_offset += s->cluster_size)
830     {
831         int block_index;
832         uint64_t refcount;
833         int64_t cluster_index = cluster_offset >> s->cluster_bits;
834         int64_t table_index = cluster_index >> s->refcount_block_bits;
835
836         /* Load the refcount block and allocate it if needed */
837         if (table_index != old_table_index) {
838             if (refcount_block) {
839                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
840             }
841             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
842             if (ret < 0) {
843                 goto fail;
844             }
845         }
846         old_table_index = table_index;
847
848         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
849
850         /* we can update the count and save it */
851         block_index = cluster_index & (s->refcount_block_size - 1);
852
853         refcount = s->get_refcount(refcount_block, block_index);
854         if (decrease ? (refcount - addend > refcount)
855                      : (refcount + addend < refcount ||
856                         refcount + addend > s->refcount_max))
857         {
858             ret = -EINVAL;
859             goto fail;
860         }
861         if (decrease) {
862             refcount -= addend;
863         } else {
864             refcount += addend;
865         }
866         if (refcount == 0 && cluster_index < s->free_cluster_index) {
867             s->free_cluster_index = cluster_index;
868         }
869         s->set_refcount(refcount_block, block_index, refcount);
870
871         if (refcount == 0) {
872             void *table;
873
874             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
875                                                 offset);
876             if (table != NULL) {
877                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
878                 qcow2_cache_discard(s->refcount_block_cache, table);
879             }
880
881             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
882             if (table != NULL) {
883                 qcow2_cache_discard(s->l2_table_cache, table);
884             }
885
886             if (s->discard_passthrough[type]) {
887                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
888             }
889         }
890     }
891
892     ret = 0;
893 fail:
894     if (!s->cache_discards) {
895         qcow2_process_discards(bs, ret);
896     }
897
898     /* Write last changed block to disk */
899     if (refcount_block) {
900         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
901     }
902
903     /*
904      * Try do undo any updates if an error is returned (This may succeed in
905      * some cases like ENOSPC for allocating a new refcount block)
906      */
907     if (ret < 0) {
908         int dummy;
909         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
910                                 !decrease, QCOW2_DISCARD_NEVER);
911         (void)dummy;
912     }
913
914     return ret;
915 }
916
917 /*
918  * Increases or decreases the refcount of a given cluster.
919  *
920  * @addend is the absolute value of the addend; if @decrease is set, @addend
921  * will be subtracted from the current refcount, otherwise it will be added.
922  *
923  * On success 0 is returned; on failure -errno is returned.
924  */
925 int qcow2_update_cluster_refcount(BlockDriverState *bs,
926                                   int64_t cluster_index,
927                                   uint64_t addend, bool decrease,
928                                   enum qcow2_discard_type type)
929 {
930     BDRVQcow2State *s = bs->opaque;
931     int ret;
932
933     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
934                           decrease, type);
935     if (ret < 0) {
936         return ret;
937     }
938
939     return 0;
940 }
941
942
943
944 /*********************************************************/
945 /* cluster allocation functions */
946
947
948
949 /* return < 0 if error */
950 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
951 {
952     BDRVQcow2State *s = bs->opaque;
953     uint64_t i, nb_clusters, refcount;
954     int ret;
955
956     /* We can't allocate clusters if they may still be queued for discard. */
957     if (s->cache_discards) {
958         qcow2_process_discards(bs, 0);
959     }
960
961     nb_clusters = size_to_clusters(s, size);
962 retry:
963     for(i = 0; i < nb_clusters; i++) {
964         uint64_t next_cluster_index = s->free_cluster_index++;
965         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
966
967         if (ret < 0) {
968             return ret;
969         } else if (refcount != 0) {
970             goto retry;
971         }
972     }
973
974     /* Make sure that all offsets in the "allocated" range are representable
975      * in an int64_t */
976     if (s->free_cluster_index > 0 &&
977         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
978     {
979         return -EFBIG;
980     }
981
982 #ifdef DEBUG_ALLOC2
983     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
984             size,
985             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
986 #endif
987     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
988 }
989
990 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
991 {
992     int64_t offset;
993     int ret;
994
995     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
996     do {
997         offset = alloc_clusters_noref(bs, size);
998         if (offset < 0) {
999             return offset;
1000         }
1001
1002         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1003     } while (ret == -EAGAIN);
1004
1005     if (ret < 0) {
1006         return ret;
1007     }
1008
1009     return offset;
1010 }
1011
1012 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1013                                 int64_t nb_clusters)
1014 {
1015     BDRVQcow2State *s = bs->opaque;
1016     uint64_t cluster_index, refcount;
1017     uint64_t i;
1018     int ret;
1019
1020     assert(nb_clusters >= 0);
1021     if (nb_clusters == 0) {
1022         return 0;
1023     }
1024
1025     do {
1026         /* Check how many clusters there are free */
1027         cluster_index = offset >> s->cluster_bits;
1028         for(i = 0; i < nb_clusters; i++) {
1029             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1030             if (ret < 0) {
1031                 return ret;
1032             } else if (refcount != 0) {
1033                 break;
1034             }
1035         }
1036
1037         /* And then allocate them */
1038         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1039                               QCOW2_DISCARD_NEVER);
1040     } while (ret == -EAGAIN);
1041
1042     if (ret < 0) {
1043         return ret;
1044     }
1045
1046     return i;
1047 }
1048
1049 /* only used to allocate compressed sectors. We try to allocate
1050    contiguous sectors. size must be <= cluster_size */
1051 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1052 {
1053     BDRVQcow2State *s = bs->opaque;
1054     int64_t offset;
1055     size_t free_in_cluster;
1056     int ret;
1057
1058     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1059     assert(size > 0 && size <= s->cluster_size);
1060     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1061
1062     offset = s->free_byte_offset;
1063
1064     if (offset) {
1065         uint64_t refcount;
1066         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1067         if (ret < 0) {
1068             return ret;
1069         }
1070
1071         if (refcount == s->refcount_max) {
1072             offset = 0;
1073         }
1074     }
1075
1076     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1077     do {
1078         if (!offset || free_in_cluster < size) {
1079             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1080             if (new_cluster < 0) {
1081                 return new_cluster;
1082             }
1083
1084             if (new_cluster == 0) {
1085                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1086                                         "allocation of compressed cluster "
1087                                         "at offset 0");
1088                 return -EIO;
1089             }
1090
1091             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1092                 offset = new_cluster;
1093                 free_in_cluster = s->cluster_size;
1094             } else {
1095                 free_in_cluster += s->cluster_size;
1096             }
1097         }
1098
1099         assert(offset);
1100         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1101         if (ret < 0) {
1102             offset = 0;
1103         }
1104     } while (ret == -EAGAIN);
1105     if (ret < 0) {
1106         return ret;
1107     }
1108
1109     /* The cluster refcount was incremented; refcount blocks must be flushed
1110      * before the caller's L2 table updates. */
1111     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1112
1113     s->free_byte_offset = offset + size;
1114     if (!offset_into_cluster(s, s->free_byte_offset)) {
1115         s->free_byte_offset = 0;
1116     }
1117
1118     return offset;
1119 }
1120
1121 void qcow2_free_clusters(BlockDriverState *bs,
1122                           int64_t offset, int64_t size,
1123                           enum qcow2_discard_type type)
1124 {
1125     int ret;
1126
1127     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1128     ret = update_refcount(bs, offset, size, 1, true, type);
1129     if (ret < 0) {
1130         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1131         /* TODO Remember the clusters to free them later and avoid leaking */
1132     }
1133 }
1134
1135 /*
1136  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1137  * normal cluster, compressed cluster, etc.)
1138  */
1139 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1140                              int nb_clusters, enum qcow2_discard_type type)
1141 {
1142     BDRVQcow2State *s = bs->opaque;
1143
1144     switch (qcow2_get_cluster_type(l2_entry)) {
1145     case QCOW2_CLUSTER_COMPRESSED:
1146         {
1147             int nb_csectors;
1148             nb_csectors = ((l2_entry >> s->csize_shift) &
1149                            s->csize_mask) + 1;
1150             qcow2_free_clusters(bs,
1151                 (l2_entry & s->cluster_offset_mask) & ~511,
1152                 nb_csectors * 512, type);
1153         }
1154         break;
1155     case QCOW2_CLUSTER_NORMAL:
1156     case QCOW2_CLUSTER_ZERO_ALLOC:
1157         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1158             qcow2_signal_corruption(bs, false, -1, -1,
1159                                     "Cannot free unaligned cluster %#llx",
1160                                     l2_entry & L2E_OFFSET_MASK);
1161         } else {
1162             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1163                                 nb_clusters << s->cluster_bits, type);
1164         }
1165         break;
1166     case QCOW2_CLUSTER_ZERO_PLAIN:
1167     case QCOW2_CLUSTER_UNALLOCATED:
1168         break;
1169     default:
1170         abort();
1171     }
1172 }
1173
1174
1175
1176 /*********************************************************/
1177 /* snapshots and image creation */
1178
1179
1180
1181 /* update the refcounts of snapshots and the copied flag */
1182 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1183     int64_t l1_table_offset, int l1_size, int addend)
1184 {
1185     BDRVQcow2State *s = bs->opaque;
1186     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1187     bool l1_allocated = false;
1188     int64_t old_entry, old_l2_offset;
1189     unsigned slice, slice_size2, n_slices;
1190     int i, j, l1_modified = 0, nb_csectors;
1191     int ret;
1192
1193     assert(addend >= -1 && addend <= 1);
1194
1195     l2_slice = NULL;
1196     l1_table = NULL;
1197     l1_size2 = l1_size * sizeof(uint64_t);
1198     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1199     n_slices = s->cluster_size / slice_size2;
1200
1201     s->cache_discards = true;
1202
1203     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1204      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1205      * when changing this! */
1206     if (l1_table_offset != s->l1_table_offset) {
1207         l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1208         if (l1_size2 && l1_table == NULL) {
1209             ret = -ENOMEM;
1210             goto fail;
1211         }
1212         l1_allocated = true;
1213
1214         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1215         if (ret < 0) {
1216             goto fail;
1217         }
1218
1219         for (i = 0; i < l1_size; i++) {
1220             be64_to_cpus(&l1_table[i]);
1221         }
1222     } else {
1223         assert(l1_size == s->l1_size);
1224         l1_table = s->l1_table;
1225         l1_allocated = false;
1226     }
1227
1228     for (i = 0; i < l1_size; i++) {
1229         l2_offset = l1_table[i];
1230         if (l2_offset) {
1231             old_l2_offset = l2_offset;
1232             l2_offset &= L1E_OFFSET_MASK;
1233
1234             if (offset_into_cluster(s, l2_offset)) {
1235                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1236                                         PRIx64 " unaligned (L1 index: %#x)",
1237                                         l2_offset, i);
1238                 ret = -EIO;
1239                 goto fail;
1240             }
1241
1242             for (slice = 0; slice < n_slices; slice++) {
1243                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1244                                       l2_offset + slice * slice_size2,
1245                                       (void **) &l2_slice);
1246                 if (ret < 0) {
1247                     goto fail;
1248                 }
1249
1250                 for (j = 0; j < s->l2_slice_size; j++) {
1251                     uint64_t cluster_index;
1252                     uint64_t offset;
1253
1254                     entry = be64_to_cpu(l2_slice[j]);
1255                     old_entry = entry;
1256                     entry &= ~QCOW_OFLAG_COPIED;
1257                     offset = entry & L2E_OFFSET_MASK;
1258
1259                     switch (qcow2_get_cluster_type(entry)) {
1260                     case QCOW2_CLUSTER_COMPRESSED:
1261                         nb_csectors = ((entry >> s->csize_shift) &
1262                                        s->csize_mask) + 1;
1263                         if (addend != 0) {
1264                             ret = update_refcount(
1265                                 bs, (entry & s->cluster_offset_mask) & ~511,
1266                                 nb_csectors * 512, abs(addend), addend < 0,
1267                                 QCOW2_DISCARD_SNAPSHOT);
1268                             if (ret < 0) {
1269                                 goto fail;
1270                             }
1271                         }
1272                         /* compressed clusters are never modified */
1273                         refcount = 2;
1274                         break;
1275
1276                     case QCOW2_CLUSTER_NORMAL:
1277                     case QCOW2_CLUSTER_ZERO_ALLOC:
1278                         if (offset_into_cluster(s, offset)) {
1279                             /* Here l2_index means table (not slice) index */
1280                             int l2_index = slice * s->l2_slice_size + j;
1281                             qcow2_signal_corruption(
1282                                 bs, true, -1, -1, "Cluster "
1283                                 "allocation offset %#" PRIx64
1284                                 " unaligned (L2 offset: %#"
1285                                 PRIx64 ", L2 index: %#x)",
1286                                 offset, l2_offset, l2_index);
1287                             ret = -EIO;
1288                             goto fail;
1289                         }
1290
1291                         cluster_index = offset >> s->cluster_bits;
1292                         assert(cluster_index);
1293                         if (addend != 0) {
1294                             ret = qcow2_update_cluster_refcount(
1295                                 bs, cluster_index, abs(addend), addend < 0,
1296                                 QCOW2_DISCARD_SNAPSHOT);
1297                             if (ret < 0) {
1298                                 goto fail;
1299                             }
1300                         }
1301
1302                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1303                         if (ret < 0) {
1304                             goto fail;
1305                         }
1306                         break;
1307
1308                     case QCOW2_CLUSTER_ZERO_PLAIN:
1309                     case QCOW2_CLUSTER_UNALLOCATED:
1310                         refcount = 0;
1311                         break;
1312
1313                     default:
1314                         abort();
1315                     }
1316
1317                     if (refcount == 1) {
1318                         entry |= QCOW_OFLAG_COPIED;
1319                     }
1320                     if (entry != old_entry) {
1321                         if (addend > 0) {
1322                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1323                                                        s->refcount_block_cache);
1324                         }
1325                         l2_slice[j] = cpu_to_be64(entry);
1326                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1327                                                      l2_slice);
1328                     }
1329                 }
1330
1331                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1332             }
1333
1334             if (addend != 0) {
1335                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1336                                                         s->cluster_bits,
1337                                                     abs(addend), addend < 0,
1338                                                     QCOW2_DISCARD_SNAPSHOT);
1339                 if (ret < 0) {
1340                     goto fail;
1341                 }
1342             }
1343             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1344                                      &refcount);
1345             if (ret < 0) {
1346                 goto fail;
1347             } else if (refcount == 1) {
1348                 l2_offset |= QCOW_OFLAG_COPIED;
1349             }
1350             if (l2_offset != old_l2_offset) {
1351                 l1_table[i] = l2_offset;
1352                 l1_modified = 1;
1353             }
1354         }
1355     }
1356
1357     ret = bdrv_flush(bs);
1358 fail:
1359     if (l2_slice) {
1360         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1361     }
1362
1363     s->cache_discards = false;
1364     qcow2_process_discards(bs, ret);
1365
1366     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1367     if (ret == 0 && addend >= 0 && l1_modified) {
1368         for (i = 0; i < l1_size; i++) {
1369             cpu_to_be64s(&l1_table[i]);
1370         }
1371
1372         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1373                                l1_table, l1_size2);
1374
1375         for (i = 0; i < l1_size; i++) {
1376             be64_to_cpus(&l1_table[i]);
1377         }
1378     }
1379     if (l1_allocated)
1380         g_free(l1_table);
1381     return ret;
1382 }
1383
1384
1385
1386
1387 /*********************************************************/
1388 /* refcount checking functions */
1389
1390
1391 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1392 {
1393     /* This assertion holds because there is no way we can address more than
1394      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1395      * offsets have to be representable in bytes); due to every cluster
1396      * corresponding to one refcount entry, we are well below that limit */
1397     assert(entries < (UINT64_C(1) << (64 - 9)));
1398
1399     /* Thanks to the assertion this will not overflow, because
1400      * s->refcount_order < 7.
1401      * (note: x << s->refcount_order == x * s->refcount_bits) */
1402     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1403 }
1404
1405 /**
1406  * Reallocates *array so that it can hold new_size entries. *size must contain
1407  * the current number of entries in *array. If the reallocation fails, *array
1408  * and *size will not be modified and -errno will be returned. If the
1409  * reallocation is successful, *array will be set to the new buffer, *size
1410  * will be set to new_size and 0 will be returned. The size of the reallocated
1411  * refcount array buffer will be aligned to a cluster boundary, and the newly
1412  * allocated area will be zeroed.
1413  */
1414 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1415                                   int64_t *size, int64_t new_size)
1416 {
1417     int64_t old_byte_size, new_byte_size;
1418     void *new_ptr;
1419
1420     /* Round to clusters so the array can be directly written to disk */
1421     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1422                     * s->cluster_size;
1423     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1424                     * s->cluster_size;
1425
1426     if (new_byte_size == old_byte_size) {
1427         *size = new_size;
1428         return 0;
1429     }
1430
1431     assert(new_byte_size > 0);
1432
1433     if (new_byte_size > SIZE_MAX) {
1434         return -ENOMEM;
1435     }
1436
1437     new_ptr = g_try_realloc(*array, new_byte_size);
1438     if (!new_ptr) {
1439         return -ENOMEM;
1440     }
1441
1442     if (new_byte_size > old_byte_size) {
1443         memset((char *)new_ptr + old_byte_size, 0,
1444                new_byte_size - old_byte_size);
1445     }
1446
1447     *array = new_ptr;
1448     *size  = new_size;
1449
1450     return 0;
1451 }
1452
1453 /*
1454  * Increases the refcount for a range of clusters in a given refcount table.
1455  * This is used to construct a temporary refcount table out of L1 and L2 tables
1456  * which can be compared to the refcount table saved in the image.
1457  *
1458  * Modifies the number of errors in res.
1459  */
1460 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1461                              void **refcount_table,
1462                              int64_t *refcount_table_size,
1463                              int64_t offset, int64_t size)
1464 {
1465     BDRVQcow2State *s = bs->opaque;
1466     uint64_t start, last, cluster_offset, k, refcount;
1467     int ret;
1468
1469     if (size <= 0) {
1470         return 0;
1471     }
1472
1473     start = start_of_cluster(s, offset);
1474     last = start_of_cluster(s, offset + size - 1);
1475     for(cluster_offset = start; cluster_offset <= last;
1476         cluster_offset += s->cluster_size) {
1477         k = cluster_offset >> s->cluster_bits;
1478         if (k >= *refcount_table_size) {
1479             ret = realloc_refcount_array(s, refcount_table,
1480                                          refcount_table_size, k + 1);
1481             if (ret < 0) {
1482                 res->check_errors++;
1483                 return ret;
1484             }
1485         }
1486
1487         refcount = s->get_refcount(*refcount_table, k);
1488         if (refcount == s->refcount_max) {
1489             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1490                     "\n", cluster_offset);
1491             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1492                     "width or qemu-img convert to create a clean copy if the "
1493                     "image cannot be opened for writing\n");
1494             res->corruptions++;
1495             continue;
1496         }
1497         s->set_refcount(*refcount_table, k, refcount + 1);
1498     }
1499
1500     return 0;
1501 }
1502
1503 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1504 enum {
1505     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1506 };
1507
1508 /*
1509  * Increases the refcount in the given refcount table for the all clusters
1510  * referenced in the L2 table. While doing so, performs some checks on L2
1511  * entries.
1512  *
1513  * Returns the number of errors found by the checks or -errno if an internal
1514  * error occurred.
1515  */
1516 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1517                               void **refcount_table,
1518                               int64_t *refcount_table_size, int64_t l2_offset,
1519                               int flags, BdrvCheckMode fix)
1520 {
1521     BDRVQcow2State *s = bs->opaque;
1522     uint64_t *l2_table, l2_entry;
1523     uint64_t next_contiguous_offset = 0;
1524     int i, l2_size, nb_csectors, ret;
1525
1526     /* Read L2 table from disk */
1527     l2_size = s->l2_size * sizeof(uint64_t);
1528     l2_table = g_malloc(l2_size);
1529
1530     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1531     if (ret < 0) {
1532         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1533         res->check_errors++;
1534         goto fail;
1535     }
1536
1537     /* Do the actual checks */
1538     for(i = 0; i < s->l2_size; i++) {
1539         l2_entry = be64_to_cpu(l2_table[i]);
1540
1541         switch (qcow2_get_cluster_type(l2_entry)) {
1542         case QCOW2_CLUSTER_COMPRESSED:
1543             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1544             if (l2_entry & QCOW_OFLAG_COPIED) {
1545                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1546                     "copied flag must never be set for compressed "
1547                     "clusters\n", l2_entry >> s->cluster_bits);
1548                 l2_entry &= ~QCOW_OFLAG_COPIED;
1549                 res->corruptions++;
1550             }
1551
1552             /* Mark cluster as used */
1553             nb_csectors = ((l2_entry >> s->csize_shift) &
1554                            s->csize_mask) + 1;
1555             l2_entry &= s->cluster_offset_mask;
1556             ret = qcow2_inc_refcounts_imrt(bs, res,
1557                                            refcount_table, refcount_table_size,
1558                                            l2_entry & ~511, nb_csectors * 512);
1559             if (ret < 0) {
1560                 goto fail;
1561             }
1562
1563             if (flags & CHECK_FRAG_INFO) {
1564                 res->bfi.allocated_clusters++;
1565                 res->bfi.compressed_clusters++;
1566
1567                 /* Compressed clusters are fragmented by nature.  Since they
1568                  * take up sub-sector space but we only have sector granularity
1569                  * I/O we need to re-read the same sectors even for adjacent
1570                  * compressed clusters.
1571                  */
1572                 res->bfi.fragmented_clusters++;
1573             }
1574             break;
1575
1576         case QCOW2_CLUSTER_ZERO_ALLOC:
1577         case QCOW2_CLUSTER_NORMAL:
1578         {
1579             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1580
1581             if (flags & CHECK_FRAG_INFO) {
1582                 res->bfi.allocated_clusters++;
1583                 if (next_contiguous_offset &&
1584                     offset != next_contiguous_offset) {
1585                     res->bfi.fragmented_clusters++;
1586                 }
1587                 next_contiguous_offset = offset + s->cluster_size;
1588             }
1589
1590             /* Correct offsets are cluster aligned */
1591             if (offset_into_cluster(s, offset)) {
1592                 if (qcow2_get_cluster_type(l2_entry) ==
1593                     QCOW2_CLUSTER_ZERO_ALLOC)
1594                 {
1595                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1596                             "cluster is not properly aligned; L2 entry "
1597                             "corrupted.\n",
1598                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1599                             offset);
1600                     if (fix & BDRV_FIX_ERRORS) {
1601                         uint64_t l2e_offset =
1602                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1603
1604                         l2_entry = QCOW_OFLAG_ZERO;
1605                         l2_table[i] = cpu_to_be64(l2_entry);
1606                         ret = qcow2_pre_write_overlap_check(bs,
1607                                 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1608                                 l2e_offset, sizeof(uint64_t));
1609                         if (ret < 0) {
1610                             fprintf(stderr, "ERROR: Overlap check failed\n");
1611                             res->check_errors++;
1612                             /* Something is seriously wrong, so abort checking
1613                              * this L2 table */
1614                             goto fail;
1615                         }
1616
1617                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1618                                                &l2_table[i], sizeof(uint64_t));
1619                         if (ret < 0) {
1620                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1621                                     "table entry: %s\n", strerror(-ret));
1622                             res->check_errors++;
1623                             /* Do not abort, continue checking the rest of this
1624                              * L2 table's entries */
1625                         } else {
1626                             res->corruptions_fixed++;
1627                             /* Skip marking the cluster as used
1628                              * (it is unused now) */
1629                             continue;
1630                         }
1631                     } else {
1632                         res->corruptions++;
1633                     }
1634                 } else {
1635                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1636                         "not properly aligned; L2 entry corrupted.\n", offset);
1637                     res->corruptions++;
1638                 }
1639             }
1640
1641             /* Mark cluster as used */
1642             ret = qcow2_inc_refcounts_imrt(bs, res,
1643                                            refcount_table, refcount_table_size,
1644                                            offset, s->cluster_size);
1645             if (ret < 0) {
1646                 goto fail;
1647             }
1648             break;
1649         }
1650
1651         case QCOW2_CLUSTER_ZERO_PLAIN:
1652         case QCOW2_CLUSTER_UNALLOCATED:
1653             break;
1654
1655         default:
1656             abort();
1657         }
1658     }
1659
1660     g_free(l2_table);
1661     return 0;
1662
1663 fail:
1664     g_free(l2_table);
1665     return ret;
1666 }
1667
1668 /*
1669  * Increases the refcount for the L1 table, its L2 tables and all referenced
1670  * clusters in the given refcount table. While doing so, performs some checks
1671  * on L1 and L2 entries.
1672  *
1673  * Returns the number of errors found by the checks or -errno if an internal
1674  * error occurred.
1675  */
1676 static int check_refcounts_l1(BlockDriverState *bs,
1677                               BdrvCheckResult *res,
1678                               void **refcount_table,
1679                               int64_t *refcount_table_size,
1680                               int64_t l1_table_offset, int l1_size,
1681                               int flags, BdrvCheckMode fix)
1682 {
1683     BDRVQcow2State *s = bs->opaque;
1684     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1685     int i, ret;
1686
1687     l1_size2 = l1_size * sizeof(uint64_t);
1688
1689     /* Mark L1 table as used */
1690     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1691                                    l1_table_offset, l1_size2);
1692     if (ret < 0) {
1693         goto fail;
1694     }
1695
1696     /* Read L1 table entries from disk */
1697     if (l1_size2 > 0) {
1698         l1_table = g_try_malloc(l1_size2);
1699         if (l1_table == NULL) {
1700             ret = -ENOMEM;
1701             res->check_errors++;
1702             goto fail;
1703         }
1704         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1705         if (ret < 0) {
1706             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1707             res->check_errors++;
1708             goto fail;
1709         }
1710         for(i = 0;i < l1_size; i++)
1711             be64_to_cpus(&l1_table[i]);
1712     }
1713
1714     /* Do the actual checks */
1715     for(i = 0; i < l1_size; i++) {
1716         l2_offset = l1_table[i];
1717         if (l2_offset) {
1718             /* Mark L2 table as used */
1719             l2_offset &= L1E_OFFSET_MASK;
1720             ret = qcow2_inc_refcounts_imrt(bs, res,
1721                                            refcount_table, refcount_table_size,
1722                                            l2_offset, s->cluster_size);
1723             if (ret < 0) {
1724                 goto fail;
1725             }
1726
1727             /* L2 tables are cluster aligned */
1728             if (offset_into_cluster(s, l2_offset)) {
1729                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1730                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1731                 res->corruptions++;
1732             }
1733
1734             /* Process and check L2 entries */
1735             ret = check_refcounts_l2(bs, res, refcount_table,
1736                                      refcount_table_size, l2_offset, flags,
1737                                      fix);
1738             if (ret < 0) {
1739                 goto fail;
1740             }
1741         }
1742     }
1743     g_free(l1_table);
1744     return 0;
1745
1746 fail:
1747     g_free(l1_table);
1748     return ret;
1749 }
1750
1751 /*
1752  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1753  *
1754  * This function does not print an error message nor does it increment
1755  * check_errors if qcow2_get_refcount fails (this is because such an error will
1756  * have been already detected and sufficiently signaled by the calling function
1757  * (qcow2_check_refcounts) by the time this function is called).
1758  */
1759 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1760                               BdrvCheckMode fix)
1761 {
1762     BDRVQcow2State *s = bs->opaque;
1763     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1764     int ret;
1765     uint64_t refcount;
1766     int i, j;
1767
1768     for (i = 0; i < s->l1_size; i++) {
1769         uint64_t l1_entry = s->l1_table[i];
1770         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1771         bool l2_dirty = false;
1772
1773         if (!l2_offset) {
1774             continue;
1775         }
1776
1777         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1778                                  &refcount);
1779         if (ret < 0) {
1780             /* don't print message nor increment check_errors */
1781             continue;
1782         }
1783         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1784             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1785                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1786                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1787                                             "ERROR",
1788                     i, l1_entry, refcount);
1789             if (fix & BDRV_FIX_ERRORS) {
1790                 s->l1_table[i] = refcount == 1
1791                                ? l1_entry |  QCOW_OFLAG_COPIED
1792                                : l1_entry & ~QCOW_OFLAG_COPIED;
1793                 ret = qcow2_write_l1_entry(bs, i);
1794                 if (ret < 0) {
1795                     res->check_errors++;
1796                     goto fail;
1797                 }
1798                 res->corruptions_fixed++;
1799             } else {
1800                 res->corruptions++;
1801             }
1802         }
1803
1804         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1805                          s->l2_size * sizeof(uint64_t));
1806         if (ret < 0) {
1807             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1808                     strerror(-ret));
1809             res->check_errors++;
1810             goto fail;
1811         }
1812
1813         for (j = 0; j < s->l2_size; j++) {
1814             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1815             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1816             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1817
1818             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1819                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1820                 ret = qcow2_get_refcount(bs,
1821                                          data_offset >> s->cluster_bits,
1822                                          &refcount);
1823                 if (ret < 0) {
1824                     /* don't print message nor increment check_errors */
1825                     continue;
1826                 }
1827                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1828                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1829                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1830                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1831                                                     "ERROR",
1832                             l2_entry, refcount);
1833                     if (fix & BDRV_FIX_ERRORS) {
1834                         l2_table[j] = cpu_to_be64(refcount == 1
1835                                     ? l2_entry |  QCOW_OFLAG_COPIED
1836                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1837                         l2_dirty = true;
1838                         res->corruptions_fixed++;
1839                     } else {
1840                         res->corruptions++;
1841                     }
1842                 }
1843             }
1844         }
1845
1846         if (l2_dirty) {
1847             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1848                                                 l2_offset, s->cluster_size);
1849             if (ret < 0) {
1850                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1851                         "overlap check failed: %s\n", strerror(-ret));
1852                 res->check_errors++;
1853                 goto fail;
1854             }
1855
1856             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1857                               s->cluster_size);
1858             if (ret < 0) {
1859                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1860                         strerror(-ret));
1861                 res->check_errors++;
1862                 goto fail;
1863             }
1864         }
1865     }
1866
1867     ret = 0;
1868
1869 fail:
1870     qemu_vfree(l2_table);
1871     return ret;
1872 }
1873
1874 /*
1875  * Checks consistency of refblocks and accounts for each refblock in
1876  * *refcount_table.
1877  */
1878 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1879                            BdrvCheckMode fix, bool *rebuild,
1880                            void **refcount_table, int64_t *nb_clusters)
1881 {
1882     BDRVQcow2State *s = bs->opaque;
1883     int64_t i, size;
1884     int ret;
1885
1886     for(i = 0; i < s->refcount_table_size; i++) {
1887         uint64_t offset, cluster;
1888         offset = s->refcount_table[i];
1889         cluster = offset >> s->cluster_bits;
1890
1891         /* Refcount blocks are cluster aligned */
1892         if (offset_into_cluster(s, offset)) {
1893             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1894                 "cluster aligned; refcount table entry corrupted\n", i);
1895             res->corruptions++;
1896             *rebuild = true;
1897             continue;
1898         }
1899
1900         if (cluster >= *nb_clusters) {
1901             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1902                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1903
1904             if (fix & BDRV_FIX_ERRORS) {
1905                 int64_t new_nb_clusters;
1906                 Error *local_err = NULL;
1907
1908                 if (offset > INT64_MAX - s->cluster_size) {
1909                     ret = -EINVAL;
1910                     goto resize_fail;
1911                 }
1912
1913                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1914                                     PREALLOC_MODE_OFF, &local_err);
1915                 if (ret < 0) {
1916                     error_report_err(local_err);
1917                     goto resize_fail;
1918                 }
1919                 size = bdrv_getlength(bs->file->bs);
1920                 if (size < 0) {
1921                     ret = size;
1922                     goto resize_fail;
1923                 }
1924
1925                 new_nb_clusters = size_to_clusters(s, size);
1926                 assert(new_nb_clusters >= *nb_clusters);
1927
1928                 ret = realloc_refcount_array(s, refcount_table,
1929                                              nb_clusters, new_nb_clusters);
1930                 if (ret < 0) {
1931                     res->check_errors++;
1932                     return ret;
1933                 }
1934
1935                 if (cluster >= *nb_clusters) {
1936                     ret = -EINVAL;
1937                     goto resize_fail;
1938                 }
1939
1940                 res->corruptions_fixed++;
1941                 ret = qcow2_inc_refcounts_imrt(bs, res,
1942                                                refcount_table, nb_clusters,
1943                                                offset, s->cluster_size);
1944                 if (ret < 0) {
1945                     return ret;
1946                 }
1947                 /* No need to check whether the refcount is now greater than 1:
1948                  * This area was just allocated and zeroed, so it can only be
1949                  * exactly 1 after qcow2_inc_refcounts_imrt() */
1950                 continue;
1951
1952 resize_fail:
1953                 res->corruptions++;
1954                 *rebuild = true;
1955                 fprintf(stderr, "ERROR could not resize image: %s\n",
1956                         strerror(-ret));
1957             } else {
1958                 res->corruptions++;
1959             }
1960             continue;
1961         }
1962
1963         if (offset != 0) {
1964             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1965                                            offset, s->cluster_size);
1966             if (ret < 0) {
1967                 return ret;
1968             }
1969             if (s->get_refcount(*refcount_table, cluster) != 1) {
1970                 fprintf(stderr, "ERROR refcount block %" PRId64
1971                         " refcount=%" PRIu64 "\n", i,
1972                         s->get_refcount(*refcount_table, cluster));
1973                 res->corruptions++;
1974                 *rebuild = true;
1975             }
1976         }
1977     }
1978
1979     return 0;
1980 }
1981
1982 /*
1983  * Calculates an in-memory refcount table.
1984  */
1985 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1986                                BdrvCheckMode fix, bool *rebuild,
1987                                void **refcount_table, int64_t *nb_clusters)
1988 {
1989     BDRVQcow2State *s = bs->opaque;
1990     int64_t i;
1991     QCowSnapshot *sn;
1992     int ret;
1993
1994     if (!*refcount_table) {
1995         int64_t old_size = 0;
1996         ret = realloc_refcount_array(s, refcount_table,
1997                                      &old_size, *nb_clusters);
1998         if (ret < 0) {
1999             res->check_errors++;
2000             return ret;
2001         }
2002     }
2003
2004     /* header */
2005     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2006                                    0, s->cluster_size);
2007     if (ret < 0) {
2008         return ret;
2009     }
2010
2011     /* current L1 table */
2012     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2013                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2014                              fix);
2015     if (ret < 0) {
2016         return ret;
2017     }
2018
2019     /* snapshots */
2020     for (i = 0; i < s->nb_snapshots; i++) {
2021         sn = s->snapshots + i;
2022         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2023                                  sn->l1_table_offset, sn->l1_size, 0, fix);
2024         if (ret < 0) {
2025             return ret;
2026         }
2027     }
2028     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2029                                    s->snapshots_offset, s->snapshots_size);
2030     if (ret < 0) {
2031         return ret;
2032     }
2033
2034     /* refcount data */
2035     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2036                                    s->refcount_table_offset,
2037                                    s->refcount_table_size * sizeof(uint64_t));
2038     if (ret < 0) {
2039         return ret;
2040     }
2041
2042     /* encryption */
2043     if (s->crypto_header.length) {
2044         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2045                                        s->crypto_header.offset,
2046                                        s->crypto_header.length);
2047         if (ret < 0) {
2048             return ret;
2049         }
2050     }
2051
2052     /* bitmaps */
2053     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2054     if (ret < 0) {
2055         return ret;
2056     }
2057
2058     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2059 }
2060
2061 /*
2062  * Compares the actual reference count for each cluster in the image against the
2063  * refcount as reported by the refcount structures on-disk.
2064  */
2065 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2066                               BdrvCheckMode fix, bool *rebuild,
2067                               int64_t *highest_cluster,
2068                               void *refcount_table, int64_t nb_clusters)
2069 {
2070     BDRVQcow2State *s = bs->opaque;
2071     int64_t i;
2072     uint64_t refcount1, refcount2;
2073     int ret;
2074
2075     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2076         ret = qcow2_get_refcount(bs, i, &refcount1);
2077         if (ret < 0) {
2078             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2079                     i, strerror(-ret));
2080             res->check_errors++;
2081             continue;
2082         }
2083
2084         refcount2 = s->get_refcount(refcount_table, i);
2085
2086         if (refcount1 > 0 || refcount2 > 0) {
2087             *highest_cluster = i;
2088         }
2089
2090         if (refcount1 != refcount2) {
2091             /* Check if we're allowed to fix the mismatch */
2092             int *num_fixed = NULL;
2093             if (refcount1 == 0) {
2094                 *rebuild = true;
2095             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2096                 num_fixed = &res->leaks_fixed;
2097             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2098                 num_fixed = &res->corruptions_fixed;
2099             }
2100
2101             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2102                     " reference=%" PRIu64 "\n",
2103                    num_fixed != NULL     ? "Repairing" :
2104                    refcount1 < refcount2 ? "ERROR" :
2105                                            "Leaked",
2106                    i, refcount1, refcount2);
2107
2108             if (num_fixed) {
2109                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2110                                       refcount_diff(refcount1, refcount2),
2111                                       refcount1 > refcount2,
2112                                       QCOW2_DISCARD_ALWAYS);
2113                 if (ret >= 0) {
2114                     (*num_fixed)++;
2115                     continue;
2116                 }
2117             }
2118
2119             /* And if we couldn't, print an error */
2120             if (refcount1 < refcount2) {
2121                 res->corruptions++;
2122             } else {
2123                 res->leaks++;
2124             }
2125         }
2126     }
2127 }
2128
2129 /*
2130  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2131  * the on-disk refcount structures.
2132  *
2133  * On input, *first_free_cluster tells where to start looking, and need not
2134  * actually be a free cluster; the returned offset will not be before that
2135  * cluster.  On output, *first_free_cluster points to the first gap found, even
2136  * if that gap was too small to be used as the returned offset.
2137  *
2138  * Note that *first_free_cluster is a cluster index whereas the return value is
2139  * an offset.
2140  */
2141 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2142                                    int cluster_count,
2143                                    void **refcount_table,
2144                                    int64_t *imrt_nb_clusters,
2145                                    int64_t *first_free_cluster)
2146 {
2147     BDRVQcow2State *s = bs->opaque;
2148     int64_t cluster = *first_free_cluster, i;
2149     bool first_gap = true;
2150     int contiguous_free_clusters;
2151     int ret;
2152
2153     /* Starting at *first_free_cluster, find a range of at least cluster_count
2154      * continuously free clusters */
2155     for (contiguous_free_clusters = 0;
2156          cluster < *imrt_nb_clusters &&
2157          contiguous_free_clusters < cluster_count;
2158          cluster++)
2159     {
2160         if (!s->get_refcount(*refcount_table, cluster)) {
2161             contiguous_free_clusters++;
2162             if (first_gap) {
2163                 /* If this is the first free cluster found, update
2164                  * *first_free_cluster accordingly */
2165                 *first_free_cluster = cluster;
2166                 first_gap = false;
2167             }
2168         } else if (contiguous_free_clusters) {
2169             contiguous_free_clusters = 0;
2170         }
2171     }
2172
2173     /* If contiguous_free_clusters is greater than zero, it contains the number
2174      * of continuously free clusters until the current cluster; the first free
2175      * cluster in the current "gap" is therefore
2176      * cluster - contiguous_free_clusters */
2177
2178     /* If no such range could be found, grow the in-memory refcount table
2179      * accordingly to append free clusters at the end of the image */
2180     if (contiguous_free_clusters < cluster_count) {
2181         /* contiguous_free_clusters clusters are already empty at the image end;
2182          * we need cluster_count clusters; therefore, we have to allocate
2183          * cluster_count - contiguous_free_clusters new clusters at the end of
2184          * the image (which is the current value of cluster; note that cluster
2185          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2186          * the image end) */
2187         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2188                                      cluster + cluster_count
2189                                      - contiguous_free_clusters);
2190         if (ret < 0) {
2191             return ret;
2192         }
2193     }
2194
2195     /* Go back to the first free cluster */
2196     cluster -= contiguous_free_clusters;
2197     for (i = 0; i < cluster_count; i++) {
2198         s->set_refcount(*refcount_table, cluster + i, 1);
2199     }
2200
2201     return cluster << s->cluster_bits;
2202 }
2203
2204 /*
2205  * Creates a new refcount structure based solely on the in-memory information
2206  * given through *refcount_table. All necessary allocations will be reflected
2207  * in that array.
2208  *
2209  * On success, the old refcount structure is leaked (it will be covered by the
2210  * new refcount structure).
2211  */
2212 static int rebuild_refcount_structure(BlockDriverState *bs,
2213                                       BdrvCheckResult *res,
2214                                       void **refcount_table,
2215                                       int64_t *nb_clusters)
2216 {
2217     BDRVQcow2State *s = bs->opaque;
2218     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2219     int64_t refblock_offset, refblock_start, refblock_index;
2220     uint32_t reftable_size = 0;
2221     uint64_t *on_disk_reftable = NULL;
2222     void *on_disk_refblock;
2223     int ret = 0;
2224     struct {
2225         uint64_t reftable_offset;
2226         uint32_t reftable_clusters;
2227     } QEMU_PACKED reftable_offset_and_clusters;
2228
2229     qcow2_cache_empty(bs, s->refcount_block_cache);
2230
2231 write_refblocks:
2232     for (; cluster < *nb_clusters; cluster++) {
2233         if (!s->get_refcount(*refcount_table, cluster)) {
2234             continue;
2235         }
2236
2237         refblock_index = cluster >> s->refcount_block_bits;
2238         refblock_start = refblock_index << s->refcount_block_bits;
2239
2240         /* Don't allocate a cluster in a refblock already written to disk */
2241         if (first_free_cluster < refblock_start) {
2242             first_free_cluster = refblock_start;
2243         }
2244         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2245                                               nb_clusters, &first_free_cluster);
2246         if (refblock_offset < 0) {
2247             fprintf(stderr, "ERROR allocating refblock: %s\n",
2248                     strerror(-refblock_offset));
2249             res->check_errors++;
2250             ret = refblock_offset;
2251             goto fail;
2252         }
2253
2254         if (reftable_size <= refblock_index) {
2255             uint32_t old_reftable_size = reftable_size;
2256             uint64_t *new_on_disk_reftable;
2257
2258             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2259                                      s->cluster_size) / sizeof(uint64_t);
2260             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2261                                                  reftable_size *
2262                                                  sizeof(uint64_t));
2263             if (!new_on_disk_reftable) {
2264                 res->check_errors++;
2265                 ret = -ENOMEM;
2266                 goto fail;
2267             }
2268             on_disk_reftable = new_on_disk_reftable;
2269
2270             memset(on_disk_reftable + old_reftable_size, 0,
2271                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2272
2273             /* The offset we have for the reftable is now no longer valid;
2274              * this will leak that range, but we can easily fix that by running
2275              * a leak-fixing check after this rebuild operation */
2276             reftable_offset = -1;
2277         } else {
2278             assert(on_disk_reftable);
2279         }
2280         on_disk_reftable[refblock_index] = refblock_offset;
2281
2282         /* If this is apparently the last refblock (for now), try to squeeze the
2283          * reftable in */
2284         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2285             reftable_offset < 0)
2286         {
2287             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2288                                                           sizeof(uint64_t));
2289             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2290                                                   refcount_table, nb_clusters,
2291                                                   &first_free_cluster);
2292             if (reftable_offset < 0) {
2293                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2294                         strerror(-reftable_offset));
2295                 res->check_errors++;
2296                 ret = reftable_offset;
2297                 goto fail;
2298             }
2299         }
2300
2301         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2302                                             s->cluster_size);
2303         if (ret < 0) {
2304             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2305             goto fail;
2306         }
2307
2308         /* The size of *refcount_table is always cluster-aligned, therefore the
2309          * write operation will not overflow */
2310         on_disk_refblock = (void *)((char *) *refcount_table +
2311                                     refblock_index * s->cluster_size);
2312
2313         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2314                          on_disk_refblock, s->cluster_sectors);
2315         if (ret < 0) {
2316             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2317             goto fail;
2318         }
2319
2320         /* Go to the end of this refblock */
2321         cluster = refblock_start + s->refcount_block_size - 1;
2322     }
2323
2324     if (reftable_offset < 0) {
2325         uint64_t post_refblock_start, reftable_clusters;
2326
2327         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2328         reftable_clusters = size_to_clusters(s,
2329                                              reftable_size * sizeof(uint64_t));
2330         /* Not pretty but simple */
2331         if (first_free_cluster < post_refblock_start) {
2332             first_free_cluster = post_refblock_start;
2333         }
2334         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2335                                               refcount_table, nb_clusters,
2336                                               &first_free_cluster);
2337         if (reftable_offset < 0) {
2338             fprintf(stderr, "ERROR allocating reftable: %s\n",
2339                     strerror(-reftable_offset));
2340             res->check_errors++;
2341             ret = reftable_offset;
2342             goto fail;
2343         }
2344
2345         goto write_refblocks;
2346     }
2347
2348     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2349         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2350     }
2351
2352     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2353                                         reftable_size * sizeof(uint64_t));
2354     if (ret < 0) {
2355         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2356         goto fail;
2357     }
2358
2359     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2360     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2361                       reftable_size * sizeof(uint64_t));
2362     if (ret < 0) {
2363         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2364         goto fail;
2365     }
2366
2367     /* Enter new reftable into the image header */
2368     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2369     reftable_offset_and_clusters.reftable_clusters =
2370         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2371     ret = bdrv_pwrite_sync(bs->file,
2372                            offsetof(QCowHeader, refcount_table_offset),
2373                            &reftable_offset_and_clusters,
2374                            sizeof(reftable_offset_and_clusters));
2375     if (ret < 0) {
2376         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2377         goto fail;
2378     }
2379
2380     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2381         be64_to_cpus(&on_disk_reftable[refblock_index]);
2382     }
2383     s->refcount_table = on_disk_reftable;
2384     s->refcount_table_offset = reftable_offset;
2385     s->refcount_table_size = reftable_size;
2386     update_max_refcount_table_index(s);
2387
2388     return 0;
2389
2390 fail:
2391     g_free(on_disk_reftable);
2392     return ret;
2393 }
2394
2395 /*
2396  * Checks an image for refcount consistency.
2397  *
2398  * Returns 0 if no errors are found, the number of errors in case the image is
2399  * detected as corrupted, and -errno when an internal error occurred.
2400  */
2401 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2402                           BdrvCheckMode fix)
2403 {
2404     BDRVQcow2State *s = bs->opaque;
2405     BdrvCheckResult pre_compare_res;
2406     int64_t size, highest_cluster, nb_clusters;
2407     void *refcount_table = NULL;
2408     bool rebuild = false;
2409     int ret;
2410
2411     size = bdrv_getlength(bs->file->bs);
2412     if (size < 0) {
2413         res->check_errors++;
2414         return size;
2415     }
2416
2417     nb_clusters = size_to_clusters(s, size);
2418     if (nb_clusters > INT_MAX) {
2419         res->check_errors++;
2420         return -EFBIG;
2421     }
2422
2423     res->bfi.total_clusters =
2424         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2425
2426     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2427                               &nb_clusters);
2428     if (ret < 0) {
2429         goto fail;
2430     }
2431
2432     /* In case we don't need to rebuild the refcount structure (but want to fix
2433      * something), this function is immediately called again, in which case the
2434      * result should be ignored */
2435     pre_compare_res = *res;
2436     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2437                       nb_clusters);
2438
2439     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2440         BdrvCheckResult old_res = *res;
2441         int fresh_leaks = 0;
2442
2443         fprintf(stderr, "Rebuilding refcount structure\n");
2444         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2445                                          &nb_clusters);
2446         if (ret < 0) {
2447             goto fail;
2448         }
2449
2450         res->corruptions = 0;
2451         res->leaks = 0;
2452
2453         /* Because the old reftable has been exchanged for a new one the
2454          * references have to be recalculated */
2455         rebuild = false;
2456         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2457         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2458                                   &nb_clusters);
2459         if (ret < 0) {
2460             goto fail;
2461         }
2462
2463         if (fix & BDRV_FIX_LEAKS) {
2464             /* The old refcount structures are now leaked, fix it; the result
2465              * can be ignored, aside from leaks which were introduced by
2466              * rebuild_refcount_structure() that could not be fixed */
2467             BdrvCheckResult saved_res = *res;
2468             *res = (BdrvCheckResult){ 0 };
2469
2470             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2471                               &highest_cluster, refcount_table, nb_clusters);
2472             if (rebuild) {
2473                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2474                         "broken\n");
2475             }
2476
2477             /* Any leaks accounted for here were introduced by
2478              * rebuild_refcount_structure() because that function has created a
2479              * new refcount structure from scratch */
2480             fresh_leaks = res->leaks;
2481             *res = saved_res;
2482         }
2483
2484         if (res->corruptions < old_res.corruptions) {
2485             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2486         }
2487         if (res->leaks < old_res.leaks) {
2488             res->leaks_fixed += old_res.leaks - res->leaks;
2489         }
2490         res->leaks += fresh_leaks;
2491     } else if (fix) {
2492         if (rebuild) {
2493             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2494             res->check_errors++;
2495             ret = -EIO;
2496             goto fail;
2497         }
2498
2499         if (res->leaks || res->corruptions) {
2500             *res = pre_compare_res;
2501             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2502                               refcount_table, nb_clusters);
2503         }
2504     }
2505
2506     /* check OFLAG_COPIED */
2507     ret = check_oflag_copied(bs, res, fix);
2508     if (ret < 0) {
2509         goto fail;
2510     }
2511
2512     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2513     ret = 0;
2514
2515 fail:
2516     g_free(refcount_table);
2517
2518     return ret;
2519 }
2520
2521 #define overlaps_with(ofs, sz) \
2522     ranges_overlap(offset, size, ofs, sz)
2523
2524 /*
2525  * Checks if the given offset into the image file is actually free to use by
2526  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2527  * i.e. a sanity check without relying on the refcount tables.
2528  *
2529  * The ign parameter specifies what checks not to perform (being a bitmask of
2530  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2531  *
2532  * Returns:
2533  * - 0 if writing to this offset will not affect the mentioned metadata
2534  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2535  * - a negative value (-errno) indicating an error while performing a check,
2536  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2537  */
2538 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2539                                  int64_t size)
2540 {
2541     BDRVQcow2State *s = bs->opaque;
2542     int chk = s->overlap_check & ~ign;
2543     int i, j;
2544
2545     if (!size) {
2546         return 0;
2547     }
2548
2549     if (chk & QCOW2_OL_MAIN_HEADER) {
2550         if (offset < s->cluster_size) {
2551             return QCOW2_OL_MAIN_HEADER;
2552         }
2553     }
2554
2555     /* align range to test to cluster boundaries */
2556     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2557     offset = start_of_cluster(s, offset);
2558
2559     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2560         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2561             return QCOW2_OL_ACTIVE_L1;
2562         }
2563     }
2564
2565     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2566         if (overlaps_with(s->refcount_table_offset,
2567             s->refcount_table_size * sizeof(uint64_t))) {
2568             return QCOW2_OL_REFCOUNT_TABLE;
2569         }
2570     }
2571
2572     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2573         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2574             return QCOW2_OL_SNAPSHOT_TABLE;
2575         }
2576     }
2577
2578     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2579         for (i = 0; i < s->nb_snapshots; i++) {
2580             if (s->snapshots[i].l1_size &&
2581                 overlaps_with(s->snapshots[i].l1_table_offset,
2582                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2583                 return QCOW2_OL_INACTIVE_L1;
2584             }
2585         }
2586     }
2587
2588     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2589         for (i = 0; i < s->l1_size; i++) {
2590             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2591                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2592                 s->cluster_size)) {
2593                 return QCOW2_OL_ACTIVE_L2;
2594             }
2595         }
2596     }
2597
2598     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2599         unsigned last_entry = s->max_refcount_table_index;
2600         assert(last_entry < s->refcount_table_size);
2601         assert(last_entry + 1 == s->refcount_table_size ||
2602                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2603         for (i = 0; i <= last_entry; i++) {
2604             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2605                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2606                 s->cluster_size)) {
2607                 return QCOW2_OL_REFCOUNT_BLOCK;
2608             }
2609         }
2610     }
2611
2612     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2613         for (i = 0; i < s->nb_snapshots; i++) {
2614             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2615             uint32_t l1_sz  = s->snapshots[i].l1_size;
2616             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2617             uint64_t *l1 = g_try_malloc(l1_sz2);
2618             int ret;
2619
2620             if (l1_sz2 && l1 == NULL) {
2621                 return -ENOMEM;
2622             }
2623
2624             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2625             if (ret < 0) {
2626                 g_free(l1);
2627                 return ret;
2628             }
2629
2630             for (j = 0; j < l1_sz; j++) {
2631                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2632                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2633                     g_free(l1);
2634                     return QCOW2_OL_INACTIVE_L2;
2635                 }
2636             }
2637
2638             g_free(l1);
2639         }
2640     }
2641
2642     return 0;
2643 }
2644
2645 static const char *metadata_ol_names[] = {
2646     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2647     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2648     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2649     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2650     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2651     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2652     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2653     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2654 };
2655
2656 /*
2657  * First performs a check for metadata overlaps (through
2658  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2659  * while performing a check), that value is returned. If an impending overlap
2660  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2661  * and -EIO returned.
2662  *
2663  * Returns 0 if there were neither overlaps nor errors while checking for
2664  * overlaps; or a negative value (-errno) on error.
2665  */
2666 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2667                                   int64_t size)
2668 {
2669     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2670
2671     if (ret < 0) {
2672         return ret;
2673     } else if (ret > 0) {
2674         int metadata_ol_bitnr = ctz32(ret);
2675         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2676
2677         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2678                                 "write on metadata (overlaps with %s)",
2679                                 metadata_ol_names[metadata_ol_bitnr]);
2680         return -EIO;
2681     }
2682
2683     return 0;
2684 }
2685
2686 /* A pointer to a function of this type is given to walk_over_reftable(). That
2687  * function will create refblocks and pass them to a RefblockFinishOp once they
2688  * are completed (@refblock). @refblock_empty is set if the refblock is
2689  * completely empty.
2690  *
2691  * Along with the refblock, a corresponding reftable entry is passed, in the
2692  * reftable @reftable (which may be reallocated) at @reftable_index.
2693  *
2694  * @allocated should be set to true if a new cluster has been allocated.
2695  */
2696 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2697                                uint64_t reftable_index, uint64_t *reftable_size,
2698                                void *refblock, bool refblock_empty,
2699                                bool *allocated, Error **errp);
2700
2701 /**
2702  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2703  * it is not empty) and inserts its offset into the new reftable. The size of
2704  * this new reftable is increased as required.
2705  */
2706 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2707                           uint64_t reftable_index, uint64_t *reftable_size,
2708                           void *refblock, bool refblock_empty, bool *allocated,
2709                           Error **errp)
2710 {
2711     BDRVQcow2State *s = bs->opaque;
2712     int64_t offset;
2713
2714     if (!refblock_empty && reftable_index >= *reftable_size) {
2715         uint64_t *new_reftable;
2716         uint64_t new_reftable_size;
2717
2718         new_reftable_size = ROUND_UP(reftable_index + 1,
2719                                      s->cluster_size / sizeof(uint64_t));
2720         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2721             error_setg(errp,
2722                        "This operation would make the refcount table grow "
2723                        "beyond the maximum size supported by QEMU, aborting");
2724             return -ENOTSUP;
2725         }
2726
2727         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2728                                                 sizeof(uint64_t));
2729         if (!new_reftable) {
2730             error_setg(errp, "Failed to increase reftable buffer size");
2731             return -ENOMEM;
2732         }
2733
2734         memset(new_reftable + *reftable_size, 0,
2735                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2736
2737         *reftable      = new_reftable;
2738         *reftable_size = new_reftable_size;
2739     }
2740
2741     if (!refblock_empty && !(*reftable)[reftable_index]) {
2742         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2743         if (offset < 0) {
2744             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2745             return offset;
2746         }
2747         (*reftable)[reftable_index] = offset;
2748         *allocated = true;
2749     }
2750
2751     return 0;
2752 }
2753
2754 /**
2755  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2756  * offset specified by the new reftable's entry. It does not modify the new
2757  * reftable or change any refcounts.
2758  */
2759 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2760                           uint64_t reftable_index, uint64_t *reftable_size,
2761                           void *refblock, bool refblock_empty, bool *allocated,
2762                           Error **errp)
2763 {
2764     BDRVQcow2State *s = bs->opaque;
2765     int64_t offset;
2766     int ret;
2767
2768     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2769         offset = (*reftable)[reftable_index];
2770
2771         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2772         if (ret < 0) {
2773             error_setg_errno(errp, -ret, "Overlap check failed");
2774             return ret;
2775         }
2776
2777         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2778         if (ret < 0) {
2779             error_setg_errno(errp, -ret, "Failed to write refblock");
2780             return ret;
2781         }
2782     } else {
2783         assert(refblock_empty);
2784     }
2785
2786     return 0;
2787 }
2788
2789 /**
2790  * This function walks over the existing reftable and every referenced refblock;
2791  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2792  * create an equal new entry in the passed @new_refblock. Once that
2793  * @new_refblock is completely filled, @operation will be called.
2794  *
2795  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2796  * @index is the index of the walk_over_reftable() calls and @total is the total
2797  * number of walk_over_reftable() calls per amend operation. Both are used for
2798  * calculating the parameters for the status callback.
2799  *
2800  * @allocated is set to true if a new cluster has been allocated.
2801  */
2802 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2803                               uint64_t *new_reftable_index,
2804                               uint64_t *new_reftable_size,
2805                               void *new_refblock, int new_refblock_size,
2806                               int new_refcount_bits,
2807                               RefblockFinishOp *operation, bool *allocated,
2808                               Qcow2SetRefcountFunc *new_set_refcount,
2809                               BlockDriverAmendStatusCB *status_cb,
2810                               void *cb_opaque, int index, int total,
2811                               Error **errp)
2812 {
2813     BDRVQcow2State *s = bs->opaque;
2814     uint64_t reftable_index;
2815     bool new_refblock_empty = true;
2816     int refblock_index;
2817     int new_refblock_index = 0;
2818     int ret;
2819
2820     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2821          reftable_index++)
2822     {
2823         uint64_t refblock_offset = s->refcount_table[reftable_index]
2824                                  & REFT_OFFSET_MASK;
2825
2826         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2827                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2828
2829         if (refblock_offset) {
2830             void *refblock;
2831
2832             if (offset_into_cluster(s, refblock_offset)) {
2833                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2834                                         PRIx64 " unaligned (reftable index: %#"
2835                                         PRIx64 ")", refblock_offset,
2836                                         reftable_index);
2837                 error_setg(errp,
2838                            "Image is corrupt (unaligned refblock offset)");
2839                 return -EIO;
2840             }
2841
2842             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2843                                   &refblock);
2844             if (ret < 0) {
2845                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2846                 return ret;
2847             }
2848
2849             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2850                  refblock_index++)
2851             {
2852                 uint64_t refcount;
2853
2854                 if (new_refblock_index >= new_refblock_size) {
2855                     /* new_refblock is now complete */
2856                     ret = operation(bs, new_reftable, *new_reftable_index,
2857                                     new_reftable_size, new_refblock,
2858                                     new_refblock_empty, allocated, errp);
2859                     if (ret < 0) {
2860                         qcow2_cache_put(s->refcount_block_cache, &refblock);
2861                         return ret;
2862                     }
2863
2864                     (*new_reftable_index)++;
2865                     new_refblock_index = 0;
2866                     new_refblock_empty = true;
2867                 }
2868
2869                 refcount = s->get_refcount(refblock, refblock_index);
2870                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2871                     uint64_t offset;
2872
2873                     qcow2_cache_put(s->refcount_block_cache, &refblock);
2874
2875                     offset = ((reftable_index << s->refcount_block_bits)
2876                               + refblock_index) << s->cluster_bits;
2877
2878                     error_setg(errp, "Cannot decrease refcount entry width to "
2879                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2880                                "refcount of %" PRIu64, new_refcount_bits,
2881                                offset, refcount);
2882                     return -EINVAL;
2883                 }
2884
2885                 if (new_set_refcount) {
2886                     new_set_refcount(new_refblock, new_refblock_index++,
2887                                      refcount);
2888                 } else {
2889                     new_refblock_index++;
2890                 }
2891                 new_refblock_empty = new_refblock_empty && refcount == 0;
2892             }
2893
2894             qcow2_cache_put(s->refcount_block_cache, &refblock);
2895         } else {
2896             /* No refblock means every refcount is 0 */
2897             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2898                  refblock_index++)
2899             {
2900                 if (new_refblock_index >= new_refblock_size) {
2901                     /* new_refblock is now complete */
2902                     ret = operation(bs, new_reftable, *new_reftable_index,
2903                                     new_reftable_size, new_refblock,
2904                                     new_refblock_empty, allocated, errp);
2905                     if (ret < 0) {
2906                         return ret;
2907                     }
2908
2909                     (*new_reftable_index)++;
2910                     new_refblock_index = 0;
2911                     new_refblock_empty = true;
2912                 }
2913
2914                 if (new_set_refcount) {
2915                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2916                 } else {
2917                     new_refblock_index++;
2918                 }
2919             }
2920         }
2921     }
2922
2923     if (new_refblock_index > 0) {
2924         /* Complete the potentially existing partially filled final refblock */
2925         if (new_set_refcount) {
2926             for (; new_refblock_index < new_refblock_size;
2927                  new_refblock_index++)
2928             {
2929                 new_set_refcount(new_refblock, new_refblock_index, 0);
2930             }
2931         }
2932
2933         ret = operation(bs, new_reftable, *new_reftable_index,
2934                         new_reftable_size, new_refblock, new_refblock_empty,
2935                         allocated, errp);
2936         if (ret < 0) {
2937             return ret;
2938         }
2939
2940         (*new_reftable_index)++;
2941     }
2942
2943     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2944               (uint64_t)total * s->refcount_table_size, cb_opaque);
2945
2946     return 0;
2947 }
2948
2949 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2950                                 BlockDriverAmendStatusCB *status_cb,
2951                                 void *cb_opaque, Error **errp)
2952 {
2953     BDRVQcow2State *s = bs->opaque;
2954     Qcow2GetRefcountFunc *new_get_refcount;
2955     Qcow2SetRefcountFunc *new_set_refcount;
2956     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2957     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2958     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2959     uint64_t new_reftable_index = 0;
2960     uint64_t i;
2961     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2962     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2963     int old_refcount_order;
2964     int walk_index = 0;
2965     int ret;
2966     bool new_allocation;
2967
2968     assert(s->qcow_version >= 3);
2969     assert(refcount_order >= 0 && refcount_order <= 6);
2970
2971     /* see qcow2_open() */
2972     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2973
2974     new_get_refcount = get_refcount_funcs[refcount_order];
2975     new_set_refcount = set_refcount_funcs[refcount_order];
2976
2977
2978     do {
2979         int total_walks;
2980
2981         new_allocation = false;
2982
2983         /* At least we have to do this walk and the one which writes the
2984          * refblocks; also, at least we have to do this loop here at least
2985          * twice (normally), first to do the allocations, and second to
2986          * determine that everything is correctly allocated, this then makes
2987          * three walks in total */
2988         total_walks = MAX(walk_index + 2, 3);
2989
2990         /* First, allocate the structures so they are present in the refcount
2991          * structures */
2992         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2993                                  &new_reftable_size, NULL, new_refblock_size,
2994                                  new_refcount_bits, &alloc_refblock,
2995                                  &new_allocation, NULL, status_cb, cb_opaque,
2996                                  walk_index++, total_walks, errp);
2997         if (ret < 0) {
2998             goto done;
2999         }
3000
3001         new_reftable_index = 0;
3002
3003         if (new_allocation) {
3004             if (new_reftable_offset) {
3005                 qcow2_free_clusters(bs, new_reftable_offset,
3006                                     allocated_reftable_size * sizeof(uint64_t),
3007                                     QCOW2_DISCARD_NEVER);
3008             }
3009
3010             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3011                                                            sizeof(uint64_t));
3012             if (new_reftable_offset < 0) {
3013                 error_setg_errno(errp, -new_reftable_offset,
3014                                  "Failed to allocate the new reftable");
3015                 ret = new_reftable_offset;
3016                 goto done;
3017             }
3018             allocated_reftable_size = new_reftable_size;
3019         }
3020     } while (new_allocation);
3021
3022     /* Second, write the new refblocks */
3023     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3024                              &new_reftable_size, new_refblock,
3025                              new_refblock_size, new_refcount_bits,
3026                              &flush_refblock, &new_allocation, new_set_refcount,
3027                              status_cb, cb_opaque, walk_index, walk_index + 1,
3028                              errp);
3029     if (ret < 0) {
3030         goto done;
3031     }
3032     assert(!new_allocation);
3033
3034
3035     /* Write the new reftable */
3036     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3037                                         new_reftable_size * sizeof(uint64_t));
3038     if (ret < 0) {
3039         error_setg_errno(errp, -ret, "Overlap check failed");
3040         goto done;
3041     }
3042
3043     for (i = 0; i < new_reftable_size; i++) {
3044         cpu_to_be64s(&new_reftable[i]);
3045     }
3046
3047     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3048                       new_reftable_size * sizeof(uint64_t));
3049
3050     for (i = 0; i < new_reftable_size; i++) {
3051         be64_to_cpus(&new_reftable[i]);
3052     }
3053
3054     if (ret < 0) {
3055         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3056         goto done;
3057     }
3058
3059
3060     /* Empty the refcount cache */
3061     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3062     if (ret < 0) {
3063         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3064         goto done;
3065     }
3066
3067     /* Update the image header to point to the new reftable; this only updates
3068      * the fields which are relevant to qcow2_update_header(); other fields
3069      * such as s->refcount_table or s->refcount_bits stay stale for now
3070      * (because we have to restore everything if qcow2_update_header() fails) */
3071     old_refcount_order  = s->refcount_order;
3072     old_reftable_size   = s->refcount_table_size;
3073     old_reftable_offset = s->refcount_table_offset;
3074
3075     s->refcount_order        = refcount_order;
3076     s->refcount_table_size   = new_reftable_size;
3077     s->refcount_table_offset = new_reftable_offset;
3078
3079     ret = qcow2_update_header(bs);
3080     if (ret < 0) {
3081         s->refcount_order        = old_refcount_order;
3082         s->refcount_table_size   = old_reftable_size;
3083         s->refcount_table_offset = old_reftable_offset;
3084         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3085         goto done;
3086     }
3087
3088     /* Now update the rest of the in-memory information */
3089     old_reftable = s->refcount_table;
3090     s->refcount_table = new_reftable;
3091     update_max_refcount_table_index(s);
3092
3093     s->refcount_bits = 1 << refcount_order;
3094     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3095     s->refcount_max += s->refcount_max - 1;
3096
3097     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3098     s->refcount_block_size = 1 << s->refcount_block_bits;
3099
3100     s->get_refcount = new_get_refcount;
3101     s->set_refcount = new_set_refcount;
3102
3103     /* For cleaning up all old refblocks and the old reftable below the "done"
3104      * label */
3105     new_reftable        = old_reftable;
3106     new_reftable_size   = old_reftable_size;
3107     new_reftable_offset = old_reftable_offset;
3108
3109 done:
3110     if (new_reftable) {
3111         /* On success, new_reftable actually points to the old reftable (and
3112          * new_reftable_size is the old reftable's size); but that is just
3113          * fine */
3114         for (i = 0; i < new_reftable_size; i++) {
3115             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3116             if (offset) {
3117                 qcow2_free_clusters(bs, offset, s->cluster_size,
3118                                     QCOW2_DISCARD_OTHER);
3119             }
3120         }
3121         g_free(new_reftable);
3122
3123         if (new_reftable_offset > 0) {
3124             qcow2_free_clusters(bs, new_reftable_offset,
3125                                 new_reftable_size * sizeof(uint64_t),
3126                                 QCOW2_DISCARD_OTHER);
3127         }
3128     }
3129
3130     qemu_vfree(new_refblock);
3131     return ret;
3132 }
3133
3134 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3135 {
3136     BDRVQcow2State *s = bs->opaque;
3137     uint32_t index = offset_to_reftable_index(s, offset);
3138     int64_t covering_refblock_offset = 0;
3139
3140     if (index < s->refcount_table_size) {
3141         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3142     }
3143     if (!covering_refblock_offset) {
3144         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3145                                 "not covered by the refcount structures",
3146                                 offset);
3147         return -EIO;
3148     }
3149
3150     return covering_refblock_offset;
3151 }
3152
3153 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3154                                         uint64_t discard_block_offs)
3155 {
3156     BDRVQcow2State *s = bs->opaque;
3157     int64_t refblock_offs;
3158     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3159     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3160     void *refblock;
3161     int ret;
3162
3163     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3164     if (refblock_offs < 0) {
3165         return refblock_offs;
3166     }
3167
3168     assert(discard_block_offs != 0);
3169
3170     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3171                           &refblock);
3172     if (ret < 0) {
3173         return ret;
3174     }
3175
3176     if (s->get_refcount(refblock, block_index) != 1) {
3177         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3178                                 " refblock offset %#" PRIx64
3179                                 ", reftable index %u"
3180                                 ", block offset %#" PRIx64
3181                                 ", refcount %#" PRIx64,
3182                                 refblock_offs,
3183                                 offset_to_reftable_index(s, discard_block_offs),
3184                                 discard_block_offs,
3185                                 s->get_refcount(refblock, block_index));
3186         qcow2_cache_put(s->refcount_block_cache, &refblock);
3187         return -EINVAL;
3188     }
3189     s->set_refcount(refblock, block_index, 0);
3190
3191     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3192
3193     qcow2_cache_put(s->refcount_block_cache, &refblock);
3194
3195     if (cluster_index < s->free_cluster_index) {
3196         s->free_cluster_index = cluster_index;
3197     }
3198
3199     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3200                                            discard_block_offs);
3201     if (refblock) {
3202         /* discard refblock from the cache if refblock is cached */
3203         qcow2_cache_discard(s->refcount_block_cache, refblock);
3204     }
3205     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3206
3207     return 0;
3208 }
3209
3210 int qcow2_shrink_reftable(BlockDriverState *bs)
3211 {
3212     BDRVQcow2State *s = bs->opaque;
3213     uint64_t *reftable_tmp =
3214         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3215     int i, ret;
3216
3217     for (i = 0; i < s->refcount_table_size; i++) {
3218         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3219         void *refblock;
3220         bool unused_block;
3221
3222         if (refblock_offs == 0) {
3223             reftable_tmp[i] = 0;
3224             continue;
3225         }
3226         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3227                               &refblock);
3228         if (ret < 0) {
3229             goto out;
3230         }
3231
3232         /* the refblock has own reference */
3233         if (i == offset_to_reftable_index(s, refblock_offs)) {
3234             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3235                                    (s->refcount_block_size - 1);
3236             uint64_t refcount = s->get_refcount(refblock, block_index);
3237
3238             s->set_refcount(refblock, block_index, 0);
3239
3240             unused_block = buffer_is_zero(refblock, s->cluster_size);
3241
3242             s->set_refcount(refblock, block_index, refcount);
3243         } else {
3244             unused_block = buffer_is_zero(refblock, s->cluster_size);
3245         }
3246         qcow2_cache_put(s->refcount_block_cache, &refblock);
3247
3248         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3249     }
3250
3251     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3252                            s->refcount_table_size * sizeof(uint64_t));
3253     /*
3254      * If the write in the reftable failed the image may contain a partially
3255      * overwritten reftable. In this case it would be better to clear the
3256      * reftable in memory to avoid possible image corruption.
3257      */
3258     for (i = 0; i < s->refcount_table_size; i++) {
3259         if (s->refcount_table[i] && !reftable_tmp[i]) {
3260             if (ret == 0) {
3261                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3262                                                        REFT_OFFSET_MASK);
3263             }
3264             s->refcount_table[i] = 0;
3265         }
3266     }
3267
3268     if (!s->cache_discards) {
3269         qcow2_process_discards(bs, ret);
3270     }
3271
3272 out:
3273     g_free(reftable_tmp);
3274     return ret;
3275 }
3276
3277 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3278 {
3279     BDRVQcow2State *s = bs->opaque;
3280     int64_t i;
3281
3282     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3283         uint64_t refcount;
3284         int ret = qcow2_get_refcount(bs, i, &refcount);
3285         if (ret < 0) {
3286             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3287                     i, strerror(-ret));
3288             return ret;
3289         }
3290         if (refcount > 0) {
3291             return i;
3292         }
3293     }
3294     qcow2_signal_corruption(bs, true, -1, -1,
3295                             "There are no references in the refcount table.");
3296     return -EIO;
3297 }
This page took 0.204185 seconds and 4 git commands to generate.