2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define DIV_NAN 0x7fc00008
28 #define MUL_NAN 0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
38 return get_float_exception_flags(&env->fp_status)
41 | float_flag_underflow
42 | float_flag_output_denormal
43 | float_flag_divbyzero
44 | float_flag_inexact);
47 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
48 float32 arg3, float32 result,
49 uint32_t muladd_negate_c)
51 uint32_t aSign, bSign, cSign;
52 uint32_t aExp, bExp, cExp;
54 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
55 float32_is_any_nan(arg3)) {
57 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
59 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
66 aExp = (arg1 >> 23) & 0xff;
67 bExp = (arg2 >> 23) & 0xff;
68 cExp = (arg3 >> 23) & 0xff;
70 if (muladd_negate_c) {
73 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
74 if (aSign ^ bSign ^ cSign) {
83 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
85 uint8_t some_excp = 0;
86 set_float_exception_flags(0, &env->fp_status);
88 if (flags & float_flag_invalid) {
89 env->FPU_FI = 1 << 31;
93 if (flags & float_flag_overflow) {
94 env->FPU_FV = 1 << 31;
98 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
99 env->FPU_FU = 1 << 31;
103 if (flags & float_flag_divbyzero) {
104 env->FPU_FZ = 1 << 31;
108 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
113 env->FPU_FS = some_excp;
116 #define FADD_SUB(op) \
117 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
119 float32 arg1 = make_float32(r1); \
120 float32 arg2 = make_float32(r2); \
124 f_result = float32_##op(arg2, arg1, &env->fp_status); \
125 flags = f_get_excp_flags(env); \
127 /* If the output is a NaN, but the inputs aren't, \
128 we return a unique value. */ \
129 if ((flags & float_flag_invalid) \
130 && !float32_is_any_nan(arg1) \
131 && !float32_is_any_nan(arg2)) { \
132 f_result = ADD_NAN; \
134 f_update_psw_flags(env, flags); \
138 return (uint32_t)f_result; \
143 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
146 float32 arg1 = make_float32(r1);
147 float32 arg2 = make_float32(r2);
150 f_result = float32_mul(arg1, arg2, &env->fp_status);
152 flags = f_get_excp_flags(env);
154 /* If the output is a NaN, but the inputs aren't,
155 we return a unique value. */
156 if ((flags & float_flag_invalid)
157 && !float32_is_any_nan(arg1)
158 && !float32_is_any_nan(arg2)) {
161 f_update_psw_flags(env, flags);
165 return (uint32_t)f_result;
169 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
172 float32 arg1 = make_float32(r1);
173 float32 arg2 = make_float32(r2);
176 f_result = float32_div(arg1, arg2 , &env->fp_status);
178 flags = f_get_excp_flags(env);
180 /* If the output is a NaN, but the inputs aren't,
181 we return a unique value. */
182 if ((flags & float_flag_invalid)
183 && !float32_is_any_nan(arg1)
184 && !float32_is_any_nan(arg2)) {
187 f_update_psw_flags(env, flags);
192 return (uint32_t)f_result;
195 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
196 uint32_t r2, uint32_t r3)
199 float32 arg1 = make_float32(r1);
200 float32 arg2 = make_float32(r2);
201 float32 arg3 = make_float32(r3);
204 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
206 flags = f_get_excp_flags(env);
208 if (flags & float_flag_invalid) {
209 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
210 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
211 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
212 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
214 f_update_psw_flags(env, flags);
218 return (uint32_t)f_result;
221 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
222 uint32_t r2, uint32_t r3)
225 float32 arg1 = make_float32(r1);
226 float32 arg2 = make_float32(r2);
227 float32 arg3 = make_float32(r3);
230 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
233 flags = f_get_excp_flags(env);
235 if (flags & float_flag_invalid) {
236 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
237 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
238 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
240 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
242 f_update_psw_flags(env, flags);
246 return (uint32_t)f_result;
249 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
251 uint32_t result, flags;
252 float32 arg1 = make_float32(r1);
253 float32 arg2 = make_float32(r2);
255 set_flush_inputs_to_zero(0, &env->fp_status);
257 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
258 result |= float32_is_denormal(arg1) << 4;
259 result |= float32_is_denormal(arg2) << 5;
261 flags = f_get_excp_flags(env);
263 f_update_psw_flags(env, flags);
268 set_flush_inputs_to_zero(1, &env->fp_status);
272 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
274 float32 f_arg = make_float32(arg);
275 int32_t result, flags;
277 result = float32_to_int32(f_arg, &env->fp_status);
279 flags = f_get_excp_flags(env);
281 if (float32_is_any_nan(f_arg)) {
284 f_update_psw_flags(env, flags);
288 return (uint32_t)result;
291 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
295 f_result = int32_to_float32(arg, &env->fp_status);
297 flags = f_get_excp_flags(env);
299 f_update_psw_flags(env, flags);
303 return (uint32_t)f_result;
306 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
308 float32 f_arg = make_float32(arg);
312 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
314 flags = f_get_excp_flags(env);
315 if (flags & float_flag_invalid) {
316 flags &= ~float_flag_inexact;
317 if (float32_is_any_nan(f_arg)) {
320 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
321 flags = float_flag_invalid;
326 f_update_psw_flags(env, flags);
333 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
335 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
336 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
337 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
338 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
339 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
340 /* clear FX and RM */
341 env->PSW &= ~(extract32(arg, 10, 1) << 26);
342 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;