2 * HPPA emulation cpu translation for qemu.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "disas/disas.h"
23 #include "qemu/host-utils.h"
24 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/helper-proto.h"
28 #include "exec/helper-gen.h"
29 #include "exec/translator.h"
30 #include "trace-tcg.h"
33 /* Since we have a distinction between register size and address size,
34 we need to redefine all of these. */
38 #undef tcg_global_reg_new
39 #undef tcg_global_mem_new
40 #undef tcg_temp_local_new
43 #if TARGET_LONG_BITS == 64
44 #define TCGv_tl TCGv_i64
45 #define tcg_temp_new_tl tcg_temp_new_i64
46 #define tcg_temp_free_tl tcg_temp_free_i64
47 #if TARGET_REGISTER_BITS == 64
48 #define tcg_gen_extu_reg_tl tcg_gen_mov_i64
50 #define tcg_gen_extu_reg_tl tcg_gen_extu_i32_i64
53 #define TCGv_tl TCGv_i32
54 #define tcg_temp_new_tl tcg_temp_new_i32
55 #define tcg_temp_free_tl tcg_temp_free_i32
56 #define tcg_gen_extu_reg_tl tcg_gen_mov_i32
59 #if TARGET_REGISTER_BITS == 64
60 #define TCGv_reg TCGv_i64
62 #define tcg_temp_new tcg_temp_new_i64
63 #define tcg_global_reg_new tcg_global_reg_new_i64
64 #define tcg_global_mem_new tcg_global_mem_new_i64
65 #define tcg_temp_local_new tcg_temp_local_new_i64
66 #define tcg_temp_free tcg_temp_free_i64
68 #define tcg_gen_movi_reg tcg_gen_movi_i64
69 #define tcg_gen_mov_reg tcg_gen_mov_i64
70 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i64
71 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i64
72 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i64
73 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i64
74 #define tcg_gen_ld32u_reg tcg_gen_ld32u_i64
75 #define tcg_gen_ld32s_reg tcg_gen_ld32s_i64
76 #define tcg_gen_ld_reg tcg_gen_ld_i64
77 #define tcg_gen_st8_reg tcg_gen_st8_i64
78 #define tcg_gen_st16_reg tcg_gen_st16_i64
79 #define tcg_gen_st32_reg tcg_gen_st32_i64
80 #define tcg_gen_st_reg tcg_gen_st_i64
81 #define tcg_gen_add_reg tcg_gen_add_i64
82 #define tcg_gen_addi_reg tcg_gen_addi_i64
83 #define tcg_gen_sub_reg tcg_gen_sub_i64
84 #define tcg_gen_neg_reg tcg_gen_neg_i64
85 #define tcg_gen_subfi_reg tcg_gen_subfi_i64
86 #define tcg_gen_subi_reg tcg_gen_subi_i64
87 #define tcg_gen_and_reg tcg_gen_and_i64
88 #define tcg_gen_andi_reg tcg_gen_andi_i64
89 #define tcg_gen_or_reg tcg_gen_or_i64
90 #define tcg_gen_ori_reg tcg_gen_ori_i64
91 #define tcg_gen_xor_reg tcg_gen_xor_i64
92 #define tcg_gen_xori_reg tcg_gen_xori_i64
93 #define tcg_gen_not_reg tcg_gen_not_i64
94 #define tcg_gen_shl_reg tcg_gen_shl_i64
95 #define tcg_gen_shli_reg tcg_gen_shli_i64
96 #define tcg_gen_shr_reg tcg_gen_shr_i64
97 #define tcg_gen_shri_reg tcg_gen_shri_i64
98 #define tcg_gen_sar_reg tcg_gen_sar_i64
99 #define tcg_gen_sari_reg tcg_gen_sari_i64
100 #define tcg_gen_brcond_reg tcg_gen_brcond_i64
101 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i64
102 #define tcg_gen_setcond_reg tcg_gen_setcond_i64
103 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i64
104 #define tcg_gen_mul_reg tcg_gen_mul_i64
105 #define tcg_gen_muli_reg tcg_gen_muli_i64
106 #define tcg_gen_div_reg tcg_gen_div_i64
107 #define tcg_gen_rem_reg tcg_gen_rem_i64
108 #define tcg_gen_divu_reg tcg_gen_divu_i64
109 #define tcg_gen_remu_reg tcg_gen_remu_i64
110 #define tcg_gen_discard_reg tcg_gen_discard_i64
111 #define tcg_gen_trunc_reg_i32 tcg_gen_extrl_i64_i32
112 #define tcg_gen_trunc_i64_reg tcg_gen_mov_i64
113 #define tcg_gen_extu_i32_reg tcg_gen_extu_i32_i64
114 #define tcg_gen_ext_i32_reg tcg_gen_ext_i32_i64
115 #define tcg_gen_extu_reg_i64 tcg_gen_mov_i64
116 #define tcg_gen_ext_reg_i64 tcg_gen_mov_i64
117 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i64
118 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i64
119 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i64
120 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i64
121 #define tcg_gen_ext32u_reg tcg_gen_ext32u_i64
122 #define tcg_gen_ext32s_reg tcg_gen_ext32s_i64
123 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i64
124 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i64
125 #define tcg_gen_bswap64_reg tcg_gen_bswap64_i64
126 #define tcg_gen_concat_reg_i64 tcg_gen_concat32_i64
127 #define tcg_gen_andc_reg tcg_gen_andc_i64
128 #define tcg_gen_eqv_reg tcg_gen_eqv_i64
129 #define tcg_gen_nand_reg tcg_gen_nand_i64
130 #define tcg_gen_nor_reg tcg_gen_nor_i64
131 #define tcg_gen_orc_reg tcg_gen_orc_i64
132 #define tcg_gen_clz_reg tcg_gen_clz_i64
133 #define tcg_gen_ctz_reg tcg_gen_ctz_i64
134 #define tcg_gen_clzi_reg tcg_gen_clzi_i64
135 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i64
136 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i64
137 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i64
138 #define tcg_gen_rotl_reg tcg_gen_rotl_i64
139 #define tcg_gen_rotli_reg tcg_gen_rotli_i64
140 #define tcg_gen_rotr_reg tcg_gen_rotr_i64
141 #define tcg_gen_rotri_reg tcg_gen_rotri_i64
142 #define tcg_gen_deposit_reg tcg_gen_deposit_i64
143 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i64
144 #define tcg_gen_extract_reg tcg_gen_extract_i64
145 #define tcg_gen_sextract_reg tcg_gen_sextract_i64
146 #define tcg_const_reg tcg_const_i64
147 #define tcg_const_local_reg tcg_const_local_i64
148 #define tcg_gen_movcond_reg tcg_gen_movcond_i64
149 #define tcg_gen_add2_reg tcg_gen_add2_i64
150 #define tcg_gen_sub2_reg tcg_gen_sub2_i64
151 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i64
152 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i64
153 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i64
154 #define tcg_gen_trunc_reg_ptr tcg_gen_trunc_i64_ptr
156 #define TCGv_reg TCGv_i32
157 #define tcg_temp_new tcg_temp_new_i32
158 #define tcg_global_reg_new tcg_global_reg_new_i32
159 #define tcg_global_mem_new tcg_global_mem_new_i32
160 #define tcg_temp_local_new tcg_temp_local_new_i32
161 #define tcg_temp_free tcg_temp_free_i32
163 #define tcg_gen_movi_reg tcg_gen_movi_i32
164 #define tcg_gen_mov_reg tcg_gen_mov_i32
165 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i32
166 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i32
167 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i32
168 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i32
169 #define tcg_gen_ld32u_reg tcg_gen_ld_i32
170 #define tcg_gen_ld32s_reg tcg_gen_ld_i32
171 #define tcg_gen_ld_reg tcg_gen_ld_i32
172 #define tcg_gen_st8_reg tcg_gen_st8_i32
173 #define tcg_gen_st16_reg tcg_gen_st16_i32
174 #define tcg_gen_st32_reg tcg_gen_st32_i32
175 #define tcg_gen_st_reg tcg_gen_st_i32
176 #define tcg_gen_add_reg tcg_gen_add_i32
177 #define tcg_gen_addi_reg tcg_gen_addi_i32
178 #define tcg_gen_sub_reg tcg_gen_sub_i32
179 #define tcg_gen_neg_reg tcg_gen_neg_i32
180 #define tcg_gen_subfi_reg tcg_gen_subfi_i32
181 #define tcg_gen_subi_reg tcg_gen_subi_i32
182 #define tcg_gen_and_reg tcg_gen_and_i32
183 #define tcg_gen_andi_reg tcg_gen_andi_i32
184 #define tcg_gen_or_reg tcg_gen_or_i32
185 #define tcg_gen_ori_reg tcg_gen_ori_i32
186 #define tcg_gen_xor_reg tcg_gen_xor_i32
187 #define tcg_gen_xori_reg tcg_gen_xori_i32
188 #define tcg_gen_not_reg tcg_gen_not_i32
189 #define tcg_gen_shl_reg tcg_gen_shl_i32
190 #define tcg_gen_shli_reg tcg_gen_shli_i32
191 #define tcg_gen_shr_reg tcg_gen_shr_i32
192 #define tcg_gen_shri_reg tcg_gen_shri_i32
193 #define tcg_gen_sar_reg tcg_gen_sar_i32
194 #define tcg_gen_sari_reg tcg_gen_sari_i32
195 #define tcg_gen_brcond_reg tcg_gen_brcond_i32
196 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i32
197 #define tcg_gen_setcond_reg tcg_gen_setcond_i32
198 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i32
199 #define tcg_gen_mul_reg tcg_gen_mul_i32
200 #define tcg_gen_muli_reg tcg_gen_muli_i32
201 #define tcg_gen_div_reg tcg_gen_div_i32
202 #define tcg_gen_rem_reg tcg_gen_rem_i32
203 #define tcg_gen_divu_reg tcg_gen_divu_i32
204 #define tcg_gen_remu_reg tcg_gen_remu_i32
205 #define tcg_gen_discard_reg tcg_gen_discard_i32
206 #define tcg_gen_trunc_reg_i32 tcg_gen_mov_i32
207 #define tcg_gen_trunc_i64_reg tcg_gen_extrl_i64_i32
208 #define tcg_gen_extu_i32_reg tcg_gen_mov_i32
209 #define tcg_gen_ext_i32_reg tcg_gen_mov_i32
210 #define tcg_gen_extu_reg_i64 tcg_gen_extu_i32_i64
211 #define tcg_gen_ext_reg_i64 tcg_gen_ext_i32_i64
212 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i32
213 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i32
214 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i32
215 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i32
216 #define tcg_gen_ext32u_reg tcg_gen_mov_i32
217 #define tcg_gen_ext32s_reg tcg_gen_mov_i32
218 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i32
219 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i32
220 #define tcg_gen_concat_reg_i64 tcg_gen_concat_i32_i64
221 #define tcg_gen_andc_reg tcg_gen_andc_i32
222 #define tcg_gen_eqv_reg tcg_gen_eqv_i32
223 #define tcg_gen_nand_reg tcg_gen_nand_i32
224 #define tcg_gen_nor_reg tcg_gen_nor_i32
225 #define tcg_gen_orc_reg tcg_gen_orc_i32
226 #define tcg_gen_clz_reg tcg_gen_clz_i32
227 #define tcg_gen_ctz_reg tcg_gen_ctz_i32
228 #define tcg_gen_clzi_reg tcg_gen_clzi_i32
229 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i32
230 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i32
231 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i32
232 #define tcg_gen_rotl_reg tcg_gen_rotl_i32
233 #define tcg_gen_rotli_reg tcg_gen_rotli_i32
234 #define tcg_gen_rotr_reg tcg_gen_rotr_i32
235 #define tcg_gen_rotri_reg tcg_gen_rotri_i32
236 #define tcg_gen_deposit_reg tcg_gen_deposit_i32
237 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i32
238 #define tcg_gen_extract_reg tcg_gen_extract_i32
239 #define tcg_gen_sextract_reg tcg_gen_sextract_i32
240 #define tcg_const_reg tcg_const_i32
241 #define tcg_const_local_reg tcg_const_local_i32
242 #define tcg_gen_movcond_reg tcg_gen_movcond_i32
243 #define tcg_gen_add2_reg tcg_gen_add2_i32
244 #define tcg_gen_sub2_reg tcg_gen_sub2_i32
245 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i32
246 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i32
247 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i32
248 #define tcg_gen_trunc_reg_ptr tcg_gen_ext_i32_ptr
249 #endif /* TARGET_REGISTER_BITS */
251 typedef struct DisasCond {
258 typedef struct DisasContext {
259 DisasContextBase base;
281 /* Note that ssm/rsm instructions number PSW_W and PSW_E differently. */
282 static int expand_sm_imm(int val)
284 if (val & PSW_SM_E) {
285 val = (val & ~PSW_SM_E) | PSW_E;
287 if (val & PSW_SM_W) {
288 val = (val & ~PSW_SM_W) | PSW_W;
293 /* Inverted space register indicates 0 means sr0 not inferred from base. */
294 static int expand_sr3x(int val)
299 /* Convert the M:A bits within a memory insn to the tri-state value
300 we use for the final M. */
301 static int ma_to_m(int val)
303 return val & 2 ? (val & 1 ? -1 : 1) : 0;
306 /* Convert the sign of the displacement to a pre or post-modify. */
307 static int pos_to_m(int val)
312 static int neg_to_m(int val)
317 /* Used for branch targets and fp memory ops. */
318 static int expand_shl2(int val)
323 /* Used for fp memory ops. */
324 static int expand_shl3(int val)
329 /* Used for assemble_21. */
330 static int expand_shl11(int val)
336 /* Include the auto-generated decoder. */
337 #include "decode.inc.c"
339 /* We are not using a goto_tb (for whatever reason), but have updated
340 the iaq (for whatever reason), so don't do it again on exit. */
341 #define DISAS_IAQ_N_UPDATED DISAS_TARGET_0
343 /* We are exiting the TB, but have neither emitted a goto_tb, nor
344 updated the iaq for the next instruction to be executed. */
345 #define DISAS_IAQ_N_STALE DISAS_TARGET_1
347 /* Similarly, but we want to return to the main loop immediately
348 to recognize unmasked interrupts. */
349 #define DISAS_IAQ_N_STALE_EXIT DISAS_TARGET_2
351 /* global register indexes */
352 static TCGv_reg cpu_gr[32];
353 static TCGv_i64 cpu_sr[4];
354 static TCGv_i64 cpu_srH;
355 static TCGv_reg cpu_iaoq_f;
356 static TCGv_reg cpu_iaoq_b;
357 static TCGv_i64 cpu_iasq_f;
358 static TCGv_i64 cpu_iasq_b;
359 static TCGv_reg cpu_sar;
360 static TCGv_reg cpu_psw_n;
361 static TCGv_reg cpu_psw_v;
362 static TCGv_reg cpu_psw_cb;
363 static TCGv_reg cpu_psw_cb_msb;
365 #include "exec/gen-icount.h"
367 void hppa_translate_init(void)
369 #define DEF_VAR(V) { &cpu_##V, #V, offsetof(CPUHPPAState, V) }
371 typedef struct { TCGv_reg *var; const char *name; int ofs; } GlobalVar;
372 static const GlobalVar vars[] = {
373 { &cpu_sar, "sar", offsetof(CPUHPPAState, cr[CR_SAR]) },
384 /* Use the symbolic register names that match the disassembler. */
385 static const char gr_names[32][4] = {
386 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
387 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
388 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
389 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
391 /* SR[4-7] are not global registers so that we can index them. */
392 static const char sr_names[5][4] = {
393 "sr0", "sr1", "sr2", "sr3", "srH"
399 for (i = 1; i < 32; i++) {
400 cpu_gr[i] = tcg_global_mem_new(cpu_env,
401 offsetof(CPUHPPAState, gr[i]),
404 for (i = 0; i < 4; i++) {
405 cpu_sr[i] = tcg_global_mem_new_i64(cpu_env,
406 offsetof(CPUHPPAState, sr[i]),
409 cpu_srH = tcg_global_mem_new_i64(cpu_env,
410 offsetof(CPUHPPAState, sr[4]),
413 for (i = 0; i < ARRAY_SIZE(vars); ++i) {
414 const GlobalVar *v = &vars[i];
415 *v->var = tcg_global_mem_new(cpu_env, v->ofs, v->name);
418 cpu_iasq_f = tcg_global_mem_new_i64(cpu_env,
419 offsetof(CPUHPPAState, iasq_f),
421 cpu_iasq_b = tcg_global_mem_new_i64(cpu_env,
422 offsetof(CPUHPPAState, iasq_b),
426 static DisasCond cond_make_f(void)
435 static DisasCond cond_make_t(void)
438 .c = TCG_COND_ALWAYS,
444 static DisasCond cond_make_n(void)
455 static DisasCond cond_make_0_tmp(TCGCond c, TCGv_reg a0)
457 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS);
459 .c = c, .a0 = a0, .a1_is_0 = true
463 static DisasCond cond_make_0(TCGCond c, TCGv_reg a0)
465 TCGv_reg tmp = tcg_temp_new();
466 tcg_gen_mov_reg(tmp, a0);
467 return cond_make_0_tmp(c, tmp);
470 static DisasCond cond_make(TCGCond c, TCGv_reg a0, TCGv_reg a1)
472 DisasCond r = { .c = c };
474 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS);
475 r.a0 = tcg_temp_new();
476 tcg_gen_mov_reg(r.a0, a0);
477 r.a1 = tcg_temp_new();
478 tcg_gen_mov_reg(r.a1, a1);
483 static void cond_prep(DisasCond *cond)
486 cond->a1_is_0 = false;
487 cond->a1 = tcg_const_reg(0);
491 static void cond_free(DisasCond *cond)
495 if (!cond->a0_is_n) {
496 tcg_temp_free(cond->a0);
498 if (!cond->a1_is_0) {
499 tcg_temp_free(cond->a1);
501 cond->a0_is_n = false;
502 cond->a1_is_0 = false;
506 case TCG_COND_ALWAYS:
507 cond->c = TCG_COND_NEVER;
514 static TCGv_reg get_temp(DisasContext *ctx)
516 unsigned i = ctx->ntempr++;
517 g_assert(i < ARRAY_SIZE(ctx->tempr));
518 return ctx->tempr[i] = tcg_temp_new();
521 #ifndef CONFIG_USER_ONLY
522 static TCGv_tl get_temp_tl(DisasContext *ctx)
524 unsigned i = ctx->ntempl++;
525 g_assert(i < ARRAY_SIZE(ctx->templ));
526 return ctx->templ[i] = tcg_temp_new_tl();
530 static TCGv_reg load_const(DisasContext *ctx, target_sreg v)
532 TCGv_reg t = get_temp(ctx);
533 tcg_gen_movi_reg(t, v);
537 static TCGv_reg load_gpr(DisasContext *ctx, unsigned reg)
540 TCGv_reg t = get_temp(ctx);
541 tcg_gen_movi_reg(t, 0);
548 static TCGv_reg dest_gpr(DisasContext *ctx, unsigned reg)
550 if (reg == 0 || ctx->null_cond.c != TCG_COND_NEVER) {
551 return get_temp(ctx);
557 static void save_or_nullify(DisasContext *ctx, TCGv_reg dest, TCGv_reg t)
559 if (ctx->null_cond.c != TCG_COND_NEVER) {
560 cond_prep(&ctx->null_cond);
561 tcg_gen_movcond_reg(ctx->null_cond.c, dest, ctx->null_cond.a0,
562 ctx->null_cond.a1, dest, t);
564 tcg_gen_mov_reg(dest, t);
568 static void save_gpr(DisasContext *ctx, unsigned reg, TCGv_reg t)
571 save_or_nullify(ctx, cpu_gr[reg], t);
575 #ifdef HOST_WORDS_BIGENDIAN
583 static TCGv_i32 load_frw_i32(unsigned rt)
585 TCGv_i32 ret = tcg_temp_new_i32();
586 tcg_gen_ld_i32(ret, cpu_env,
587 offsetof(CPUHPPAState, fr[rt & 31])
588 + (rt & 32 ? LO_OFS : HI_OFS));
592 static TCGv_i32 load_frw0_i32(unsigned rt)
595 return tcg_const_i32(0);
597 return load_frw_i32(rt);
601 static TCGv_i64 load_frw0_i64(unsigned rt)
604 return tcg_const_i64(0);
606 TCGv_i64 ret = tcg_temp_new_i64();
607 tcg_gen_ld32u_i64(ret, cpu_env,
608 offsetof(CPUHPPAState, fr[rt & 31])
609 + (rt & 32 ? LO_OFS : HI_OFS));
614 static void save_frw_i32(unsigned rt, TCGv_i32 val)
616 tcg_gen_st_i32(val, cpu_env,
617 offsetof(CPUHPPAState, fr[rt & 31])
618 + (rt & 32 ? LO_OFS : HI_OFS));
624 static TCGv_i64 load_frd(unsigned rt)
626 TCGv_i64 ret = tcg_temp_new_i64();
627 tcg_gen_ld_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt]));
631 static TCGv_i64 load_frd0(unsigned rt)
634 return tcg_const_i64(0);
640 static void save_frd(unsigned rt, TCGv_i64 val)
642 tcg_gen_st_i64(val, cpu_env, offsetof(CPUHPPAState, fr[rt]));
645 static void load_spr(DisasContext *ctx, TCGv_i64 dest, unsigned reg)
647 #ifdef CONFIG_USER_ONLY
648 tcg_gen_movi_i64(dest, 0);
651 tcg_gen_mov_i64(dest, cpu_sr[reg]);
652 } else if (ctx->tb_flags & TB_FLAG_SR_SAME) {
653 tcg_gen_mov_i64(dest, cpu_srH);
655 tcg_gen_ld_i64(dest, cpu_env, offsetof(CPUHPPAState, sr[reg]));
660 /* Skip over the implementation of an insn that has been nullified.
661 Use this when the insn is too complex for a conditional move. */
662 static void nullify_over(DisasContext *ctx)
664 if (ctx->null_cond.c != TCG_COND_NEVER) {
665 /* The always condition should have been handled in the main loop. */
666 assert(ctx->null_cond.c != TCG_COND_ALWAYS);
668 ctx->null_lab = gen_new_label();
669 cond_prep(&ctx->null_cond);
671 /* If we're using PSW[N], copy it to a temp because... */
672 if (ctx->null_cond.a0_is_n) {
673 ctx->null_cond.a0_is_n = false;
674 ctx->null_cond.a0 = tcg_temp_new();
675 tcg_gen_mov_reg(ctx->null_cond.a0, cpu_psw_n);
677 /* ... we clear it before branching over the implementation,
678 so that (1) it's clear after nullifying this insn and
679 (2) if this insn nullifies the next, PSW[N] is valid. */
680 if (ctx->psw_n_nonzero) {
681 ctx->psw_n_nonzero = false;
682 tcg_gen_movi_reg(cpu_psw_n, 0);
685 tcg_gen_brcond_reg(ctx->null_cond.c, ctx->null_cond.a0,
686 ctx->null_cond.a1, ctx->null_lab);
687 cond_free(&ctx->null_cond);
691 /* Save the current nullification state to PSW[N]. */
692 static void nullify_save(DisasContext *ctx)
694 if (ctx->null_cond.c == TCG_COND_NEVER) {
695 if (ctx->psw_n_nonzero) {
696 tcg_gen_movi_reg(cpu_psw_n, 0);
700 if (!ctx->null_cond.a0_is_n) {
701 cond_prep(&ctx->null_cond);
702 tcg_gen_setcond_reg(ctx->null_cond.c, cpu_psw_n,
703 ctx->null_cond.a0, ctx->null_cond.a1);
704 ctx->psw_n_nonzero = true;
706 cond_free(&ctx->null_cond);
709 /* Set a PSW[N] to X. The intention is that this is used immediately
710 before a goto_tb/exit_tb, so that there is no fallthru path to other
711 code within the TB. Therefore we do not update psw_n_nonzero. */
712 static void nullify_set(DisasContext *ctx, bool x)
714 if (ctx->psw_n_nonzero || x) {
715 tcg_gen_movi_reg(cpu_psw_n, x);
719 /* Mark the end of an instruction that may have been nullified.
720 This is the pair to nullify_over. Always returns true so that
721 it may be tail-called from a translate function. */
722 static bool nullify_end(DisasContext *ctx)
724 TCGLabel *null_lab = ctx->null_lab;
725 DisasJumpType status = ctx->base.is_jmp;
727 /* For NEXT, NORETURN, STALE, we can easily continue (or exit).
728 For UPDATED, we cannot update on the nullified path. */
729 assert(status != DISAS_IAQ_N_UPDATED);
731 if (likely(null_lab == NULL)) {
732 /* The current insn wasn't conditional or handled the condition
733 applied to it without a branch, so the (new) setting of
734 NULL_COND can be applied directly to the next insn. */
737 ctx->null_lab = NULL;
739 if (likely(ctx->null_cond.c == TCG_COND_NEVER)) {
740 /* The next instruction will be unconditional,
741 and NULL_COND already reflects that. */
742 gen_set_label(null_lab);
744 /* The insn that we just executed is itself nullifying the next
745 instruction. Store the condition in the PSW[N] global.
746 We asserted PSW[N] = 0 in nullify_over, so that after the
747 label we have the proper value in place. */
749 gen_set_label(null_lab);
750 ctx->null_cond = cond_make_n();
752 if (status == DISAS_NORETURN) {
753 ctx->base.is_jmp = DISAS_NEXT;
758 static void copy_iaoq_entry(TCGv_reg dest, target_ureg ival, TCGv_reg vval)
760 if (unlikely(ival == -1)) {
761 tcg_gen_mov_reg(dest, vval);
763 tcg_gen_movi_reg(dest, ival);
767 static inline target_ureg iaoq_dest(DisasContext *ctx, target_sreg disp)
769 return ctx->iaoq_f + disp + 8;
772 static void gen_excp_1(int exception)
774 TCGv_i32 t = tcg_const_i32(exception);
775 gen_helper_excp(cpu_env, t);
776 tcg_temp_free_i32(t);
779 static void gen_excp(DisasContext *ctx, int exception)
781 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f);
782 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b);
784 gen_excp_1(exception);
785 ctx->base.is_jmp = DISAS_NORETURN;
788 static bool gen_excp_iir(DisasContext *ctx, int exc)
793 tmp = tcg_const_reg(ctx->insn);
794 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[CR_IIR]));
797 return nullify_end(ctx);
800 static bool gen_illegal(DisasContext *ctx)
802 return gen_excp_iir(ctx, EXCP_ILL);
805 #ifdef CONFIG_USER_ONLY
806 #define CHECK_MOST_PRIVILEGED(EXCP) \
807 return gen_excp_iir(ctx, EXCP)
809 #define CHECK_MOST_PRIVILEGED(EXCP) \
811 if (ctx->privilege != 0) { \
812 return gen_excp_iir(ctx, EXCP); \
817 static bool use_goto_tb(DisasContext *ctx, target_ureg dest)
819 /* Suppress goto_tb in the case of single-steping and IO. */
820 if ((tb_cflags(ctx->base.tb) & CF_LAST_IO)
821 || ctx->base.singlestep_enabled) {
827 /* If the next insn is to be nullified, and it's on the same page,
828 and we're not attempting to set a breakpoint on it, then we can
829 totally skip the nullified insn. This avoids creating and
830 executing a TB that merely branches to the next TB. */
831 static bool use_nullify_skip(DisasContext *ctx)
833 return (((ctx->iaoq_b ^ ctx->iaoq_f) & TARGET_PAGE_MASK) == 0
834 && !cpu_breakpoint_test(ctx->cs, ctx->iaoq_b, BP_ANY));
837 static void gen_goto_tb(DisasContext *ctx, int which,
838 target_ureg f, target_ureg b)
840 if (f != -1 && b != -1 && use_goto_tb(ctx, f)) {
841 tcg_gen_goto_tb(which);
842 tcg_gen_movi_reg(cpu_iaoq_f, f);
843 tcg_gen_movi_reg(cpu_iaoq_b, b);
844 tcg_gen_exit_tb(ctx->base.tb, which);
846 copy_iaoq_entry(cpu_iaoq_f, f, cpu_iaoq_b);
847 copy_iaoq_entry(cpu_iaoq_b, b, ctx->iaoq_n_var);
848 if (ctx->base.singlestep_enabled) {
849 gen_excp_1(EXCP_DEBUG);
851 tcg_gen_lookup_and_goto_ptr();
856 static bool cond_need_sv(int c)
858 return c == 2 || c == 3 || c == 6;
861 static bool cond_need_cb(int c)
863 return c == 4 || c == 5;
867 * Compute conditional for arithmetic. See Page 5-3, Table 5-1, of
868 * the Parisc 1.1 Architecture Reference Manual for details.
871 static DisasCond do_cond(unsigned cf, TCGv_reg res,
872 TCGv_reg cb_msb, TCGv_reg sv)
878 case 0: /* Never / TR (0 / 1) */
879 cond = cond_make_f();
881 case 1: /* = / <> (Z / !Z) */
882 cond = cond_make_0(TCG_COND_EQ, res);
884 case 2: /* < / >= (N ^ V / !(N ^ V) */
885 tmp = tcg_temp_new();
886 tcg_gen_xor_reg(tmp, res, sv);
887 cond = cond_make_0_tmp(TCG_COND_LT, tmp);
889 case 3: /* <= / > (N ^ V) | Z / !((N ^ V) | Z) */
893 * ((res < 0) ^ (sv < 0)) | !res
894 * ((res ^ sv) < 0) | !res
895 * (~(res ^ sv) >= 0) | !res
896 * !(~(res ^ sv) >> 31) | !res
897 * !(~(res ^ sv) >> 31 & res)
899 tmp = tcg_temp_new();
900 tcg_gen_eqv_reg(tmp, res, sv);
901 tcg_gen_sari_reg(tmp, tmp, TARGET_REGISTER_BITS - 1);
902 tcg_gen_and_reg(tmp, tmp, res);
903 cond = cond_make_0_tmp(TCG_COND_EQ, tmp);
905 case 4: /* NUV / UV (!C / C) */
906 cond = cond_make_0(TCG_COND_EQ, cb_msb);
908 case 5: /* ZNV / VNZ (!C | Z / C & !Z) */
909 tmp = tcg_temp_new();
910 tcg_gen_neg_reg(tmp, cb_msb);
911 tcg_gen_and_reg(tmp, tmp, res);
912 cond = cond_make_0_tmp(TCG_COND_EQ, tmp);
914 case 6: /* SV / NSV (V / !V) */
915 cond = cond_make_0(TCG_COND_LT, sv);
917 case 7: /* OD / EV */
918 tmp = tcg_temp_new();
919 tcg_gen_andi_reg(tmp, res, 1);
920 cond = cond_make_0_tmp(TCG_COND_NE, tmp);
923 g_assert_not_reached();
926 cond.c = tcg_invert_cond(cond.c);
932 /* Similar, but for the special case of subtraction without borrow, we
933 can use the inputs directly. This can allow other computation to be
934 deleted as unused. */
936 static DisasCond do_sub_cond(unsigned cf, TCGv_reg res,
937 TCGv_reg in1, TCGv_reg in2, TCGv_reg sv)
943 cond = cond_make(TCG_COND_EQ, in1, in2);
946 cond = cond_make(TCG_COND_LT, in1, in2);
949 cond = cond_make(TCG_COND_LE, in1, in2);
951 case 4: /* << / >>= */
952 cond = cond_make(TCG_COND_LTU, in1, in2);
954 case 5: /* <<= / >> */
955 cond = cond_make(TCG_COND_LEU, in1, in2);
958 return do_cond(cf, res, NULL, sv);
961 cond.c = tcg_invert_cond(cond.c);
968 * Similar, but for logicals, where the carry and overflow bits are not
969 * computed, and use of them is undefined.
971 * Undefined or not, hardware does not trap. It seems reasonable to
972 * assume hardware treats cases c={4,5,6} as if C=0 & V=0, since that's
973 * how cases c={2,3} are treated.
976 static DisasCond do_log_cond(unsigned cf, TCGv_reg res)
980 case 9: /* undef, C */
981 case 11: /* undef, C & !Z */
982 case 12: /* undef, V */
983 return cond_make_f();
986 case 8: /* undef, !C */
987 case 10: /* undef, !C | Z */
988 case 13: /* undef, !V */
989 return cond_make_t();
992 return cond_make_0(TCG_COND_EQ, res);
994 return cond_make_0(TCG_COND_NE, res);
996 return cond_make_0(TCG_COND_LT, res);
998 return cond_make_0(TCG_COND_GE, res);
1000 return cond_make_0(TCG_COND_LE, res);
1002 return cond_make_0(TCG_COND_GT, res);
1006 return do_cond(cf, res, NULL, NULL);
1009 g_assert_not_reached();
1013 /* Similar, but for shift/extract/deposit conditions. */
1015 static DisasCond do_sed_cond(unsigned orig, TCGv_reg res)
1019 /* Convert the compressed condition codes to standard.
1020 0-2 are the same as logicals (nv,<,<=), while 3 is OD.
1021 4-7 are the reverse of 0-3. */
1028 return do_log_cond(c * 2 + f, res);
1031 /* Similar, but for unit conditions. */
1033 static DisasCond do_unit_cond(unsigned cf, TCGv_reg res,
1034 TCGv_reg in1, TCGv_reg in2)
1037 TCGv_reg tmp, cb = NULL;
1040 /* Since we want to test lots of carry-out bits all at once, do not
1041 * do our normal thing and compute carry-in of bit B+1 since that
1042 * leaves us with carry bits spread across two words.
1044 cb = tcg_temp_new();
1045 tmp = tcg_temp_new();
1046 tcg_gen_or_reg(cb, in1, in2);
1047 tcg_gen_and_reg(tmp, in1, in2);
1048 tcg_gen_andc_reg(cb, cb, res);
1049 tcg_gen_or_reg(cb, cb, tmp);
1054 case 0: /* never / TR */
1055 case 1: /* undefined */
1056 case 5: /* undefined */
1057 cond = cond_make_f();
1060 case 2: /* SBZ / NBZ */
1061 /* See hasless(v,1) from
1062 * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
1064 tmp = tcg_temp_new();
1065 tcg_gen_subi_reg(tmp, res, 0x01010101u);
1066 tcg_gen_andc_reg(tmp, tmp, res);
1067 tcg_gen_andi_reg(tmp, tmp, 0x80808080u);
1068 cond = cond_make_0(TCG_COND_NE, tmp);
1072 case 3: /* SHZ / NHZ */
1073 tmp = tcg_temp_new();
1074 tcg_gen_subi_reg(tmp, res, 0x00010001u);
1075 tcg_gen_andc_reg(tmp, tmp, res);
1076 tcg_gen_andi_reg(tmp, tmp, 0x80008000u);
1077 cond = cond_make_0(TCG_COND_NE, tmp);
1081 case 4: /* SDC / NDC */
1082 tcg_gen_andi_reg(cb, cb, 0x88888888u);
1083 cond = cond_make_0(TCG_COND_NE, cb);
1086 case 6: /* SBC / NBC */
1087 tcg_gen_andi_reg(cb, cb, 0x80808080u);
1088 cond = cond_make_0(TCG_COND_NE, cb);
1091 case 7: /* SHC / NHC */
1092 tcg_gen_andi_reg(cb, cb, 0x80008000u);
1093 cond = cond_make_0(TCG_COND_NE, cb);
1097 g_assert_not_reached();
1103 cond.c = tcg_invert_cond(cond.c);
1109 /* Compute signed overflow for addition. */
1110 static TCGv_reg do_add_sv(DisasContext *ctx, TCGv_reg res,
1111 TCGv_reg in1, TCGv_reg in2)
1113 TCGv_reg sv = get_temp(ctx);
1114 TCGv_reg tmp = tcg_temp_new();
1116 tcg_gen_xor_reg(sv, res, in1);
1117 tcg_gen_xor_reg(tmp, in1, in2);
1118 tcg_gen_andc_reg(sv, sv, tmp);
1124 /* Compute signed overflow for subtraction. */
1125 static TCGv_reg do_sub_sv(DisasContext *ctx, TCGv_reg res,
1126 TCGv_reg in1, TCGv_reg in2)
1128 TCGv_reg sv = get_temp(ctx);
1129 TCGv_reg tmp = tcg_temp_new();
1131 tcg_gen_xor_reg(sv, res, in1);
1132 tcg_gen_xor_reg(tmp, in1, in2);
1133 tcg_gen_and_reg(sv, sv, tmp);
1139 static void do_add(DisasContext *ctx, unsigned rt, TCGv_reg in1,
1140 TCGv_reg in2, unsigned shift, bool is_l,
1141 bool is_tsv, bool is_tc, bool is_c, unsigned cf)
1143 TCGv_reg dest, cb, cb_msb, sv, tmp;
1144 unsigned c = cf >> 1;
1147 dest = tcg_temp_new();
1152 tmp = get_temp(ctx);
1153 tcg_gen_shli_reg(tmp, in1, shift);
1157 if (!is_l || cond_need_cb(c)) {
1158 TCGv_reg zero = tcg_const_reg(0);
1159 cb_msb = get_temp(ctx);
1160 tcg_gen_add2_reg(dest, cb_msb, in1, zero, in2, zero);
1162 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cpu_psw_cb_msb, zero);
1164 tcg_temp_free(zero);
1167 tcg_gen_xor_reg(cb, in1, in2);
1168 tcg_gen_xor_reg(cb, cb, dest);
1171 tcg_gen_add_reg(dest, in1, in2);
1173 tcg_gen_add_reg(dest, dest, cpu_psw_cb_msb);
1177 /* Compute signed overflow if required. */
1179 if (is_tsv || cond_need_sv(c)) {
1180 sv = do_add_sv(ctx, dest, in1, in2);
1182 /* ??? Need to include overflow from shift. */
1183 gen_helper_tsv(cpu_env, sv);
1187 /* Emit any conditional trap before any writeback. */
1188 cond = do_cond(cf, dest, cb_msb, sv);
1191 tmp = tcg_temp_new();
1192 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1);
1193 gen_helper_tcond(cpu_env, tmp);
1197 /* Write back the result. */
1199 save_or_nullify(ctx, cpu_psw_cb, cb);
1200 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb);
1202 save_gpr(ctx, rt, dest);
1203 tcg_temp_free(dest);
1205 /* Install the new nullification. */
1206 cond_free(&ctx->null_cond);
1207 ctx->null_cond = cond;
1210 static bool do_add_reg(DisasContext *ctx, arg_rrr_cf_sh *a,
1211 bool is_l, bool is_tsv, bool is_tc, bool is_c)
1213 TCGv_reg tcg_r1, tcg_r2;
1218 tcg_r1 = load_gpr(ctx, a->r1);
1219 tcg_r2 = load_gpr(ctx, a->r2);
1220 do_add(ctx, a->t, tcg_r1, tcg_r2, a->sh, is_l, is_tsv, is_tc, is_c, a->cf);
1221 return nullify_end(ctx);
1224 static bool do_add_imm(DisasContext *ctx, arg_rri_cf *a,
1225 bool is_tsv, bool is_tc)
1227 TCGv_reg tcg_im, tcg_r2;
1232 tcg_im = load_const(ctx, a->i);
1233 tcg_r2 = load_gpr(ctx, a->r);
1234 do_add(ctx, a->t, tcg_im, tcg_r2, 0, 0, is_tsv, is_tc, 0, a->cf);
1235 return nullify_end(ctx);
1238 static void do_sub(DisasContext *ctx, unsigned rt, TCGv_reg in1,
1239 TCGv_reg in2, bool is_tsv, bool is_b,
1240 bool is_tc, unsigned cf)
1242 TCGv_reg dest, sv, cb, cb_msb, zero, tmp;
1243 unsigned c = cf >> 1;
1246 dest = tcg_temp_new();
1247 cb = tcg_temp_new();
1248 cb_msb = tcg_temp_new();
1250 zero = tcg_const_reg(0);
1252 /* DEST,C = IN1 + ~IN2 + C. */
1253 tcg_gen_not_reg(cb, in2);
1254 tcg_gen_add2_reg(dest, cb_msb, in1, zero, cpu_psw_cb_msb, zero);
1255 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cb, zero);
1256 tcg_gen_xor_reg(cb, cb, in1);
1257 tcg_gen_xor_reg(cb, cb, dest);
1259 /* DEST,C = IN1 + ~IN2 + 1. We can produce the same result in fewer
1260 operations by seeding the high word with 1 and subtracting. */
1261 tcg_gen_movi_reg(cb_msb, 1);
1262 tcg_gen_sub2_reg(dest, cb_msb, in1, cb_msb, in2, zero);
1263 tcg_gen_eqv_reg(cb, in1, in2);
1264 tcg_gen_xor_reg(cb, cb, dest);
1266 tcg_temp_free(zero);
1268 /* Compute signed overflow if required. */
1270 if (is_tsv || cond_need_sv(c)) {
1271 sv = do_sub_sv(ctx, dest, in1, in2);
1273 gen_helper_tsv(cpu_env, sv);
1277 /* Compute the condition. We cannot use the special case for borrow. */
1279 cond = do_sub_cond(cf, dest, in1, in2, sv);
1281 cond = do_cond(cf, dest, cb_msb, sv);
1284 /* Emit any conditional trap before any writeback. */
1287 tmp = tcg_temp_new();
1288 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1);
1289 gen_helper_tcond(cpu_env, tmp);
1293 /* Write back the result. */
1294 save_or_nullify(ctx, cpu_psw_cb, cb);
1295 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb);
1296 save_gpr(ctx, rt, dest);
1297 tcg_temp_free(dest);
1299 /* Install the new nullification. */
1300 cond_free(&ctx->null_cond);
1301 ctx->null_cond = cond;
1304 static bool do_sub_reg(DisasContext *ctx, arg_rrr_cf *a,
1305 bool is_tsv, bool is_b, bool is_tc)
1307 TCGv_reg tcg_r1, tcg_r2;
1312 tcg_r1 = load_gpr(ctx, a->r1);
1313 tcg_r2 = load_gpr(ctx, a->r2);
1314 do_sub(ctx, a->t, tcg_r1, tcg_r2, is_tsv, is_b, is_tc, a->cf);
1315 return nullify_end(ctx);
1318 static bool do_sub_imm(DisasContext *ctx, arg_rri_cf *a, bool is_tsv)
1320 TCGv_reg tcg_im, tcg_r2;
1325 tcg_im = load_const(ctx, a->i);
1326 tcg_r2 = load_gpr(ctx, a->r);
1327 do_sub(ctx, a->t, tcg_im, tcg_r2, is_tsv, 0, 0, a->cf);
1328 return nullify_end(ctx);
1331 static void do_cmpclr(DisasContext *ctx, unsigned rt, TCGv_reg in1,
1332 TCGv_reg in2, unsigned cf)
1337 dest = tcg_temp_new();
1338 tcg_gen_sub_reg(dest, in1, in2);
1340 /* Compute signed overflow if required. */
1342 if (cond_need_sv(cf >> 1)) {
1343 sv = do_sub_sv(ctx, dest, in1, in2);
1346 /* Form the condition for the compare. */
1347 cond = do_sub_cond(cf, dest, in1, in2, sv);
1350 tcg_gen_movi_reg(dest, 0);
1351 save_gpr(ctx, rt, dest);
1352 tcg_temp_free(dest);
1354 /* Install the new nullification. */
1355 cond_free(&ctx->null_cond);
1356 ctx->null_cond = cond;
1359 static void do_log(DisasContext *ctx, unsigned rt, TCGv_reg in1,
1360 TCGv_reg in2, unsigned cf,
1361 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg))
1363 TCGv_reg dest = dest_gpr(ctx, rt);
1365 /* Perform the operation, and writeback. */
1367 save_gpr(ctx, rt, dest);
1369 /* Install the new nullification. */
1370 cond_free(&ctx->null_cond);
1372 ctx->null_cond = do_log_cond(cf, dest);
1376 static bool do_log_reg(DisasContext *ctx, arg_rrr_cf *a,
1377 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg))
1379 TCGv_reg tcg_r1, tcg_r2;
1384 tcg_r1 = load_gpr(ctx, a->r1);
1385 tcg_r2 = load_gpr(ctx, a->r2);
1386 do_log(ctx, a->t, tcg_r1, tcg_r2, a->cf, fn);
1387 return nullify_end(ctx);
1390 static void do_unit(DisasContext *ctx, unsigned rt, TCGv_reg in1,
1391 TCGv_reg in2, unsigned cf, bool is_tc,
1392 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg))
1398 dest = dest_gpr(ctx, rt);
1400 save_gpr(ctx, rt, dest);
1401 cond_free(&ctx->null_cond);
1403 dest = tcg_temp_new();
1406 cond = do_unit_cond(cf, dest, in1, in2);
1409 TCGv_reg tmp = tcg_temp_new();
1411 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1);
1412 gen_helper_tcond(cpu_env, tmp);
1415 save_gpr(ctx, rt, dest);
1417 cond_free(&ctx->null_cond);
1418 ctx->null_cond = cond;
1422 #ifndef CONFIG_USER_ONLY
1423 /* The "normal" usage is SP >= 0, wherein SP == 0 selects the space
1424 from the top 2 bits of the base register. There are a few system
1425 instructions that have a 3-bit space specifier, for which SR0 is
1426 not special. To handle this, pass ~SP. */
1427 static TCGv_i64 space_select(DisasContext *ctx, int sp, TCGv_reg base)
1437 spc = get_temp_tl(ctx);
1438 load_spr(ctx, spc, sp);
1441 if (ctx->tb_flags & TB_FLAG_SR_SAME) {
1445 ptr = tcg_temp_new_ptr();
1446 tmp = tcg_temp_new();
1447 spc = get_temp_tl(ctx);
1449 tcg_gen_shri_reg(tmp, base, TARGET_REGISTER_BITS - 5);
1450 tcg_gen_andi_reg(tmp, tmp, 030);
1451 tcg_gen_trunc_reg_ptr(ptr, tmp);
1454 tcg_gen_add_ptr(ptr, ptr, cpu_env);
1455 tcg_gen_ld_i64(spc, ptr, offsetof(CPUHPPAState, sr[4]));
1456 tcg_temp_free_ptr(ptr);
1462 static void form_gva(DisasContext *ctx, TCGv_tl *pgva, TCGv_reg *pofs,
1463 unsigned rb, unsigned rx, int scale, target_sreg disp,
1464 unsigned sp, int modify, bool is_phys)
1466 TCGv_reg base = load_gpr(ctx, rb);
1469 /* Note that RX is mutually exclusive with DISP. */
1471 ofs = get_temp(ctx);
1472 tcg_gen_shli_reg(ofs, cpu_gr[rx], scale);
1473 tcg_gen_add_reg(ofs, ofs, base);
1474 } else if (disp || modify) {
1475 ofs = get_temp(ctx);
1476 tcg_gen_addi_reg(ofs, base, disp);
1482 #ifdef CONFIG_USER_ONLY
1483 *pgva = (modify <= 0 ? ofs : base);
1485 TCGv_tl addr = get_temp_tl(ctx);
1486 tcg_gen_extu_reg_tl(addr, modify <= 0 ? ofs : base);
1487 if (ctx->tb_flags & PSW_W) {
1488 tcg_gen_andi_tl(addr, addr, 0x3fffffffffffffffull);
1491 tcg_gen_or_tl(addr, addr, space_select(ctx, sp, base));
1497 /* Emit a memory load. The modify parameter should be
1498 * < 0 for pre-modify,
1499 * > 0 for post-modify,
1500 * = 0 for no base register update.
1502 static void do_load_32(DisasContext *ctx, TCGv_i32 dest, unsigned rb,
1503 unsigned rx, int scale, target_sreg disp,
1504 unsigned sp, int modify, TCGMemOp mop)
1509 /* Caller uses nullify_over/nullify_end. */
1510 assert(ctx->null_cond.c == TCG_COND_NEVER);
1512 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify,
1513 ctx->mmu_idx == MMU_PHYS_IDX);
1514 tcg_gen_qemu_ld_reg(dest, addr, ctx->mmu_idx, mop);
1516 save_gpr(ctx, rb, ofs);
1520 static void do_load_64(DisasContext *ctx, TCGv_i64 dest, unsigned rb,
1521 unsigned rx, int scale, target_sreg disp,
1522 unsigned sp, int modify, TCGMemOp mop)
1527 /* Caller uses nullify_over/nullify_end. */
1528 assert(ctx->null_cond.c == TCG_COND_NEVER);
1530 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify,
1531 ctx->mmu_idx == MMU_PHYS_IDX);
1532 tcg_gen_qemu_ld_i64(dest, addr, ctx->mmu_idx, mop);
1534 save_gpr(ctx, rb, ofs);
1538 static void do_store_32(DisasContext *ctx, TCGv_i32 src, unsigned rb,
1539 unsigned rx, int scale, target_sreg disp,
1540 unsigned sp, int modify, TCGMemOp mop)
1545 /* Caller uses nullify_over/nullify_end. */
1546 assert(ctx->null_cond.c == TCG_COND_NEVER);
1548 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify,
1549 ctx->mmu_idx == MMU_PHYS_IDX);
1550 tcg_gen_qemu_st_i32(src, addr, ctx->mmu_idx, mop);
1552 save_gpr(ctx, rb, ofs);
1556 static void do_store_64(DisasContext *ctx, TCGv_i64 src, unsigned rb,
1557 unsigned rx, int scale, target_sreg disp,
1558 unsigned sp, int modify, TCGMemOp mop)
1563 /* Caller uses nullify_over/nullify_end. */
1564 assert(ctx->null_cond.c == TCG_COND_NEVER);
1566 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify,
1567 ctx->mmu_idx == MMU_PHYS_IDX);
1568 tcg_gen_qemu_st_i64(src, addr, ctx->mmu_idx, mop);
1570 save_gpr(ctx, rb, ofs);
1574 #if TARGET_REGISTER_BITS == 64
1575 #define do_load_reg do_load_64
1576 #define do_store_reg do_store_64
1578 #define do_load_reg do_load_32
1579 #define do_store_reg do_store_32
1582 static bool do_load(DisasContext *ctx, unsigned rt, unsigned rb,
1583 unsigned rx, int scale, target_sreg disp,
1584 unsigned sp, int modify, TCGMemOp mop)
1591 /* No base register update. */
1592 dest = dest_gpr(ctx, rt);
1594 /* Make sure if RT == RB, we see the result of the load. */
1595 dest = get_temp(ctx);
1597 do_load_reg(ctx, dest, rb, rx, scale, disp, sp, modify, mop);
1598 save_gpr(ctx, rt, dest);
1600 return nullify_end(ctx);
1603 static bool do_floadw(DisasContext *ctx, unsigned rt, unsigned rb,
1604 unsigned rx, int scale, target_sreg disp,
1605 unsigned sp, int modify)
1611 tmp = tcg_temp_new_i32();
1612 do_load_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL);
1613 save_frw_i32(rt, tmp);
1614 tcg_temp_free_i32(tmp);
1617 gen_helper_loaded_fr0(cpu_env);
1620 return nullify_end(ctx);
1623 static bool trans_fldw(DisasContext *ctx, arg_ldst *a)
1625 return do_floadw(ctx, a->t, a->b, a->x, a->scale ? 2 : 0,
1626 a->disp, a->sp, a->m);
1629 static bool do_floadd(DisasContext *ctx, unsigned rt, unsigned rb,
1630 unsigned rx, int scale, target_sreg disp,
1631 unsigned sp, int modify)
1637 tmp = tcg_temp_new_i64();
1638 do_load_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ);
1640 tcg_temp_free_i64(tmp);
1643 gen_helper_loaded_fr0(cpu_env);
1646 return nullify_end(ctx);
1649 static bool trans_fldd(DisasContext *ctx, arg_ldst *a)
1651 return do_floadd(ctx, a->t, a->b, a->x, a->scale ? 3 : 0,
1652 a->disp, a->sp, a->m);
1655 static bool do_store(DisasContext *ctx, unsigned rt, unsigned rb,
1656 target_sreg disp, unsigned sp,
1657 int modify, TCGMemOp mop)
1660 do_store_reg(ctx, load_gpr(ctx, rt), rb, 0, 0, disp, sp, modify, mop);
1661 return nullify_end(ctx);
1664 static bool do_fstorew(DisasContext *ctx, unsigned rt, unsigned rb,
1665 unsigned rx, int scale, target_sreg disp,
1666 unsigned sp, int modify)
1672 tmp = load_frw_i32(rt);
1673 do_store_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL);
1674 tcg_temp_free_i32(tmp);
1676 return nullify_end(ctx);
1679 static bool trans_fstw(DisasContext *ctx, arg_ldst *a)
1681 return do_fstorew(ctx, a->t, a->b, a->x, a->scale ? 2 : 0,
1682 a->disp, a->sp, a->m);
1685 static bool do_fstored(DisasContext *ctx, unsigned rt, unsigned rb,
1686 unsigned rx, int scale, target_sreg disp,
1687 unsigned sp, int modify)
1694 do_store_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ);
1695 tcg_temp_free_i64(tmp);
1697 return nullify_end(ctx);
1700 static bool trans_fstd(DisasContext *ctx, arg_ldst *a)
1702 return do_fstored(ctx, a->t, a->b, a->x, a->scale ? 3 : 0,
1703 a->disp, a->sp, a->m);
1706 static bool do_fop_wew(DisasContext *ctx, unsigned rt, unsigned ra,
1707 void (*func)(TCGv_i32, TCGv_env, TCGv_i32))
1712 tmp = load_frw0_i32(ra);
1714 func(tmp, cpu_env, tmp);
1716 save_frw_i32(rt, tmp);
1717 tcg_temp_free_i32(tmp);
1718 return nullify_end(ctx);
1721 static bool do_fop_wed(DisasContext *ctx, unsigned rt, unsigned ra,
1722 void (*func)(TCGv_i32, TCGv_env, TCGv_i64))
1729 dst = tcg_temp_new_i32();
1731 func(dst, cpu_env, src);
1733 tcg_temp_free_i64(src);
1734 save_frw_i32(rt, dst);
1735 tcg_temp_free_i32(dst);
1736 return nullify_end(ctx);
1739 static bool do_fop_ded(DisasContext *ctx, unsigned rt, unsigned ra,
1740 void (*func)(TCGv_i64, TCGv_env, TCGv_i64))
1745 tmp = load_frd0(ra);
1747 func(tmp, cpu_env, tmp);
1750 tcg_temp_free_i64(tmp);
1751 return nullify_end(ctx);
1754 static bool do_fop_dew(DisasContext *ctx, unsigned rt, unsigned ra,
1755 void (*func)(TCGv_i64, TCGv_env, TCGv_i32))
1761 src = load_frw0_i32(ra);
1762 dst = tcg_temp_new_i64();
1764 func(dst, cpu_env, src);
1766 tcg_temp_free_i32(src);
1768 tcg_temp_free_i64(dst);
1769 return nullify_end(ctx);
1772 static bool do_fop_weww(DisasContext *ctx, unsigned rt,
1773 unsigned ra, unsigned rb,
1774 void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32))
1779 a = load_frw0_i32(ra);
1780 b = load_frw0_i32(rb);
1782 func(a, cpu_env, a, b);
1784 tcg_temp_free_i32(b);
1785 save_frw_i32(rt, a);
1786 tcg_temp_free_i32(a);
1787 return nullify_end(ctx);
1790 static bool do_fop_dedd(DisasContext *ctx, unsigned rt,
1791 unsigned ra, unsigned rb,
1792 void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64))
1800 func(a, cpu_env, a, b);
1802 tcg_temp_free_i64(b);
1804 tcg_temp_free_i64(a);
1805 return nullify_end(ctx);
1808 /* Emit an unconditional branch to a direct target, which may or may not
1809 have already had nullification handled. */
1810 static bool do_dbranch(DisasContext *ctx, target_ureg dest,
1811 unsigned link, bool is_n)
1813 if (ctx->null_cond.c == TCG_COND_NEVER && ctx->null_lab == NULL) {
1815 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var);
1819 ctx->null_cond.c = TCG_COND_ALWAYS;
1825 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var);
1828 if (is_n && use_nullify_skip(ctx)) {
1829 nullify_set(ctx, 0);
1830 gen_goto_tb(ctx, 0, dest, dest + 4);
1832 nullify_set(ctx, is_n);
1833 gen_goto_tb(ctx, 0, ctx->iaoq_b, dest);
1838 nullify_set(ctx, 0);
1839 gen_goto_tb(ctx, 1, ctx->iaoq_b, ctx->iaoq_n);
1840 ctx->base.is_jmp = DISAS_NORETURN;
1845 /* Emit a conditional branch to a direct target. If the branch itself
1846 is nullified, we should have already used nullify_over. */
1847 static bool do_cbranch(DisasContext *ctx, target_sreg disp, bool is_n,
1850 target_ureg dest = iaoq_dest(ctx, disp);
1851 TCGLabel *taken = NULL;
1852 TCGCond c = cond->c;
1855 assert(ctx->null_cond.c == TCG_COND_NEVER);
1857 /* Handle TRUE and NEVER as direct branches. */
1858 if (c == TCG_COND_ALWAYS) {
1859 return do_dbranch(ctx, dest, 0, is_n && disp >= 0);
1861 if (c == TCG_COND_NEVER) {
1862 return do_dbranch(ctx, ctx->iaoq_n, 0, is_n && disp < 0);
1865 taken = gen_new_label();
1867 tcg_gen_brcond_reg(c, cond->a0, cond->a1, taken);
1870 /* Not taken: Condition not satisfied; nullify on backward branches. */
1871 n = is_n && disp < 0;
1872 if (n && use_nullify_skip(ctx)) {
1873 nullify_set(ctx, 0);
1874 gen_goto_tb(ctx, 0, ctx->iaoq_n, ctx->iaoq_n + 4);
1876 if (!n && ctx->null_lab) {
1877 gen_set_label(ctx->null_lab);
1878 ctx->null_lab = NULL;
1880 nullify_set(ctx, n);
1881 if (ctx->iaoq_n == -1) {
1882 /* The temporary iaoq_n_var died at the branch above.
1883 Regenerate it here instead of saving it. */
1884 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4);
1886 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n);
1889 gen_set_label(taken);
1891 /* Taken: Condition satisfied; nullify on forward branches. */
1892 n = is_n && disp >= 0;
1893 if (n && use_nullify_skip(ctx)) {
1894 nullify_set(ctx, 0);
1895 gen_goto_tb(ctx, 1, dest, dest + 4);
1897 nullify_set(ctx, n);
1898 gen_goto_tb(ctx, 1, ctx->iaoq_b, dest);
1901 /* Not taken: the branch itself was nullified. */
1902 if (ctx->null_lab) {
1903 gen_set_label(ctx->null_lab);
1904 ctx->null_lab = NULL;
1905 ctx->base.is_jmp = DISAS_IAQ_N_STALE;
1907 ctx->base.is_jmp = DISAS_NORETURN;
1912 /* Emit an unconditional branch to an indirect target. This handles
1913 nullification of the branch itself. */
1914 static bool do_ibranch(DisasContext *ctx, TCGv_reg dest,
1915 unsigned link, bool is_n)
1917 TCGv_reg a0, a1, next, tmp;
1920 assert(ctx->null_lab == NULL);
1922 if (ctx->null_cond.c == TCG_COND_NEVER) {
1924 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var);
1926 next = get_temp(ctx);
1927 tcg_gen_mov_reg(next, dest);
1929 if (use_nullify_skip(ctx)) {
1930 tcg_gen_mov_reg(cpu_iaoq_f, next);
1931 tcg_gen_addi_reg(cpu_iaoq_b, next, 4);
1932 nullify_set(ctx, 0);
1933 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED;
1936 ctx->null_cond.c = TCG_COND_ALWAYS;
1939 ctx->iaoq_n_var = next;
1940 } else if (is_n && use_nullify_skip(ctx)) {
1941 /* The (conditional) branch, B, nullifies the next insn, N,
1942 and we're allowed to skip execution N (no single-step or
1943 tracepoint in effect). Since the goto_ptr that we must use
1944 for the indirect branch consumes no special resources, we
1945 can (conditionally) skip B and continue execution. */
1946 /* The use_nullify_skip test implies we have a known control path. */
1947 tcg_debug_assert(ctx->iaoq_b != -1);
1948 tcg_debug_assert(ctx->iaoq_n != -1);
1950 /* We do have to handle the non-local temporary, DEST, before
1951 branching. Since IOAQ_F is not really live at this point, we
1952 can simply store DEST optimistically. Similarly with IAOQ_B. */
1953 tcg_gen_mov_reg(cpu_iaoq_f, dest);
1954 tcg_gen_addi_reg(cpu_iaoq_b, dest, 4);
1958 tcg_gen_movi_reg(cpu_gr[link], ctx->iaoq_n);
1960 tcg_gen_lookup_and_goto_ptr();
1961 return nullify_end(ctx);
1963 cond_prep(&ctx->null_cond);
1964 c = ctx->null_cond.c;
1965 a0 = ctx->null_cond.a0;
1966 a1 = ctx->null_cond.a1;
1968 tmp = tcg_temp_new();
1969 next = get_temp(ctx);
1971 copy_iaoq_entry(tmp, ctx->iaoq_n, ctx->iaoq_n_var);
1972 tcg_gen_movcond_reg(c, next, a0, a1, tmp, dest);
1974 ctx->iaoq_n_var = next;
1977 tcg_gen_movcond_reg(c, cpu_gr[link], a0, a1, cpu_gr[link], tmp);
1981 /* The branch nullifies the next insn, which means the state of N
1982 after the branch is the inverse of the state of N that applied
1984 tcg_gen_setcond_reg(tcg_invert_cond(c), cpu_psw_n, a0, a1);
1985 cond_free(&ctx->null_cond);
1986 ctx->null_cond = cond_make_n();
1987 ctx->psw_n_nonzero = true;
1989 cond_free(&ctx->null_cond);
1996 * if (IAOQ_Front{30..31} < GR[b]{30..31})
1997 * IAOQ_Next{30..31} ← GR[b]{30..31};
1999 * IAOQ_Next{30..31} ← IAOQ_Front{30..31};
2000 * which keeps the privilege level from being increased.
2002 static TCGv_reg do_ibranch_priv(DisasContext *ctx, TCGv_reg offset)
2005 switch (ctx->privilege) {
2007 /* Privilege 0 is maximum and is allowed to decrease. */
2010 /* Privilege 3 is minimum and is never allowed to increase. */
2011 dest = get_temp(ctx);
2012 tcg_gen_ori_reg(dest, offset, 3);
2015 dest = get_temp(ctx);
2016 tcg_gen_andi_reg(dest, offset, -4);
2017 tcg_gen_ori_reg(dest, dest, ctx->privilege);
2018 tcg_gen_movcond_reg(TCG_COND_GTU, dest, dest, offset, dest, offset);
2024 #ifdef CONFIG_USER_ONLY
2025 /* On Linux, page zero is normally marked execute only + gateway.
2026 Therefore normal read or write is supposed to fail, but specific
2027 offsets have kernel code mapped to raise permissions to implement
2028 system calls. Handling this via an explicit check here, rather
2029 in than the "be disp(sr2,r0)" instruction that probably sent us
2030 here, is the easiest way to handle the branch delay slot on the
2031 aforementioned BE. */
2032 static void do_page_zero(DisasContext *ctx)
2034 /* If by some means we get here with PSW[N]=1, that implies that
2035 the B,GATE instruction would be skipped, and we'd fault on the
2036 next insn within the privilaged page. */
2037 switch (ctx->null_cond.c) {
2038 case TCG_COND_NEVER:
2040 case TCG_COND_ALWAYS:
2041 tcg_gen_movi_reg(cpu_psw_n, 0);
2044 /* Since this is always the first (and only) insn within the
2045 TB, we should know the state of PSW[N] from TB->FLAGS. */
2046 g_assert_not_reached();
2049 /* Check that we didn't arrive here via some means that allowed
2050 non-sequential instruction execution. Normally the PSW[B] bit
2051 detects this by disallowing the B,GATE instruction to execute
2052 under such conditions. */
2053 if (ctx->iaoq_b != ctx->iaoq_f + 4) {
2057 switch (ctx->iaoq_f & -4) {
2058 case 0x00: /* Null pointer call */
2059 gen_excp_1(EXCP_IMP);
2060 ctx->base.is_jmp = DISAS_NORETURN;
2063 case 0xb0: /* LWS */
2064 gen_excp_1(EXCP_SYSCALL_LWS);
2065 ctx->base.is_jmp = DISAS_NORETURN;
2068 case 0xe0: /* SET_THREAD_POINTER */
2069 tcg_gen_st_reg(cpu_gr[26], cpu_env, offsetof(CPUHPPAState, cr[27]));
2070 tcg_gen_ori_reg(cpu_iaoq_f, cpu_gr[31], 3);
2071 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4);
2072 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED;
2075 case 0x100: /* SYSCALL */
2076 gen_excp_1(EXCP_SYSCALL);
2077 ctx->base.is_jmp = DISAS_NORETURN;
2082 gen_excp_1(EXCP_ILL);
2083 ctx->base.is_jmp = DISAS_NORETURN;
2089 static bool trans_nop(DisasContext *ctx, arg_nop *a)
2091 cond_free(&ctx->null_cond);
2095 static bool trans_break(DisasContext *ctx, arg_break *a)
2097 return gen_excp_iir(ctx, EXCP_BREAK);
2100 static bool trans_sync(DisasContext *ctx, arg_sync *a)
2102 /* No point in nullifying the memory barrier. */
2103 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
2105 cond_free(&ctx->null_cond);
2109 static bool trans_mfia(DisasContext *ctx, arg_mfia *a)
2112 TCGv_reg tmp = dest_gpr(ctx, rt);
2113 tcg_gen_movi_reg(tmp, ctx->iaoq_f);
2114 save_gpr(ctx, rt, tmp);
2116 cond_free(&ctx->null_cond);
2120 static bool trans_mfsp(DisasContext *ctx, arg_mfsp *a)
2123 unsigned rs = a->sp;
2124 TCGv_i64 t0 = tcg_temp_new_i64();
2125 TCGv_reg t1 = tcg_temp_new();
2127 load_spr(ctx, t0, rs);
2128 tcg_gen_shri_i64(t0, t0, 32);
2129 tcg_gen_trunc_i64_reg(t1, t0);
2131 save_gpr(ctx, rt, t1);
2133 tcg_temp_free_i64(t0);
2135 cond_free(&ctx->null_cond);
2139 static bool trans_mfctl(DisasContext *ctx, arg_mfctl *a)
2142 unsigned ctl = a->r;
2147 #ifdef TARGET_HPPA64
2149 /* MFSAR without ,W masks low 5 bits. */
2150 tmp = dest_gpr(ctx, rt);
2151 tcg_gen_andi_reg(tmp, cpu_sar, 31);
2152 save_gpr(ctx, rt, tmp);
2156 save_gpr(ctx, rt, cpu_sar);
2158 case CR_IT: /* Interval Timer */
2159 /* FIXME: Respect PSW_S bit. */
2161 tmp = dest_gpr(ctx, rt);
2162 if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) {
2164 gen_helper_read_interval_timer(tmp);
2166 ctx->base.is_jmp = DISAS_IAQ_N_STALE;
2168 gen_helper_read_interval_timer(tmp);
2170 save_gpr(ctx, rt, tmp);
2171 return nullify_end(ctx);
2176 /* All other control registers are privileged. */
2177 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG);
2181 tmp = get_temp(ctx);
2182 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl]));
2183 save_gpr(ctx, rt, tmp);
2186 cond_free(&ctx->null_cond);
2190 static bool trans_mtsp(DisasContext *ctx, arg_mtsp *a)
2193 unsigned rs = a->sp;
2197 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG);
2201 t64 = tcg_temp_new_i64();
2202 tcg_gen_extu_reg_i64(t64, load_gpr(ctx, rr));
2203 tcg_gen_shli_i64(t64, t64, 32);
2206 tcg_gen_st_i64(t64, cpu_env, offsetof(CPUHPPAState, sr[rs]));
2207 ctx->tb_flags &= ~TB_FLAG_SR_SAME;
2209 tcg_gen_mov_i64(cpu_sr[rs], t64);
2211 tcg_temp_free_i64(t64);
2213 return nullify_end(ctx);
2216 static bool trans_mtctl(DisasContext *ctx, arg_mtctl *a)
2218 unsigned ctl = a->t;
2219 TCGv_reg reg = load_gpr(ctx, a->r);
2222 if (ctl == CR_SAR) {
2223 tmp = tcg_temp_new();
2224 tcg_gen_andi_reg(tmp, reg, TARGET_REGISTER_BITS - 1);
2225 save_or_nullify(ctx, cpu_sar, tmp);
2228 cond_free(&ctx->null_cond);
2232 /* All other control registers are privileged or read-only. */
2233 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG);
2235 #ifndef CONFIG_USER_ONLY
2239 gen_helper_write_interval_timer(cpu_env, reg);
2242 gen_helper_write_eirr(cpu_env, reg);
2245 gen_helper_write_eiem(cpu_env, reg);
2246 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT;
2251 /* FIXME: Respect PSW_Q bit */
2252 /* The write advances the queue and stores to the back element. */
2253 tmp = get_temp(ctx);
2254 tcg_gen_ld_reg(tmp, cpu_env,
2255 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ]));
2256 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl]));
2257 tcg_gen_st_reg(reg, cpu_env,
2258 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ]));
2262 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl]));
2265 return nullify_end(ctx);
2269 static bool trans_mtsarcm(DisasContext *ctx, arg_mtsarcm *a)
2271 TCGv_reg tmp = tcg_temp_new();
2273 tcg_gen_not_reg(tmp, load_gpr(ctx, a->r));
2274 tcg_gen_andi_reg(tmp, tmp, TARGET_REGISTER_BITS - 1);
2275 save_or_nullify(ctx, cpu_sar, tmp);
2278 cond_free(&ctx->null_cond);
2282 static bool trans_ldsid(DisasContext *ctx, arg_ldsid *a)
2284 TCGv_reg dest = dest_gpr(ctx, a->t);
2286 #ifdef CONFIG_USER_ONLY
2287 /* We don't implement space registers in user mode. */
2288 tcg_gen_movi_reg(dest, 0);
2290 TCGv_i64 t0 = tcg_temp_new_i64();
2292 tcg_gen_mov_i64(t0, space_select(ctx, a->sp, load_gpr(ctx, a->b)));
2293 tcg_gen_shri_i64(t0, t0, 32);
2294 tcg_gen_trunc_i64_reg(dest, t0);
2296 tcg_temp_free_i64(t0);
2298 save_gpr(ctx, a->t, dest);
2300 cond_free(&ctx->null_cond);
2304 static bool trans_rsm(DisasContext *ctx, arg_rsm *a)
2306 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2307 #ifndef CONFIG_USER_ONLY
2312 tmp = get_temp(ctx);
2313 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw));
2314 tcg_gen_andi_reg(tmp, tmp, ~a->i);
2315 gen_helper_swap_system_mask(tmp, cpu_env, tmp);
2316 save_gpr(ctx, a->t, tmp);
2318 /* Exit the TB to recognize new interrupts, e.g. PSW_M. */
2319 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT;
2320 return nullify_end(ctx);
2324 static bool trans_ssm(DisasContext *ctx, arg_ssm *a)
2326 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2327 #ifndef CONFIG_USER_ONLY
2332 tmp = get_temp(ctx);
2333 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw));
2334 tcg_gen_ori_reg(tmp, tmp, a->i);
2335 gen_helper_swap_system_mask(tmp, cpu_env, tmp);
2336 save_gpr(ctx, a->t, tmp);
2338 /* Exit the TB to recognize new interrupts, e.g. PSW_I. */
2339 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT;
2340 return nullify_end(ctx);
2344 static bool trans_mtsm(DisasContext *ctx, arg_mtsm *a)
2346 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2347 #ifndef CONFIG_USER_ONLY
2351 reg = load_gpr(ctx, a->r);
2352 tmp = get_temp(ctx);
2353 gen_helper_swap_system_mask(tmp, cpu_env, reg);
2355 /* Exit the TB to recognize new interrupts. */
2356 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT;
2357 return nullify_end(ctx);
2361 static bool do_rfi(DisasContext *ctx, bool rfi_r)
2363 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2364 #ifndef CONFIG_USER_ONLY
2368 gen_helper_rfi_r(cpu_env);
2370 gen_helper_rfi(cpu_env);
2372 /* Exit the TB to recognize new interrupts. */
2373 if (ctx->base.singlestep_enabled) {
2374 gen_excp_1(EXCP_DEBUG);
2376 tcg_gen_exit_tb(NULL, 0);
2378 ctx->base.is_jmp = DISAS_NORETURN;
2380 return nullify_end(ctx);
2384 static bool trans_rfi(DisasContext *ctx, arg_rfi *a)
2386 return do_rfi(ctx, false);
2389 static bool trans_rfi_r(DisasContext *ctx, arg_rfi_r *a)
2391 return do_rfi(ctx, true);
2394 static bool trans_halt(DisasContext *ctx, arg_halt *a)
2396 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2397 #ifndef CONFIG_USER_ONLY
2399 gen_helper_halt(cpu_env);
2400 ctx->base.is_jmp = DISAS_NORETURN;
2401 return nullify_end(ctx);
2405 static bool trans_reset(DisasContext *ctx, arg_reset *a)
2407 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2408 #ifndef CONFIG_USER_ONLY
2410 gen_helper_reset(cpu_env);
2411 ctx->base.is_jmp = DISAS_NORETURN;
2412 return nullify_end(ctx);
2416 static bool trans_nop_addrx(DisasContext *ctx, arg_ldst *a)
2419 TCGv_reg dest = dest_gpr(ctx, a->b);
2420 TCGv_reg src1 = load_gpr(ctx, a->b);
2421 TCGv_reg src2 = load_gpr(ctx, a->x);
2423 /* The only thing we need to do is the base register modification. */
2424 tcg_gen_add_reg(dest, src1, src2);
2425 save_gpr(ctx, a->b, dest);
2427 cond_free(&ctx->null_cond);
2431 static bool trans_probe(DisasContext *ctx, arg_probe *a)
2434 TCGv_i32 level, want;
2439 dest = dest_gpr(ctx, a->t);
2440 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false);
2443 level = tcg_const_i32(a->ri);
2445 level = tcg_temp_new_i32();
2446 tcg_gen_trunc_reg_i32(level, load_gpr(ctx, a->ri));
2447 tcg_gen_andi_i32(level, level, 3);
2449 want = tcg_const_i32(a->write ? PAGE_WRITE : PAGE_READ);
2451 gen_helper_probe(dest, cpu_env, addr, level, want);
2453 tcg_temp_free_i32(want);
2454 tcg_temp_free_i32(level);
2456 save_gpr(ctx, a->t, dest);
2457 return nullify_end(ctx);
2460 static bool trans_ixtlbx(DisasContext *ctx, arg_ixtlbx *a)
2462 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2463 #ifndef CONFIG_USER_ONLY
2469 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false);
2470 reg = load_gpr(ctx, a->r);
2472 gen_helper_itlba(cpu_env, addr, reg);
2474 gen_helper_itlbp(cpu_env, addr, reg);
2477 /* Exit TB for ITLB change if mmu is enabled. This *should* not be
2478 the case, since the OS TLB fill handler runs with mmu disabled. */
2479 if (!a->data && (ctx->tb_flags & PSW_C)) {
2480 ctx->base.is_jmp = DISAS_IAQ_N_STALE;
2482 return nullify_end(ctx);
2486 static bool trans_pxtlbx(DisasContext *ctx, arg_pxtlbx *a)
2488 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2489 #ifndef CONFIG_USER_ONLY
2495 form_gva(ctx, &addr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false);
2497 save_gpr(ctx, a->b, ofs);
2500 gen_helper_ptlbe(cpu_env);
2502 gen_helper_ptlb(cpu_env, addr);
2505 /* Exit TB for TLB change if mmu is enabled. */
2506 if (!a->data && (ctx->tb_flags & PSW_C)) {
2507 ctx->base.is_jmp = DISAS_IAQ_N_STALE;
2509 return nullify_end(ctx);
2513 static bool trans_lpa(DisasContext *ctx, arg_ldst *a)
2515 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2516 #ifndef CONFIG_USER_ONLY
2518 TCGv_reg ofs, paddr;
2522 form_gva(ctx, &vaddr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false);
2524 paddr = tcg_temp_new();
2525 gen_helper_lpa(paddr, cpu_env, vaddr);
2527 /* Note that physical address result overrides base modification. */
2529 save_gpr(ctx, a->b, ofs);
2531 save_gpr(ctx, a->t, paddr);
2532 tcg_temp_free(paddr);
2534 return nullify_end(ctx);
2538 static bool trans_lci(DisasContext *ctx, arg_lci *a)
2542 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2544 /* The Coherence Index is an implementation-defined function of the
2545 physical address. Two addresses with the same CI have a coherent
2546 view of the cache. Our implementation is to return 0 for all,
2547 since the entire address space is coherent. */
2548 ci = tcg_const_reg(0);
2549 save_gpr(ctx, a->t, ci);
2552 cond_free(&ctx->null_cond);
2556 static bool trans_add(DisasContext *ctx, arg_rrr_cf_sh *a)
2558 return do_add_reg(ctx, a, false, false, false, false);
2561 static bool trans_add_l(DisasContext *ctx, arg_rrr_cf_sh *a)
2563 return do_add_reg(ctx, a, true, false, false, false);
2566 static bool trans_add_tsv(DisasContext *ctx, arg_rrr_cf_sh *a)
2568 return do_add_reg(ctx, a, false, true, false, false);
2571 static bool trans_add_c(DisasContext *ctx, arg_rrr_cf_sh *a)
2573 return do_add_reg(ctx, a, false, false, false, true);
2576 static bool trans_add_c_tsv(DisasContext *ctx, arg_rrr_cf_sh *a)
2578 return do_add_reg(ctx, a, false, true, false, true);
2581 static bool trans_sub(DisasContext *ctx, arg_rrr_cf *a)
2583 return do_sub_reg(ctx, a, false, false, false);
2586 static bool trans_sub_tsv(DisasContext *ctx, arg_rrr_cf *a)
2588 return do_sub_reg(ctx, a, true, false, false);
2591 static bool trans_sub_tc(DisasContext *ctx, arg_rrr_cf *a)
2593 return do_sub_reg(ctx, a, false, false, true);
2596 static bool trans_sub_tsv_tc(DisasContext *ctx, arg_rrr_cf *a)
2598 return do_sub_reg(ctx, a, true, false, true);
2601 static bool trans_sub_b(DisasContext *ctx, arg_rrr_cf *a)
2603 return do_sub_reg(ctx, a, false, true, false);
2606 static bool trans_sub_b_tsv(DisasContext *ctx, arg_rrr_cf *a)
2608 return do_sub_reg(ctx, a, true, true, false);
2611 static bool trans_andcm(DisasContext *ctx, arg_rrr_cf *a)
2613 return do_log_reg(ctx, a, tcg_gen_andc_reg);
2616 static bool trans_and(DisasContext *ctx, arg_rrr_cf *a)
2618 return do_log_reg(ctx, a, tcg_gen_and_reg);
2621 static bool trans_or(DisasContext *ctx, arg_rrr_cf *a)
2624 unsigned r2 = a->r2;
2625 unsigned r1 = a->r1;
2628 if (rt == 0) { /* NOP */
2629 cond_free(&ctx->null_cond);
2632 if (r2 == 0) { /* COPY */
2634 TCGv_reg dest = dest_gpr(ctx, rt);
2635 tcg_gen_movi_reg(dest, 0);
2636 save_gpr(ctx, rt, dest);
2638 save_gpr(ctx, rt, cpu_gr[r1]);
2640 cond_free(&ctx->null_cond);
2643 #ifndef CONFIG_USER_ONLY
2644 /* These are QEMU extensions and are nops in the real architecture:
2646 * or %r10,%r10,%r10 -- idle loop; wait for interrupt
2647 * or %r31,%r31,%r31 -- death loop; offline cpu
2648 * currently implemented as idle.
2650 if ((rt == 10 || rt == 31) && r1 == rt && r2 == rt) { /* PAUSE */
2653 /* No need to check for supervisor, as userland can only pause
2654 until the next timer interrupt. */
2657 /* Advance the instruction queue. */
2658 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b);
2659 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var);
2660 nullify_set(ctx, 0);
2662 /* Tell the qemu main loop to halt until this cpu has work. */
2663 tmp = tcg_const_i32(1);
2664 tcg_gen_st_i32(tmp, cpu_env, -offsetof(HPPACPU, env) +
2665 offsetof(CPUState, halted));
2666 tcg_temp_free_i32(tmp);
2667 gen_excp_1(EXCP_HALTED);
2668 ctx->base.is_jmp = DISAS_NORETURN;
2670 return nullify_end(ctx);
2674 return do_log_reg(ctx, a, tcg_gen_or_reg);
2677 static bool trans_xor(DisasContext *ctx, arg_rrr_cf *a)
2679 return do_log_reg(ctx, a, tcg_gen_xor_reg);
2682 static bool trans_cmpclr(DisasContext *ctx, arg_rrr_cf *a)
2684 TCGv_reg tcg_r1, tcg_r2;
2689 tcg_r1 = load_gpr(ctx, a->r1);
2690 tcg_r2 = load_gpr(ctx, a->r2);
2691 do_cmpclr(ctx, a->t, tcg_r1, tcg_r2, a->cf);
2692 return nullify_end(ctx);
2695 static bool trans_uxor(DisasContext *ctx, arg_rrr_cf *a)
2697 TCGv_reg tcg_r1, tcg_r2;
2702 tcg_r1 = load_gpr(ctx, a->r1);
2703 tcg_r2 = load_gpr(ctx, a->r2);
2704 do_unit(ctx, a->t, tcg_r1, tcg_r2, a->cf, false, tcg_gen_xor_reg);
2705 return nullify_end(ctx);
2708 static bool do_uaddcm(DisasContext *ctx, arg_rrr_cf *a, bool is_tc)
2710 TCGv_reg tcg_r1, tcg_r2, tmp;
2715 tcg_r1 = load_gpr(ctx, a->r1);
2716 tcg_r2 = load_gpr(ctx, a->r2);
2717 tmp = get_temp(ctx);
2718 tcg_gen_not_reg(tmp, tcg_r2);
2719 do_unit(ctx, a->t, tcg_r1, tmp, a->cf, is_tc, tcg_gen_add_reg);
2720 return nullify_end(ctx);
2723 static bool trans_uaddcm(DisasContext *ctx, arg_rrr_cf *a)
2725 return do_uaddcm(ctx, a, false);
2728 static bool trans_uaddcm_tc(DisasContext *ctx, arg_rrr_cf *a)
2730 return do_uaddcm(ctx, a, true);
2733 static bool do_dcor(DisasContext *ctx, arg_rr_cf *a, bool is_i)
2739 tmp = get_temp(ctx);
2740 tcg_gen_shri_reg(tmp, cpu_psw_cb, 3);
2742 tcg_gen_not_reg(tmp, tmp);
2744 tcg_gen_andi_reg(tmp, tmp, 0x11111111);
2745 tcg_gen_muli_reg(tmp, tmp, 6);
2746 do_unit(ctx, a->t, load_gpr(ctx, a->r), tmp, a->cf, false,
2747 is_i ? tcg_gen_add_reg : tcg_gen_sub_reg);
2748 return nullify_end(ctx);
2751 static bool trans_dcor(DisasContext *ctx, arg_rr_cf *a)
2753 return do_dcor(ctx, a, false);
2756 static bool trans_dcor_i(DisasContext *ctx, arg_rr_cf *a)
2758 return do_dcor(ctx, a, true);
2761 static bool trans_ds(DisasContext *ctx, arg_rrr_cf *a)
2763 TCGv_reg dest, add1, add2, addc, zero, in1, in2;
2767 in1 = load_gpr(ctx, a->r1);
2768 in2 = load_gpr(ctx, a->r2);
2770 add1 = tcg_temp_new();
2771 add2 = tcg_temp_new();
2772 addc = tcg_temp_new();
2773 dest = tcg_temp_new();
2774 zero = tcg_const_reg(0);
2776 /* Form R1 << 1 | PSW[CB]{8}. */
2777 tcg_gen_add_reg(add1, in1, in1);
2778 tcg_gen_add_reg(add1, add1, cpu_psw_cb_msb);
2780 /* Add or subtract R2, depending on PSW[V]. Proper computation of
2781 carry{8} requires that we subtract via + ~R2 + 1, as described in
2782 the manual. By extracting and masking V, we can produce the
2783 proper inputs to the addition without movcond. */
2784 tcg_gen_sari_reg(addc, cpu_psw_v, TARGET_REGISTER_BITS - 1);
2785 tcg_gen_xor_reg(add2, in2, addc);
2786 tcg_gen_andi_reg(addc, addc, 1);
2787 /* ??? This is only correct for 32-bit. */
2788 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, add1, zero, add2, zero);
2789 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, dest, cpu_psw_cb_msb, addc, zero);
2791 tcg_temp_free(addc);
2792 tcg_temp_free(zero);
2794 /* Write back the result register. */
2795 save_gpr(ctx, a->t, dest);
2797 /* Write back PSW[CB]. */
2798 tcg_gen_xor_reg(cpu_psw_cb, add1, add2);
2799 tcg_gen_xor_reg(cpu_psw_cb, cpu_psw_cb, dest);
2801 /* Write back PSW[V] for the division step. */
2802 tcg_gen_neg_reg(cpu_psw_v, cpu_psw_cb_msb);
2803 tcg_gen_xor_reg(cpu_psw_v, cpu_psw_v, in2);
2805 /* Install the new nullification. */
2808 if (cond_need_sv(a->cf >> 1)) {
2809 /* ??? The lshift is supposed to contribute to overflow. */
2810 sv = do_add_sv(ctx, dest, add1, add2);
2812 ctx->null_cond = do_cond(a->cf, dest, cpu_psw_cb_msb, sv);
2815 tcg_temp_free(add1);
2816 tcg_temp_free(add2);
2817 tcg_temp_free(dest);
2819 return nullify_end(ctx);
2822 static bool trans_addi(DisasContext *ctx, arg_rri_cf *a)
2824 return do_add_imm(ctx, a, false, false);
2827 static bool trans_addi_tsv(DisasContext *ctx, arg_rri_cf *a)
2829 return do_add_imm(ctx, a, true, false);
2832 static bool trans_addi_tc(DisasContext *ctx, arg_rri_cf *a)
2834 return do_add_imm(ctx, a, false, true);
2837 static bool trans_addi_tc_tsv(DisasContext *ctx, arg_rri_cf *a)
2839 return do_add_imm(ctx, a, true, true);
2842 static bool trans_subi(DisasContext *ctx, arg_rri_cf *a)
2844 return do_sub_imm(ctx, a, false);
2847 static bool trans_subi_tsv(DisasContext *ctx, arg_rri_cf *a)
2849 return do_sub_imm(ctx, a, true);
2852 static bool trans_cmpiclr(DisasContext *ctx, arg_rri_cf *a)
2854 TCGv_reg tcg_im, tcg_r2;
2860 tcg_im = load_const(ctx, a->i);
2861 tcg_r2 = load_gpr(ctx, a->r);
2862 do_cmpclr(ctx, a->t, tcg_im, tcg_r2, a->cf);
2864 return nullify_end(ctx);
2867 static bool trans_ld(DisasContext *ctx, arg_ldst *a)
2869 return do_load(ctx, a->t, a->b, a->x, a->scale ? a->size : 0,
2870 a->disp, a->sp, a->m, a->size | MO_TE);
2873 static bool trans_st(DisasContext *ctx, arg_ldst *a)
2875 assert(a->x == 0 && a->scale == 0);
2876 return do_store(ctx, a->t, a->b, a->disp, a->sp, a->m, a->size | MO_TE);
2879 static bool trans_ldc(DisasContext *ctx, arg_ldst *a)
2881 TCGMemOp mop = MO_TEUL | MO_ALIGN_16 | a->size;
2882 TCGv_reg zero, dest, ofs;
2888 /* Base register modification. Make sure if RT == RB,
2889 we see the result of the load. */
2890 dest = get_temp(ctx);
2892 dest = dest_gpr(ctx, a->t);
2895 form_gva(ctx, &addr, &ofs, a->b, a->x, a->scale ? a->size : 0,
2896 a->disp, a->sp, a->m, ctx->mmu_idx == MMU_PHYS_IDX);
2897 zero = tcg_const_reg(0);
2898 tcg_gen_atomic_xchg_reg(dest, addr, zero, ctx->mmu_idx, mop);
2900 save_gpr(ctx, a->b, ofs);
2902 save_gpr(ctx, a->t, dest);
2904 return nullify_end(ctx);
2907 static bool trans_stby(DisasContext *ctx, arg_stby *a)
2914 form_gva(ctx, &addr, &ofs, a->b, 0, 0, a->disp, a->sp, a->m,
2915 ctx->mmu_idx == MMU_PHYS_IDX);
2916 val = load_gpr(ctx, a->r);
2918 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) {
2919 gen_helper_stby_e_parallel(cpu_env, addr, val);
2921 gen_helper_stby_e(cpu_env, addr, val);
2924 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) {
2925 gen_helper_stby_b_parallel(cpu_env, addr, val);
2927 gen_helper_stby_b(cpu_env, addr, val);
2931 tcg_gen_andi_reg(ofs, ofs, ~3);
2932 save_gpr(ctx, a->b, ofs);
2935 return nullify_end(ctx);
2938 static bool trans_lda(DisasContext *ctx, arg_ldst *a)
2940 int hold_mmu_idx = ctx->mmu_idx;
2942 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2943 ctx->mmu_idx = MMU_PHYS_IDX;
2945 ctx->mmu_idx = hold_mmu_idx;
2949 static bool trans_sta(DisasContext *ctx, arg_ldst *a)
2951 int hold_mmu_idx = ctx->mmu_idx;
2953 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR);
2954 ctx->mmu_idx = MMU_PHYS_IDX;
2956 ctx->mmu_idx = hold_mmu_idx;
2960 static bool trans_ldil(DisasContext *ctx, arg_ldil *a)
2962 TCGv_reg tcg_rt = dest_gpr(ctx, a->t);
2964 tcg_gen_movi_reg(tcg_rt, a->i);
2965 save_gpr(ctx, a->t, tcg_rt);
2966 cond_free(&ctx->null_cond);
2970 static bool trans_addil(DisasContext *ctx, arg_addil *a)
2972 TCGv_reg tcg_rt = load_gpr(ctx, a->r);
2973 TCGv_reg tcg_r1 = dest_gpr(ctx, 1);
2975 tcg_gen_addi_reg(tcg_r1, tcg_rt, a->i);
2976 save_gpr(ctx, 1, tcg_r1);
2977 cond_free(&ctx->null_cond);
2981 static bool trans_ldo(DisasContext *ctx, arg_ldo *a)
2983 TCGv_reg tcg_rt = dest_gpr(ctx, a->t);
2985 /* Special case rb == 0, for the LDI pseudo-op.
2986 The COPY pseudo-op is handled for free within tcg_gen_addi_tl. */
2988 tcg_gen_movi_reg(tcg_rt, a->i);
2990 tcg_gen_addi_reg(tcg_rt, cpu_gr[a->b], a->i);
2992 save_gpr(ctx, a->t, tcg_rt);
2993 cond_free(&ctx->null_cond);
2997 static bool do_cmpb(DisasContext *ctx, unsigned r, TCGv_reg in1,
2998 unsigned c, unsigned f, unsigned n, int disp)
3000 TCGv_reg dest, in2, sv;
3003 in2 = load_gpr(ctx, r);
3004 dest = get_temp(ctx);
3006 tcg_gen_sub_reg(dest, in1, in2);
3009 if (cond_need_sv(c)) {
3010 sv = do_sub_sv(ctx, dest, in1, in2);
3013 cond = do_sub_cond(c * 2 + f, dest, in1, in2, sv);
3014 return do_cbranch(ctx, disp, n, &cond);
3017 static bool trans_cmpb(DisasContext *ctx, arg_cmpb *a)
3020 return do_cmpb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp);
3023 static bool trans_cmpbi(DisasContext *ctx, arg_cmpbi *a)
3026 return do_cmpb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp);
3029 static bool do_addb(DisasContext *ctx, unsigned r, TCGv_reg in1,
3030 unsigned c, unsigned f, unsigned n, int disp)
3032 TCGv_reg dest, in2, sv, cb_msb;
3035 in2 = load_gpr(ctx, r);
3036 dest = dest_gpr(ctx, r);
3040 if (cond_need_cb(c)) {
3041 cb_msb = get_temp(ctx);
3042 tcg_gen_movi_reg(cb_msb, 0);
3043 tcg_gen_add2_reg(dest, cb_msb, in1, cb_msb, in2, cb_msb);
3045 tcg_gen_add_reg(dest, in1, in2);
3047 if (cond_need_sv(c)) {
3048 sv = do_add_sv(ctx, dest, in1, in2);
3051 cond = do_cond(c * 2 + f, dest, cb_msb, sv);
3052 return do_cbranch(ctx, disp, n, &cond);
3055 static bool trans_addb(DisasContext *ctx, arg_addb *a)
3058 return do_addb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp);
3061 static bool trans_addbi(DisasContext *ctx, arg_addbi *a)
3064 return do_addb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp);
3067 static bool trans_bb_sar(DisasContext *ctx, arg_bb_sar *a)
3069 TCGv_reg tmp, tcg_r;
3074 tmp = tcg_temp_new();
3075 tcg_r = load_gpr(ctx, a->r);
3076 tcg_gen_shl_reg(tmp, tcg_r, cpu_sar);
3078 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp);
3080 return do_cbranch(ctx, a->disp, a->n, &cond);
3083 static bool trans_bb_imm(DisasContext *ctx, arg_bb_imm *a)
3085 TCGv_reg tmp, tcg_r;
3090 tmp = tcg_temp_new();
3091 tcg_r = load_gpr(ctx, a->r);
3092 tcg_gen_shli_reg(tmp, tcg_r, a->p);
3094 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp);
3096 return do_cbranch(ctx, a->disp, a->n, &cond);
3099 static bool trans_movb(DisasContext *ctx, arg_movb *a)
3106 dest = dest_gpr(ctx, a->r2);
3108 tcg_gen_movi_reg(dest, 0);
3110 tcg_gen_mov_reg(dest, cpu_gr[a->r1]);
3113 cond = do_sed_cond(a->c, dest);
3114 return do_cbranch(ctx, a->disp, a->n, &cond);
3117 static bool trans_movbi(DisasContext *ctx, arg_movbi *a)
3124 dest = dest_gpr(ctx, a->r);
3125 tcg_gen_movi_reg(dest, a->i);
3127 cond = do_sed_cond(a->c, dest);
3128 return do_cbranch(ctx, a->disp, a->n, &cond);
3131 static bool trans_shrpw_sar(DisasContext *ctx, arg_shrpw_sar *a)
3139 dest = dest_gpr(ctx, a->t);
3141 tcg_gen_ext32u_reg(dest, load_gpr(ctx, a->r2));
3142 tcg_gen_shr_reg(dest, dest, cpu_sar);
3143 } else if (a->r1 == a->r2) {
3144 TCGv_i32 t32 = tcg_temp_new_i32();
3145 tcg_gen_trunc_reg_i32(t32, load_gpr(ctx, a->r2));
3146 tcg_gen_rotr_i32(t32, t32, cpu_sar);
3147 tcg_gen_extu_i32_reg(dest, t32);
3148 tcg_temp_free_i32(t32);
3150 TCGv_i64 t = tcg_temp_new_i64();
3151 TCGv_i64 s = tcg_temp_new_i64();
3153 tcg_gen_concat_reg_i64(t, load_gpr(ctx, a->r2), load_gpr(ctx, a->r1));
3154 tcg_gen_extu_reg_i64(s, cpu_sar);
3155 tcg_gen_shr_i64(t, t, s);
3156 tcg_gen_trunc_i64_reg(dest, t);
3158 tcg_temp_free_i64(t);
3159 tcg_temp_free_i64(s);
3161 save_gpr(ctx, a->t, dest);
3163 /* Install the new nullification. */
3164 cond_free(&ctx->null_cond);
3166 ctx->null_cond = do_sed_cond(a->c, dest);
3168 return nullify_end(ctx);
3171 static bool trans_shrpw_imm(DisasContext *ctx, arg_shrpw_imm *a)
3173 unsigned sa = 31 - a->cpos;
3180 dest = dest_gpr(ctx, a->t);
3181 t2 = load_gpr(ctx, a->r2);
3182 if (a->r1 == a->r2) {
3183 TCGv_i32 t32 = tcg_temp_new_i32();
3184 tcg_gen_trunc_reg_i32(t32, t2);
3185 tcg_gen_rotri_i32(t32, t32, sa);
3186 tcg_gen_extu_i32_reg(dest, t32);
3187 tcg_temp_free_i32(t32);
3188 } else if (a->r1 == 0) {
3189 tcg_gen_extract_reg(dest, t2, sa, 32 - sa);
3191 TCGv_reg t0 = tcg_temp_new();
3192 tcg_gen_extract_reg(t0, t2, sa, 32 - sa);
3193 tcg_gen_deposit_reg(dest, t0, cpu_gr[a->r1], 32 - sa, sa);
3196 save_gpr(ctx, a->t, dest);
3198 /* Install the new nullification. */
3199 cond_free(&ctx->null_cond);
3201 ctx->null_cond = do_sed_cond(a->c, dest);
3203 return nullify_end(ctx);
3206 static bool trans_extrw_sar(DisasContext *ctx, arg_extrw_sar *a)
3208 unsigned len = 32 - a->clen;
3209 TCGv_reg dest, src, tmp;
3215 dest = dest_gpr(ctx, a->t);
3216 src = load_gpr(ctx, a->r);
3217 tmp = tcg_temp_new();
3219 /* Recall that SAR is using big-endian bit numbering. */
3220 tcg_gen_xori_reg(tmp, cpu_sar, TARGET_REGISTER_BITS - 1);
3222 tcg_gen_sar_reg(dest, src, tmp);
3223 tcg_gen_sextract_reg(dest, dest, 0, len);
3225 tcg_gen_shr_reg(dest, src, tmp);
3226 tcg_gen_extract_reg(dest, dest, 0, len);
3229 save_gpr(ctx, a->t, dest);
3231 /* Install the new nullification. */
3232 cond_free(&ctx->null_cond);
3234 ctx->null_cond = do_sed_cond(a->c, dest);
3236 return nullify_end(ctx);
3239 static bool trans_extrw_imm(DisasContext *ctx, arg_extrw_imm *a)
3241 unsigned len = 32 - a->clen;
3242 unsigned cpos = 31 - a->pos;
3249 dest = dest_gpr(ctx, a->t);
3250 src = load_gpr(ctx, a->r);
3252 tcg_gen_sextract_reg(dest, src, cpos, len);
3254 tcg_gen_extract_reg(dest, src, cpos, len);
3256 save_gpr(ctx, a->t, dest);
3258 /* Install the new nullification. */
3259 cond_free(&ctx->null_cond);
3261 ctx->null_cond = do_sed_cond(a->c, dest);
3263 return nullify_end(ctx);
3266 static bool trans_depwi_imm(DisasContext *ctx, arg_depwi_imm *a)
3268 unsigned len = 32 - a->clen;
3269 target_sreg mask0, mask1;
3275 if (a->cpos + len > 32) {
3279 dest = dest_gpr(ctx, a->t);
3280 mask0 = deposit64(0, a->cpos, len, a->i);
3281 mask1 = deposit64(-1, a->cpos, len, a->i);
3284 TCGv_reg src = load_gpr(ctx, a->t);
3286 tcg_gen_andi_reg(dest, src, mask1);
3289 tcg_gen_ori_reg(dest, src, mask0);
3291 tcg_gen_movi_reg(dest, mask0);
3293 save_gpr(ctx, a->t, dest);
3295 /* Install the new nullification. */
3296 cond_free(&ctx->null_cond);
3298 ctx->null_cond = do_sed_cond(a->c, dest);
3300 return nullify_end(ctx);
3303 static bool trans_depw_imm(DisasContext *ctx, arg_depw_imm *a)
3305 unsigned rs = a->nz ? a->t : 0;
3306 unsigned len = 32 - a->clen;
3312 if (a->cpos + len > 32) {
3316 dest = dest_gpr(ctx, a->t);
3317 val = load_gpr(ctx, a->r);
3319 tcg_gen_deposit_z_reg(dest, val, a->cpos, len);
3321 tcg_gen_deposit_reg(dest, cpu_gr[rs], val, a->cpos, len);
3323 save_gpr(ctx, a->t, dest);
3325 /* Install the new nullification. */
3326 cond_free(&ctx->null_cond);
3328 ctx->null_cond = do_sed_cond(a->c, dest);
3330 return nullify_end(ctx);
3333 static bool do_depw_sar(DisasContext *ctx, unsigned rt, unsigned c,
3334 unsigned nz, unsigned clen, TCGv_reg val)
3336 unsigned rs = nz ? rt : 0;
3337 unsigned len = 32 - clen;
3338 TCGv_reg mask, tmp, shift, dest;
3339 unsigned msb = 1U << (len - 1);
3345 dest = dest_gpr(ctx, rt);
3346 shift = tcg_temp_new();
3347 tmp = tcg_temp_new();
3349 /* Convert big-endian bit numbering in SAR to left-shift. */
3350 tcg_gen_xori_reg(shift, cpu_sar, TARGET_REGISTER_BITS - 1);
3352 mask = tcg_const_reg(msb + (msb - 1));
3353 tcg_gen_and_reg(tmp, val, mask);
3355 tcg_gen_shl_reg(mask, mask, shift);
3356 tcg_gen_shl_reg(tmp, tmp, shift);
3357 tcg_gen_andc_reg(dest, cpu_gr[rs], mask);
3358 tcg_gen_or_reg(dest, dest, tmp);
3360 tcg_gen_shl_reg(dest, tmp, shift);
3362 tcg_temp_free(shift);
3363 tcg_temp_free(mask);
3365 save_gpr(ctx, rt, dest);
3367 /* Install the new nullification. */
3368 cond_free(&ctx->null_cond);
3370 ctx->null_cond = do_sed_cond(c, dest);
3372 return nullify_end(ctx);
3375 static bool trans_depw_sar(DisasContext *ctx, arg_depw_sar *a)
3377 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_gpr(ctx, a->r));
3380 static bool trans_depwi_sar(DisasContext *ctx, arg_depwi_sar *a)
3382 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_const(ctx, a->i));
3385 static bool trans_be(DisasContext *ctx, arg_be *a)
3389 #ifdef CONFIG_USER_ONLY
3390 /* ??? It seems like there should be a good way of using
3391 "be disp(sr2, r0)", the canonical gateway entry mechanism
3392 to our advantage. But that appears to be inconvenient to
3393 manage along side branch delay slots. Therefore we handle
3394 entry into the gateway page via absolute address. */
3395 /* Since we don't implement spaces, just branch. Do notice the special
3396 case of "be disp(*,r0)" using a direct branch to disp, so that we can
3397 goto_tb to the TB containing the syscall. */
3399 return do_dbranch(ctx, a->disp, a->l, a->n);
3405 tmp = get_temp(ctx);
3406 tcg_gen_addi_reg(tmp, load_gpr(ctx, a->b), a->disp);
3407 tmp = do_ibranch_priv(ctx, tmp);
3409 #ifdef CONFIG_USER_ONLY
3410 return do_ibranch(ctx, tmp, a->l, a->n);
3412 TCGv_i64 new_spc = tcg_temp_new_i64();
3414 load_spr(ctx, new_spc, a->sp);
3416 copy_iaoq_entry(cpu_gr[31], ctx->iaoq_n, ctx->iaoq_n_var);
3417 tcg_gen_mov_i64(cpu_sr[0], cpu_iasq_f);
3419 if (a->n && use_nullify_skip(ctx)) {
3420 tcg_gen_mov_reg(cpu_iaoq_f, tmp);
3421 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4);
3422 tcg_gen_mov_i64(cpu_iasq_f, new_spc);
3423 tcg_gen_mov_i64(cpu_iasq_b, cpu_iasq_f);
3425 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b);
3426 if (ctx->iaoq_b == -1) {
3427 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b);
3429 tcg_gen_mov_reg(cpu_iaoq_b, tmp);
3430 tcg_gen_mov_i64(cpu_iasq_b, new_spc);
3431 nullify_set(ctx, a->n);
3433 tcg_temp_free_i64(new_spc);
3434 tcg_gen_lookup_and_goto_ptr();
3435 ctx->base.is_jmp = DISAS_NORETURN;
3436 return nullify_end(ctx);
3440 static bool trans_bl(DisasContext *ctx, arg_bl *a)
3442 return do_dbranch(ctx, iaoq_dest(ctx, a->disp), a->l, a->n);
3445 static bool trans_b_gate(DisasContext *ctx, arg_b_gate *a)
3447 target_ureg dest = iaoq_dest(ctx, a->disp);
3449 /* Make sure the caller hasn't done something weird with the queue.
3450 * ??? This is not quite the same as the PSW[B] bit, which would be
3451 * expensive to track. Real hardware will trap for
3453 * b gateway+4 (in delay slot of first branch)
3454 * However, checking for a non-sequential instruction queue *will*
3455 * diagnose the security hole
3458 * in which instructions at evil would run with increased privs.
3460 if (ctx->iaoq_b == -1 || ctx->iaoq_b != ctx->iaoq_f + 4) {
3461 return gen_illegal(ctx);
3464 #ifndef CONFIG_USER_ONLY
3465 if (ctx->tb_flags & PSW_C) {
3466 CPUHPPAState *env = ctx->cs->env_ptr;
3467 int type = hppa_artype_for_page(env, ctx->base.pc_next);
3468 /* If we could not find a TLB entry, then we need to generate an
3469 ITLB miss exception so the kernel will provide it.
3470 The resulting TLB fill operation will invalidate this TB and
3471 we will re-translate, at which point we *will* be able to find
3472 the TLB entry and determine if this is in fact a gateway page. */
3474 gen_excp(ctx, EXCP_ITLB_MISS);
3477 /* No change for non-gateway pages or for priv decrease. */
3478 if (type >= 4 && type - 4 < ctx->privilege) {
3479 dest = deposit32(dest, 0, 2, type - 4);
3482 dest &= -4; /* priv = 0 */
3486 return do_dbranch(ctx, dest, a->l, a->n);
3489 static bool trans_blr(DisasContext *ctx, arg_blr *a)
3492 TCGv_reg tmp = get_temp(ctx);
3493 tcg_gen_shli_reg(tmp, load_gpr(ctx, a->x), 3);
3494 tcg_gen_addi_reg(tmp, tmp, ctx->iaoq_f + 8);
3495 /* The computation here never changes privilege level. */
3496 return do_ibranch(ctx, tmp, a->l, a->n);
3498 /* BLR R0,RX is a good way to load PC+8 into RX. */
3499 return do_dbranch(ctx, ctx->iaoq_f + 8, a->l, a->n);
3503 static bool trans_bv(DisasContext *ctx, arg_bv *a)
3508 dest = load_gpr(ctx, a->b);
3510 dest = get_temp(ctx);
3511 tcg_gen_shli_reg(dest, load_gpr(ctx, a->x), 3);
3512 tcg_gen_add_reg(dest, dest, load_gpr(ctx, a->b));
3514 dest = do_ibranch_priv(ctx, dest);
3515 return do_ibranch(ctx, dest, 0, a->n);
3518 static bool trans_bve(DisasContext *ctx, arg_bve *a)
3522 #ifdef CONFIG_USER_ONLY
3523 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b));
3524 return do_ibranch(ctx, dest, a->l, a->n);
3527 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b));
3529 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b);
3530 if (ctx->iaoq_b == -1) {
3531 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b);
3533 copy_iaoq_entry(cpu_iaoq_b, -1, dest);
3534 tcg_gen_mov_i64(cpu_iasq_b, space_select(ctx, 0, dest));
3536 copy_iaoq_entry(cpu_gr[a->l], ctx->iaoq_n, ctx->iaoq_n_var);
3538 nullify_set(ctx, a->n);
3539 tcg_gen_lookup_and_goto_ptr();
3540 ctx->base.is_jmp = DISAS_NORETURN;
3541 return nullify_end(ctx);
3549 static void gen_fcpy_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src)
3551 tcg_gen_mov_i32(dst, src);
3554 static bool trans_fcpy_f(DisasContext *ctx, arg_fclass01 *a)
3556 return do_fop_wew(ctx, a->t, a->r, gen_fcpy_f);
3559 static void gen_fcpy_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src)
3561 tcg_gen_mov_i64(dst, src);
3564 static bool trans_fcpy_d(DisasContext *ctx, arg_fclass01 *a)
3566 return do_fop_ded(ctx, a->t, a->r, gen_fcpy_d);
3569 static void gen_fabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src)
3571 tcg_gen_andi_i32(dst, src, INT32_MAX);
3574 static bool trans_fabs_f(DisasContext *ctx, arg_fclass01 *a)
3576 return do_fop_wew(ctx, a->t, a->r, gen_fabs_f);
3579 static void gen_fabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src)
3581 tcg_gen_andi_i64(dst, src, INT64_MAX);
3584 static bool trans_fabs_d(DisasContext *ctx, arg_fclass01 *a)
3586 return do_fop_ded(ctx, a->t, a->r, gen_fabs_d);
3589 static bool trans_fsqrt_f(DisasContext *ctx, arg_fclass01 *a)
3591 return do_fop_wew(ctx, a->t, a->r, gen_helper_fsqrt_s);
3594 static bool trans_fsqrt_d(DisasContext *ctx, arg_fclass01 *a)
3596 return do_fop_ded(ctx, a->t, a->r, gen_helper_fsqrt_d);
3599 static bool trans_frnd_f(DisasContext *ctx, arg_fclass01 *a)
3601 return do_fop_wew(ctx, a->t, a->r, gen_helper_frnd_s);
3604 static bool trans_frnd_d(DisasContext *ctx, arg_fclass01 *a)
3606 return do_fop_ded(ctx, a->t, a->r, gen_helper_frnd_d);
3609 static void gen_fneg_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src)
3611 tcg_gen_xori_i32(dst, src, INT32_MIN);
3614 static bool trans_fneg_f(DisasContext *ctx, arg_fclass01 *a)
3616 return do_fop_wew(ctx, a->t, a->r, gen_fneg_f);
3619 static void gen_fneg_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src)
3621 tcg_gen_xori_i64(dst, src, INT64_MIN);
3624 static bool trans_fneg_d(DisasContext *ctx, arg_fclass01 *a)
3626 return do_fop_ded(ctx, a->t, a->r, gen_fneg_d);
3629 static void gen_fnegabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src)
3631 tcg_gen_ori_i32(dst, src, INT32_MIN);
3634 static bool trans_fnegabs_f(DisasContext *ctx, arg_fclass01 *a)
3636 return do_fop_wew(ctx, a->t, a->r, gen_fnegabs_f);
3639 static void gen_fnegabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src)
3641 tcg_gen_ori_i64(dst, src, INT64_MIN);
3644 static bool trans_fnegabs_d(DisasContext *ctx, arg_fclass01 *a)
3646 return do_fop_ded(ctx, a->t, a->r, gen_fnegabs_d);
3653 static bool trans_fcnv_d_f(DisasContext *ctx, arg_fclass01 *a)
3655 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_s);
3658 static bool trans_fcnv_f_d(DisasContext *ctx, arg_fclass01 *a)
3660 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_d);
3663 static bool trans_fcnv_w_f(DisasContext *ctx, arg_fclass01 *a)
3665 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_w_s);
3668 static bool trans_fcnv_q_f(DisasContext *ctx, arg_fclass01 *a)
3670 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_dw_s);
3673 static bool trans_fcnv_w_d(DisasContext *ctx, arg_fclass01 *a)
3675 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_w_d);
3678 static bool trans_fcnv_q_d(DisasContext *ctx, arg_fclass01 *a)
3680 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_dw_d);
3683 static bool trans_fcnv_f_w(DisasContext *ctx, arg_fclass01 *a)
3685 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_w);
3688 static bool trans_fcnv_d_w(DisasContext *ctx, arg_fclass01 *a)
3690 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_w);
3693 static bool trans_fcnv_f_q(DisasContext *ctx, arg_fclass01 *a)
3695 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_dw);
3698 static bool trans_fcnv_d_q(DisasContext *ctx, arg_fclass01 *a)
3700 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_dw);
3703 static bool trans_fcnv_t_f_w(DisasContext *ctx, arg_fclass01 *a)
3705 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_w);
3708 static bool trans_fcnv_t_d_w(DisasContext *ctx, arg_fclass01 *a)
3710 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_w);
3713 static bool trans_fcnv_t_f_q(DisasContext *ctx, arg_fclass01 *a)
3715 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_dw);
3718 static bool trans_fcnv_t_d_q(DisasContext *ctx, arg_fclass01 *a)
3720 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_dw);
3723 static bool trans_fcnv_uw_f(DisasContext *ctx, arg_fclass01 *a)
3725 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_uw_s);
3728 static bool trans_fcnv_uq_f(DisasContext *ctx, arg_fclass01 *a)
3730 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_udw_s);
3733 static bool trans_fcnv_uw_d(DisasContext *ctx, arg_fclass01 *a)
3735 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_uw_d);
3738 static bool trans_fcnv_uq_d(DisasContext *ctx, arg_fclass01 *a)
3740 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_udw_d);
3743 static bool trans_fcnv_f_uw(DisasContext *ctx, arg_fclass01 *a)
3745 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_uw);
3748 static bool trans_fcnv_d_uw(DisasContext *ctx, arg_fclass01 *a)
3750 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_uw);
3753 static bool trans_fcnv_f_uq(DisasContext *ctx, arg_fclass01 *a)
3755 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_udw);
3758 static bool trans_fcnv_d_uq(DisasContext *ctx, arg_fclass01 *a)
3760 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_udw);
3763 static bool trans_fcnv_t_f_uw(DisasContext *ctx, arg_fclass01 *a)
3765 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_uw);
3768 static bool trans_fcnv_t_d_uw(DisasContext *ctx, arg_fclass01 *a)
3770 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_uw);
3773 static bool trans_fcnv_t_f_uq(DisasContext *ctx, arg_fclass01 *a)
3775 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_udw);
3778 static bool trans_fcnv_t_d_uq(DisasContext *ctx, arg_fclass01 *a)
3780 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_udw);
3787 static bool trans_fcmp_f(DisasContext *ctx, arg_fclass2 *a)
3789 TCGv_i32 ta, tb, tc, ty;
3793 ta = load_frw0_i32(a->r1);
3794 tb = load_frw0_i32(a->r2);
3795 ty = tcg_const_i32(a->y);
3796 tc = tcg_const_i32(a->c);
3798 gen_helper_fcmp_s(cpu_env, ta, tb, ty, tc);
3800 tcg_temp_free_i32(ta);
3801 tcg_temp_free_i32(tb);
3802 tcg_temp_free_i32(ty);
3803 tcg_temp_free_i32(tc);
3805 return nullify_end(ctx);
3808 static bool trans_fcmp_d(DisasContext *ctx, arg_fclass2 *a)
3815 ta = load_frd0(a->r1);
3816 tb = load_frd0(a->r2);
3817 ty = tcg_const_i32(a->y);
3818 tc = tcg_const_i32(a->c);
3820 gen_helper_fcmp_d(cpu_env, ta, tb, ty, tc);
3822 tcg_temp_free_i64(ta);
3823 tcg_temp_free_i64(tb);
3824 tcg_temp_free_i32(ty);
3825 tcg_temp_free_i32(tc);
3827 return nullify_end(ctx);
3830 static bool trans_ftest(DisasContext *ctx, arg_ftest *a)
3837 tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow));
3844 case 0: /* simple */
3845 tcg_gen_andi_reg(t, t, 0x4000000);
3846 ctx->null_cond = cond_make_0(TCG_COND_NE, t);
3874 TCGv_reg c = load_const(ctx, mask);
3875 tcg_gen_or_reg(t, t, c);
3876 ctx->null_cond = cond_make(TCG_COND_EQ, t, c);
3878 tcg_gen_andi_reg(t, t, mask);
3879 ctx->null_cond = cond_make_0(TCG_COND_EQ, t);
3882 unsigned cbit = (a->y ^ 1) - 1;
3884 tcg_gen_extract_reg(t, t, 21 - cbit, 1);
3885 ctx->null_cond = cond_make_0(TCG_COND_NE, t);
3890 return nullify_end(ctx);
3897 static bool trans_fadd_f(DisasContext *ctx, arg_fclass3 *a)
3899 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fadd_s);
3902 static bool trans_fadd_d(DisasContext *ctx, arg_fclass3 *a)
3904 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fadd_d);
3907 static bool trans_fsub_f(DisasContext *ctx, arg_fclass3 *a)
3909 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fsub_s);
3912 static bool trans_fsub_d(DisasContext *ctx, arg_fclass3 *a)
3914 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fsub_d);
3917 static bool trans_fmpy_f(DisasContext *ctx, arg_fclass3 *a)
3919 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_s);
3922 static bool trans_fmpy_d(DisasContext *ctx, arg_fclass3 *a)
3924 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_d);
3927 static bool trans_fdiv_f(DisasContext *ctx, arg_fclass3 *a)
3929 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_s);
3932 static bool trans_fdiv_d(DisasContext *ctx, arg_fclass3 *a)
3934 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_d);
3937 static bool trans_xmpyu(DisasContext *ctx, arg_xmpyu *a)
3943 x = load_frw0_i64(a->r1);
3944 y = load_frw0_i64(a->r2);
3945 tcg_gen_mul_i64(x, x, y);
3947 tcg_temp_free_i64(x);
3948 tcg_temp_free_i64(y);
3950 return nullify_end(ctx);
3953 /* Convert the fmpyadd single-precision register encodings to standard. */
3954 static inline int fmpyadd_s_reg(unsigned r)
3956 return (r & 16) * 2 + 16 + (r & 15);
3959 static bool do_fmpyadd_s(DisasContext *ctx, arg_mpyadd *a, bool is_sub)
3961 int tm = fmpyadd_s_reg(a->tm);
3962 int ra = fmpyadd_s_reg(a->ra);
3963 int ta = fmpyadd_s_reg(a->ta);
3964 int rm2 = fmpyadd_s_reg(a->rm2);
3965 int rm1 = fmpyadd_s_reg(a->rm1);
3969 do_fop_weww(ctx, tm, rm1, rm2, gen_helper_fmpy_s);
3970 do_fop_weww(ctx, ta, ta, ra,
3971 is_sub ? gen_helper_fsub_s : gen_helper_fadd_s);
3973 return nullify_end(ctx);
3976 static bool trans_fmpyadd_f(DisasContext *ctx, arg_mpyadd *a)
3978 return do_fmpyadd_s(ctx, a, false);
3981 static bool trans_fmpysub_f(DisasContext *ctx, arg_mpyadd *a)
3983 return do_fmpyadd_s(ctx, a, true);
3986 static bool do_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a, bool is_sub)
3990 do_fop_dedd(ctx, a->tm, a->rm1, a->rm2, gen_helper_fmpy_d);
3991 do_fop_dedd(ctx, a->ta, a->ta, a->ra,
3992 is_sub ? gen_helper_fsub_d : gen_helper_fadd_d);
3994 return nullify_end(ctx);
3997 static bool trans_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a)
3999 return do_fmpyadd_d(ctx, a, false);
4002 static bool trans_fmpysub_d(DisasContext *ctx, arg_mpyadd *a)
4004 return do_fmpyadd_d(ctx, a, true);
4007 static bool trans_fmpyfadd_f(DisasContext *ctx, arg_fmpyfadd_f *a)
4012 x = load_frw0_i32(a->rm1);
4013 y = load_frw0_i32(a->rm2);
4014 z = load_frw0_i32(a->ra3);
4017 gen_helper_fmpynfadd_s(x, cpu_env, x, y, z);
4019 gen_helper_fmpyfadd_s(x, cpu_env, x, y, z);
4022 tcg_temp_free_i32(y);
4023 tcg_temp_free_i32(z);
4024 save_frw_i32(a->t, x);
4025 tcg_temp_free_i32(x);
4026 return nullify_end(ctx);
4029 static bool trans_fmpyfadd_d(DisasContext *ctx, arg_fmpyfadd_d *a)
4034 x = load_frd0(a->rm1);
4035 y = load_frd0(a->rm2);
4036 z = load_frd0(a->ra3);
4039 gen_helper_fmpynfadd_d(x, cpu_env, x, y, z);
4041 gen_helper_fmpyfadd_d(x, cpu_env, x, y, z);
4044 tcg_temp_free_i64(y);
4045 tcg_temp_free_i64(z);
4047 tcg_temp_free_i64(x);
4048 return nullify_end(ctx);
4051 static void hppa_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
4053 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4057 ctx->tb_flags = ctx->base.tb->flags;
4059 #ifdef CONFIG_USER_ONLY
4060 ctx->privilege = MMU_USER_IDX;
4061 ctx->mmu_idx = MMU_USER_IDX;
4062 ctx->iaoq_f = ctx->base.pc_first | MMU_USER_IDX;
4063 ctx->iaoq_b = ctx->base.tb->cs_base | MMU_USER_IDX;
4065 ctx->privilege = (ctx->tb_flags >> TB_FLAG_PRIV_SHIFT) & 3;
4066 ctx->mmu_idx = (ctx->tb_flags & PSW_D ? ctx->privilege : MMU_PHYS_IDX);
4068 /* Recover the IAOQ values from the GVA + PRIV. */
4069 uint64_t cs_base = ctx->base.tb->cs_base;
4070 uint64_t iasq_f = cs_base & ~0xffffffffull;
4071 int32_t diff = cs_base;
4073 ctx->iaoq_f = (ctx->base.pc_first & ~iasq_f) + ctx->privilege;
4074 ctx->iaoq_b = (diff ? ctx->iaoq_f + diff : -1);
4077 ctx->iaoq_n_var = NULL;
4079 /* Bound the number of instructions by those left on the page. */
4080 bound = -(ctx->base.pc_first | TARGET_PAGE_MASK) / 4;
4081 ctx->base.max_insns = MIN(ctx->base.max_insns, bound);
4085 memset(ctx->tempr, 0, sizeof(ctx->tempr));
4086 memset(ctx->templ, 0, sizeof(ctx->templ));
4089 static void hppa_tr_tb_start(DisasContextBase *dcbase, CPUState *cs)
4091 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4093 /* Seed the nullification status from PSW[N], as saved in TB->FLAGS. */
4094 ctx->null_cond = cond_make_f();
4095 ctx->psw_n_nonzero = false;
4096 if (ctx->tb_flags & PSW_N) {
4097 ctx->null_cond.c = TCG_COND_ALWAYS;
4098 ctx->psw_n_nonzero = true;
4100 ctx->null_lab = NULL;
4103 static void hppa_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
4105 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4107 tcg_gen_insn_start(ctx->iaoq_f, ctx->iaoq_b);
4110 static bool hppa_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs,
4111 const CPUBreakpoint *bp)
4113 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4115 gen_excp(ctx, EXCP_DEBUG);
4116 ctx->base.pc_next += 4;
4120 static void hppa_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
4122 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4123 CPUHPPAState *env = cs->env_ptr;
4127 /* Execute one insn. */
4128 #ifdef CONFIG_USER_ONLY
4129 if (ctx->base.pc_next < TARGET_PAGE_SIZE) {
4131 ret = ctx->base.is_jmp;
4132 assert(ret != DISAS_NEXT);
4136 /* Always fetch the insn, even if nullified, so that we check
4137 the page permissions for execute. */
4138 uint32_t insn = cpu_ldl_code(env, ctx->base.pc_next);
4140 /* Set up the IA queue for the next insn.
4141 This will be overwritten by a branch. */
4142 if (ctx->iaoq_b == -1) {
4144 ctx->iaoq_n_var = get_temp(ctx);
4145 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4);
4147 ctx->iaoq_n = ctx->iaoq_b + 4;
4148 ctx->iaoq_n_var = NULL;
4151 if (unlikely(ctx->null_cond.c == TCG_COND_ALWAYS)) {
4152 ctx->null_cond.c = TCG_COND_NEVER;
4156 if (!decode(ctx, insn)) {
4159 ret = ctx->base.is_jmp;
4160 assert(ctx->null_lab == NULL);
4164 /* Free any temporaries allocated. */
4165 for (i = 0, n = ctx->ntempr; i < n; ++i) {
4166 tcg_temp_free(ctx->tempr[i]);
4167 ctx->tempr[i] = NULL;
4169 for (i = 0, n = ctx->ntempl; i < n; ++i) {
4170 tcg_temp_free_tl(ctx->templ[i]);
4171 ctx->templ[i] = NULL;
4176 /* Advance the insn queue. Note that this check also detects
4177 a priority change within the instruction queue. */
4178 if (ret == DISAS_NEXT && ctx->iaoq_b != ctx->iaoq_f + 4) {
4179 if (ctx->iaoq_b != -1 && ctx->iaoq_n != -1
4180 && use_goto_tb(ctx, ctx->iaoq_b)
4181 && (ctx->null_cond.c == TCG_COND_NEVER
4182 || ctx->null_cond.c == TCG_COND_ALWAYS)) {
4183 nullify_set(ctx, ctx->null_cond.c == TCG_COND_ALWAYS);
4184 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n);
4185 ctx->base.is_jmp = ret = DISAS_NORETURN;
4187 ctx->base.is_jmp = ret = DISAS_IAQ_N_STALE;
4190 ctx->iaoq_f = ctx->iaoq_b;
4191 ctx->iaoq_b = ctx->iaoq_n;
4192 ctx->base.pc_next += 4;
4194 if (ret == DISAS_NORETURN || ret == DISAS_IAQ_N_UPDATED) {
4197 if (ctx->iaoq_f == -1) {
4198 tcg_gen_mov_reg(cpu_iaoq_f, cpu_iaoq_b);
4199 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var);
4200 #ifndef CONFIG_USER_ONLY
4201 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b);
4204 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED;
4205 } else if (ctx->iaoq_b == -1) {
4206 tcg_gen_mov_reg(cpu_iaoq_b, ctx->iaoq_n_var);
4210 static void hppa_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
4212 DisasContext *ctx = container_of(dcbase, DisasContext, base);
4213 DisasJumpType is_jmp = ctx->base.is_jmp;
4216 case DISAS_NORETURN:
4218 case DISAS_TOO_MANY:
4219 case DISAS_IAQ_N_STALE:
4220 case DISAS_IAQ_N_STALE_EXIT:
4221 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f);
4222 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b);
4225 case DISAS_IAQ_N_UPDATED:
4226 if (ctx->base.singlestep_enabled) {
4227 gen_excp_1(EXCP_DEBUG);
4228 } else if (is_jmp == DISAS_IAQ_N_STALE_EXIT) {
4229 tcg_gen_exit_tb(NULL, 0);
4231 tcg_gen_lookup_and_goto_ptr();
4235 g_assert_not_reached();
4239 static void hppa_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs)
4241 target_ulong pc = dcbase->pc_first;
4243 #ifdef CONFIG_USER_ONLY
4246 qemu_log("IN:\n0x00000000: (null)\n");
4249 qemu_log("IN:\n0x000000b0: light-weight-syscall\n");
4252 qemu_log("IN:\n0x000000e0: set-thread-pointer-syscall\n");
4255 qemu_log("IN:\n0x00000100: syscall\n");
4260 qemu_log("IN: %s\n", lookup_symbol(pc));
4261 log_target_disas(cs, pc, dcbase->tb->size);
4264 static const TranslatorOps hppa_tr_ops = {
4265 .init_disas_context = hppa_tr_init_disas_context,
4266 .tb_start = hppa_tr_tb_start,
4267 .insn_start = hppa_tr_insn_start,
4268 .breakpoint_check = hppa_tr_breakpoint_check,
4269 .translate_insn = hppa_tr_translate_insn,
4270 .tb_stop = hppa_tr_tb_stop,
4271 .disas_log = hppa_tr_disas_log,
4274 void gen_intermediate_code(CPUState *cs, struct TranslationBlock *tb)
4278 translator_loop(&hppa_tr_ops, &ctx.base, cs, tb);
4281 void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb,
4284 env->iaoq_f = data[0];
4285 if (data[1] != (target_ureg)-1) {
4286 env->iaoq_b = data[1];
4288 /* Since we were executing the instruction at IAOQ_F, and took some
4289 sort of action that provoked the cpu_restore_state, we can infer
4290 that the instruction was not nullified. */