1 #include "qemu/osdep.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
34 /* Definitions for the PMCCNTR and PMCR registers */
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 stfq_le_p(buf, env->vfp.regs[reg]);
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
73 env->vfp.regs[reg] = ldfq_le_p(buf);
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
102 stl_p(buf, vfp_get_fpsr(env));
106 stl_p(buf, vfp_get_fpcr(env));
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
123 vfp_set_fpsr(env, ldl_p(buf));
127 vfp_set_fpcr(env, ldl_p(buf));
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
182 if (ri->type & ARM_CP_CONST) {
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
229 if (ri->type & ARM_CP_NO_RAW) {
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
237 bool write_list_to_cpustate(ARMCPU *cpu)
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
252 if (ri->type & ARM_CP_NO_RAW) {
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
380 if (arm_current_el(env) == 3) {
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 CPUState *cs = ENV_GET_CPU(env);
541 tlb_flush_all_cpus_synced(cs);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 CPUState *cs = ENV_GET_CPU(env);
549 tlb_flush_all_cpus_synced(cs);
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 CPUState *cs = ENV_GET_CPU(env);
557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_by_mmuidx(cs,
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 CPUState *cs = ENV_GET_CPU(env);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState *cs = ENV_GET_CPU(env);
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
606 pageaddr = sextract64(value << 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 CPUState *cs = ENV_GET_CPU(env);
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
621 pageaddr = sextract64(value << 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
662 static const ARMCPRegInfo cp_reginfo[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767 .type = ARM_CP_NO_RAW },
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770 .type = ARM_CP_NO_RAW },
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773 .type = ARM_CP_NO_RAW },
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
815 env->cp15.cpacr_el1 = value;
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861 .access = PL0_W, .type = ARM_CP_NOP },
862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetvalue = 0, .writefn = cpacr_write },
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el = arm_current_el(env);
888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889 return CP_ACCESS_TRAP;
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
914 return pmreg_access(env, ri, isread);
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
929 return pmreg_access(env, ri, isread);
932 #ifndef CONFIG_USER_ONLY
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
945 return pmreg_access(env, ri, isread);
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
960 return pmreg_access(env, ri, isread);
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
965 /* This does not support checking PMCCFILTR_EL0 register */
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
974 void pmccntr_sync(CPUARMState *env)
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1010 uint64_t total_ticks;
1012 if (!arm_ccnt_enabled(env)) {
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1024 return total_ticks - env->cp15.c15_ccnt;
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1035 env->cp15.c9_pmselr = value & 0x1f;
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1041 uint64_t total_ticks;
1043 if (!arm_ccnt_enabled(env)) {
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1056 env->cp15.c15_ccnt = total_ticks - value;
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1067 #else /* CONFIG_USER_ONLY */
1069 void pmccntr_sync(CPUARMState *env)
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1087 env->cp15.c9_pmcnten |= value;
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1094 env->cp15.c9_pmcnten &= ~value;
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1100 env->cp15.c9_pmovsr &= ~value;
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1133 env->cp15.c9_pmuserenr = value & 1;
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1140 /* We have no event counters so only the C bit can be changed */
1142 env->cp15.c9_pminten |= value;
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1149 env->cp15.c9_pminten &= ~value;
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1161 raw_write(env, ri, value & ~0x1FULL);
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
1179 * On ARMv8, this bit is always available.
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
1183 valid_mask &= ~SCR_SMD;
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1194 ARMCPU *cpu = arm_env_get_cpu(env);
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1202 return cpu->ccsidr[index];
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1208 raw_write(env, ri, value & 0xf);
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 CPUState *cs = ENV_GET_CPU(env);
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
1257 .type = ARM_CP_ALIAS },
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
1261 .type = ARM_CP_ALIAS,
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
1276 /* Unimplemented so WI. */
1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293 .accessfn = pmreg_access_ccntr },
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302 .writefn = pmccfiltr_write,
1303 .access = PL0_RW, .accessfn = pmreg_access,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314 /* Unimplemented, RAZ/WI. */
1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317 .accessfn = pmreg_access_xevcntr },
1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330 .access = PL1_RW, .accessfn = access_tpm,
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345 .writefn = pmintenclr_write, },
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
1401 .resetfn = arm_cp_reset_ignore },
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
1439 .writefn = tlbiasid_is_write },
1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
1442 .writefn = tlbimvaa_is_write },
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457 return CP_ACCESS_TRAP;
1459 return CP_ACCESS_OK;
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469 .accessfn = teehbr_access, .resetvalue = 0 },
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492 .resetfn = arm_cp_reset_ignore },
1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1505 #ifndef CONFIG_USER_ONLY
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1513 int el = arm_current_el(env);
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1537 return CP_ACCESS_OK;
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1557 return CP_ACCESS_OK;
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1579 return CP_ACCESS_OK;
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583 const ARMCPRegInfo *ri,
1586 return gt_counter_access(env, GTIMER_PHYS, isread);
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590 const ARMCPRegInfo *ri,
1593 return gt_counter_access(env, GTIMER_VIRT, isread);
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1599 return gt_timer_access(env, GTIMER_PHYS, isread);
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1605 return gt_timer_access(env, GTIMER_VIRT, isread);
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609 const ARMCPRegInfo *ri,
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1616 switch (arm_current_el(env)) {
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1624 return CP_ACCESS_OK;
1627 return CP_ACCESS_TRAP;
1629 return CP_ACCESS_OK;
1631 g_assert_not_reached();
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
1652 int istatus = count - offset >= gt->cval;
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1665 /* Next transition is when we hit cval */
1666 nexttick = gt->cval + offset;
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1679 /* Timer disabled: ISTATUS and timer output always clear */
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682 timer_del(cpu->gt_timer[timeridx]);
1683 trace_arm_gt_recalc_disabled(timeridx);
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1690 ARMCPU *cpu = arm_env_get_cpu(env);
1692 timer_del(cpu->gt_timer[timeridx]);
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 return gt_get_countervalue(env);
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 trace_arm_gt_cval_write(timeridx, value);
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720 (gt_get_countervalue(env) - offset));
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1729 trace_arm_gt_tval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731 sextract64(value, 0, 32);
1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739 ARMCPU *cpu = arm_env_get_cpu(env);
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1742 trace_arm_gt_ctl_write(timeridx, value);
1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
1747 } else if ((oldval ^ value) & 2) {
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1751 int irqstate = (oldval & 4) && !(value & 2);
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1819 trace_arm_gt_cntvoff_write(value);
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1880 void arm_gt_ptimer_cb(void *opaque)
1882 ARMCPU *cpu = opaque;
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1887 void arm_gt_vtimer_cb(void *opaque)
1889 ARMCPU *cpu = opaque;
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1894 void arm_gt_htimer_cb(void *opaque)
1896 ARMCPU *cpu = opaque;
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1901 void arm_gt_stimer_cb(void *opaque)
1903 ARMCPU *cpu = opaque;
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914 .type = ARM_CP_ALIAS,
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1924 /* overall control: mostly access permissions */
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933 .secure = ARM_CP_SECSTATE_NS,
1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952 .accessfn = gt_ptimer_access,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967 .accessfn = gt_vtimer_access,
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974 .secure = ARM_CP_SECSTATE_NS,
1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976 .accessfn = gt_ptimer_access,
1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994 .accessfn = gt_vtimer_access,
1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006 .accessfn = gt_pct_access,
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = gt_vct_access,
2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026 .secure = ARM_CP_SECSTATE_NS,
2027 .access = PL1_RW | PL0_R,
2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030 .accessfn = gt_ptimer_access,
2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053 .accessfn = gt_vtimer_access,
2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2094 /* In user-mode none of the generic timer registers are accessible,
2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096 * so instead just don't register any of them.
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107 raw_write(env, ri, value);
2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109 raw_write(env, ri, value & 0xfffff6ff);
2111 raw_write(env, ri, value & 0xfffff1ff);
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2134 return CP_ACCESS_OK;
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138 int access_type, ARMMMUIdx mmu_idx)
2141 target_ulong page_size;
2146 MemTxAttrs attrs = {};
2147 ARMMMUFaultInfo fi = {};
2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151 if (extended_addresses_enabled(env)) {
2152 /* fsr is a DFSR/IFSR value for the long descriptor
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2156 par64 = (1 << 11); /* LPAE bit always set */
2158 par64 |= phys_addr & ~0xfffULL;
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2162 /* We don't set the ATTR or SH fields in the PAR. */
2165 par64 |= (fsr & 0x3f) << 1; /* FS */
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2172 /* fsr is a DFSR/IFSR value for the short descriptor
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
2182 par64 = phys_addr & 0xfffff000;
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2197 int access_type = ri->opc2 & 1;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
2203 switch (ri->opc2 & 6) {
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2208 mmu_idx = ARMMMUIdx_S1E3;
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2217 g_assert_not_reached();
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2224 mmu_idx = ARMMMUIdx_S1SE0;
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2233 g_assert_not_reached();
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2245 g_assert_not_reached();
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2256 int access_type = ri->opc2 & 1;
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2270 return CP_ACCESS_OK;
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2276 int access_type = ri->opc2 & 1;
2278 int secure = arm_is_secure_below_el3(env);
2280 switch (ri->opc2 & 6) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2293 g_assert_not_reached();
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2299 case 4: /* AT S12E1R, AT S12E1W */
2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2302 case 6: /* AT S12E0R, AT S12E0W */
2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2306 g_assert_not_reached();
2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
2318 .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322 .access = PL1_W, .accessfn = ats_access,
2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2328 /* Return basic MPU access permission bits. */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2343 /* Pad basic MPU access permission bits to extended format. */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2388 u32p += env->cp15.c6_rgnr;
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2402 u32p += env->cp15.c6_rgnr;
2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2407 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2409 ARMCPU *cpu = arm_env_get_cpu(env);
2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2416 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2419 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2422 ARMCPU *cpu = arm_env_get_cpu(env);
2423 uint32_t nrgs = cpu->pmsav7_dregion;
2425 if (value >= nrgs) {
2426 qemu_log_mask(LOG_GUEST_ERROR,
2427 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2428 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2432 raw_write(env, ri, value);
2435 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2436 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2437 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2438 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2439 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2440 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2441 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2442 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2443 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2444 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2445 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2446 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2447 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2448 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2450 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2451 .writefn = pmsav7_rgnr_write },
2455 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2456 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2459 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2460 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2461 .access = PL1_RW, .type = ARM_CP_ALIAS,
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2463 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2464 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2468 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2470 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2472 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2474 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2475 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2478 /* Protection region base and size registers */
2479 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2480 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2481 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2482 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2483 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2484 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2485 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2488 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2491 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2494 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2497 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2500 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2506 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2509 TCR *tcr = raw_ptr(env, ri);
2510 int maskshift = extract32(value, 0, 3);
2512 if (!arm_feature(env, ARM_FEATURE_V8)) {
2513 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2514 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2515 * using Long-desciptor translation table format */
2516 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2517 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2518 /* In an implementation that includes the Security Extensions
2519 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2520 * Short-descriptor translation table format.
2522 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2528 /* Update the masks corresponding to the TCR bank being written
2529 * Note that we always calculate mask and base_mask, but
2530 * they are only used for short-descriptor tables (ie if EAE is 0);
2531 * for long-descriptor tables the TCR fields are used differently
2532 * and the mask and base_mask values are meaningless.
2534 tcr->raw_tcr = value;
2535 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2536 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2539 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 ARMCPU *cpu = arm_env_get_cpu(env);
2544 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2545 /* With LPAE the TTBCR could result in a change of ASID
2546 * via the TTBCR.A1 bit, so do a TLB flush.
2548 tlb_flush(CPU(cpu));
2550 vmsa_ttbcr_raw_write(env, ri, value);
2553 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2555 TCR *tcr = raw_ptr(env, ri);
2557 /* Reset both the TCR as well as the masks corresponding to the bank of
2558 * the TCR being reset.
2562 tcr->base_mask = 0xffffc000u;
2565 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2568 ARMCPU *cpu = arm_env_get_cpu(env);
2569 TCR *tcr = raw_ptr(env, ri);
2571 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2572 tlb_flush(CPU(cpu));
2573 tcr->raw_tcr = value;
2576 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2579 /* 64 bit accesses to the TTBRs can change the ASID and so we
2580 * must flush the TLB.
2582 if (cpreg_field_is_64bit(ri)) {
2583 ARMCPU *cpu = arm_env_get_cpu(env);
2585 tlb_flush(CPU(cpu));
2587 raw_write(env, ri, value);
2590 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2593 ARMCPU *cpu = arm_env_get_cpu(env);
2594 CPUState *cs = CPU(cpu);
2596 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2597 if (raw_read(env, ri) != value) {
2598 tlb_flush_by_mmuidx(cs,
2599 ARMMMUIdxBit_S12NSE1 |
2600 ARMMMUIdxBit_S12NSE0 |
2602 raw_write(env, ri, value);
2606 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2607 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2608 .access = PL1_RW, .type = ARM_CP_ALIAS,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2610 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2611 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2614 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2615 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2616 .access = PL1_RW, .resetvalue = 0,
2617 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2618 offsetof(CPUARMState, cp15.dfar_ns) } },
2619 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2620 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2621 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2626 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2627 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2628 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2630 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2631 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2632 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2633 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2634 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2635 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2636 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2638 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2639 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2640 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2641 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2642 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2644 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2645 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2646 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2647 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2648 .raw_writefn = vmsa_ttbcr_raw_write,
2649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2650 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2654 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2657 env->cp15.c15_ticonfig = value & 0xe7;
2658 /* The OS_TYPE bit in this register changes the reported CPUID! */
2659 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2660 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2663 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666 env->cp15.c15_threadid = value & 0xffff;
2669 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2672 /* Wait-for-interrupt (deprecated) */
2673 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2676 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2679 /* On OMAP there are registers indicating the max/min index of dcache lines
2680 * containing a dirty line; cache flush operations have to reset these.
2682 env->cp15.c15_i_max = 0x000;
2683 env->cp15.c15_i_min = 0xff0;
2686 static const ARMCPRegInfo omap_cp_reginfo[] = {
2687 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2691 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2692 .access = PL1_RW, .type = ARM_CP_NOP },
2693 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2696 .writefn = omap_ticonfig_write },
2697 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2699 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2700 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2701 .access = PL1_RW, .resetvalue = 0xff0,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2703 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2706 .writefn = omap_threadid_write },
2707 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2708 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2709 .type = ARM_CP_NO_RAW,
2710 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2711 /* TODO: Peripheral port remap register:
2712 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2713 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2716 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2717 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2718 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2719 .writefn = omap_cachemaint_write },
2720 { .name = "C9", .cp = 15, .crn = 9,
2721 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2726 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2729 env->cp15.c15_cpar = value & 0x3fff;
2732 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2733 { .name = "XSCALE_CPAR",
2734 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2736 .writefn = xscale_cpar_write, },
2737 { .name = "XSCALE_AUXCR",
2738 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2739 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2741 /* XScale specific cache-lockdown: since we have no cache we NOP these
2742 * and hope the guest does not really rely on cache behaviour.
2744 { .name = "XSCALE_LOCK_ICACHE_LINE",
2745 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2746 .access = PL1_W, .type = ARM_CP_NOP },
2747 { .name = "XSCALE_UNLOCK_ICACHE",
2748 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2749 .access = PL1_W, .type = ARM_CP_NOP },
2750 { .name = "XSCALE_DCACHE_LOCK",
2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2752 .access = PL1_RW, .type = ARM_CP_NOP },
2753 { .name = "XSCALE_UNLOCK_DCACHE",
2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2755 .access = PL1_W, .type = ARM_CP_NOP },
2759 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2760 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2761 * implementation of this implementation-defined space.
2762 * Ideally this should eventually disappear in favour of actually
2763 * implementing the correct behaviour for all cores.
2765 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2766 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2768 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2773 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2774 /* Cache status: RAZ because we have no cache so it's always clean */
2775 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2776 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2781 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2782 /* We never have a a block transfer operation in progress */
2783 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2786 /* The cache ops themselves: these all NOP for QEMU */
2787 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2788 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2790 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2794 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2796 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2802 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2803 /* The cache test-and-clean instructions always return (1 << 30)
2804 * to indicate that there are no dirty cache lines.
2806 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2807 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2808 .resetvalue = (1 << 30) },
2809 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2810 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2811 .resetvalue = (1 << 30) },
2815 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2816 /* Ignore ReadBuffer accesses */
2817 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2818 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2819 .access = PL1_RW, .resetvalue = 0,
2820 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2824 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2826 ARMCPU *cpu = arm_env_get_cpu(env);
2827 unsigned int cur_el = arm_current_el(env);
2828 bool secure = arm_is_secure(env);
2830 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2831 return env->cp15.vpidr_el2;
2833 return raw_read(env, ri);
2836 static uint64_t mpidr_read_val(CPUARMState *env)
2838 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2839 uint64_t mpidr = cpu->mp_affinity;
2841 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842 mpidr |= (1U << 31);
2843 /* Cores which are uniprocessor (non-coherent)
2844 * but still implement the MP extensions set
2845 * bit 30. (For instance, Cortex-R5).
2847 if (cpu->mp_is_up) {
2848 mpidr |= (1u << 30);
2854 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2856 unsigned int cur_el = arm_current_el(env);
2857 bool secure = arm_is_secure(env);
2859 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2860 return env->cp15.vmpidr_el2;
2862 return mpidr_read_val(env);
2865 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2866 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2867 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2868 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2872 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2874 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2875 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2876 .access = PL1_RW, .type = ARM_CP_CONST,
2878 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2879 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2880 .access = PL1_RW, .type = ARM_CP_CONST,
2882 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2883 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2885 offsetof(CPUARMState, cp15.par_ns)} },
2886 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2887 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2888 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2889 offsetof(CPUARMState, cp15.ttbr0_ns) },
2890 .writefn = vmsa_ttbr_write, },
2891 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2892 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2894 offsetof(CPUARMState, cp15.ttbr1_ns) },
2895 .writefn = vmsa_ttbr_write, },
2899 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2901 return vfp_get_fpcr(env);
2904 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 vfp_set_fpcr(env, value);
2910 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2912 return vfp_get_fpsr(env);
2915 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918 vfp_set_fpsr(env, value);
2921 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2924 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2925 return CP_ACCESS_TRAP;
2927 return CP_ACCESS_OK;
2930 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2933 env->daif = value & PSTATE_DAIF;
2936 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2937 const ARMCPRegInfo *ri,
2940 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2941 * SCTLR_EL1.UCI is set.
2943 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2944 return CP_ACCESS_TRAP;
2946 return CP_ACCESS_OK;
2949 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2950 * Page D4-1736 (DDI0487A.b)
2953 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 CPUState *cs = ENV_GET_CPU(env);
2958 if (arm_is_secure_below_el3(env)) {
2959 tlb_flush_by_mmuidx(cs,
2960 ARMMMUIdxBit_S1SE1 |
2961 ARMMMUIdxBit_S1SE0);
2963 tlb_flush_by_mmuidx(cs,
2964 ARMMMUIdxBit_S12NSE1 |
2965 ARMMMUIdxBit_S12NSE0);
2969 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972 CPUState *cs = ENV_GET_CPU(env);
2973 bool sec = arm_is_secure_below_el3(env);
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977 ARMMMUIdxBit_S1SE1 |
2978 ARMMMUIdxBit_S1SE0);
2980 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2981 ARMMMUIdxBit_S12NSE1 |
2982 ARMMMUIdxBit_S12NSE0);
2986 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2989 /* Note that the 'ALL' scope must invalidate both stage 1 and
2990 * stage 2 translations, whereas most other scopes only invalidate
2991 * stage 1 translations.
2993 ARMCPU *cpu = arm_env_get_cpu(env);
2994 CPUState *cs = CPU(cpu);
2996 if (arm_is_secure_below_el3(env)) {
2997 tlb_flush_by_mmuidx(cs,
2998 ARMMMUIdxBit_S1SE1 |
2999 ARMMMUIdxBit_S1SE0);
3001 if (arm_feature(env, ARM_FEATURE_EL2)) {
3002 tlb_flush_by_mmuidx(cs,
3003 ARMMMUIdxBit_S12NSE1 |
3004 ARMMMUIdxBit_S12NSE0 |
3007 tlb_flush_by_mmuidx(cs,
3008 ARMMMUIdxBit_S12NSE1 |
3009 ARMMMUIdxBit_S12NSE0);
3014 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3017 ARMCPU *cpu = arm_env_get_cpu(env);
3018 CPUState *cs = CPU(cpu);
3020 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3023 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3026 ARMCPU *cpu = arm_env_get_cpu(env);
3027 CPUState *cs = CPU(cpu);
3029 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3032 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3039 CPUState *cs = ENV_GET_CPU(env);
3040 bool sec = arm_is_secure_below_el3(env);
3041 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045 ARMMMUIdxBit_S1SE1 |
3046 ARMMMUIdxBit_S1SE0);
3047 } else if (has_el2) {
3048 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3049 ARMMMUIdxBit_S12NSE1 |
3050 ARMMMUIdxBit_S12NSE0 |
3053 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3054 ARMMMUIdxBit_S12NSE1 |
3055 ARMMMUIdxBit_S12NSE0);
3059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3062 CPUState *cs = ENV_GET_CPU(env);
3064 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 CPUState *cs = ENV_GET_CPU(env);
3072 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3075 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 /* Invalidate by VA, EL1&0 (AArch64 version).
3079 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3080 * since we don't support flush-for-specific-ASID-only or
3081 * flush-last-level-only.
3083 ARMCPU *cpu = arm_env_get_cpu(env);
3084 CPUState *cs = CPU(cpu);
3085 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3087 if (arm_is_secure_below_el3(env)) {
3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
3089 ARMMMUIdxBit_S1SE1 |
3090 ARMMMUIdxBit_S1SE0);
3092 tlb_flush_page_by_mmuidx(cs, pageaddr,
3093 ARMMMUIdxBit_S12NSE1 |
3094 ARMMMUIdxBit_S12NSE0);
3098 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3101 /* Invalidate by VA, EL2
3102 * Currently handles both VAE2 and VALE2, since we don't support
3103 * flush-last-level-only.
3105 ARMCPU *cpu = arm_env_get_cpu(env);
3106 CPUState *cs = CPU(cpu);
3107 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3109 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3112 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3115 /* Invalidate by VA, EL3
3116 * Currently handles both VAE3 and VALE3, since we don't support
3117 * flush-last-level-only.
3119 ARMCPU *cpu = arm_env_get_cpu(env);
3120 CPUState *cs = CPU(cpu);
3121 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3123 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3126 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
3131 bool sec = arm_is_secure_below_el3(env);
3132 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136 ARMMMUIdxBit_S1SE1 |
3137 ARMMMUIdxBit_S1SE0);
3139 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3140 ARMMMUIdxBit_S12NSE1 |
3141 ARMMMUIdxBit_S12NSE0);
3145 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3148 CPUState *cs = ENV_GET_CPU(env);
3149 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3155 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3158 CPUState *cs = ENV_GET_CPU(env);
3159 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3165 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3168 /* Invalidate by IPA. This has to invalidate any structures that
3169 * contain only stage 2 translation information, but does not need
3170 * to apply to structures that contain combined stage 1 and stage 2
3171 * translation information.
3172 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3174 ARMCPU *cpu = arm_env_get_cpu(env);
3175 CPUState *cs = CPU(cpu);
3178 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3182 pageaddr = sextract64(value << 12, 0, 48);
3184 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190 CPUState *cs = ENV_GET_CPU(env);
3193 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3197 pageaddr = sextract64(value << 12, 0, 48);
3199 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3203 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3206 /* We don't implement EL2, so the only control on DC ZVA is the
3207 * bit in the SCTLR which can prohibit access for EL0.
3209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3210 return CP_ACCESS_TRAP;
3212 return CP_ACCESS_OK;
3215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3217 ARMCPU *cpu = arm_env_get_cpu(env);
3218 int dzp_bit = 1 << 4;
3220 /* DZP indicates whether DC ZVA access is allowed */
3221 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3224 return cpu->dcz_blocksize | dzp_bit;
3227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3230 if (!(env->pstate & PSTATE_SP)) {
3231 /* Access to SP_EL0 is undefined if it's being used as
3232 * the stack pointer.
3234 return CP_ACCESS_TRAP_UNCATEGORIZED;
3236 return CP_ACCESS_OK;
3239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3241 return env->pstate & PSTATE_SP;
3244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3246 update_spsel(env, val);
3249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3252 ARMCPU *cpu = arm_env_get_cpu(env);
3254 if (raw_read(env, ri) == value) {
3255 /* Skip the TLB flush if nothing actually changed; Linux likes
3256 * to do a lot of pointless SCTLR writes.
3261 raw_write(env, ri, value);
3262 /* ??? Lots of these bits are not implemented. */
3263 /* This may enable/disable the MMU, so do a TLB flush. */
3264 tlb_flush(CPU(cpu));
3267 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3270 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3271 return CP_ACCESS_TRAP_FP_EL2;
3273 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3274 return CP_ACCESS_TRAP_FP_EL3;
3276 return CP_ACCESS_OK;
3279 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3282 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3285 static const ARMCPRegInfo v8_cp_reginfo[] = {
3286 /* Minimal set of EL0-visible registers. This will need to be expanded
3287 * significantly for system emulation of AArch64 CPUs.
3289 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3290 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3291 .access = PL0_RW, .type = ARM_CP_NZCV },
3292 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3294 .type = ARM_CP_NO_RAW,
3295 .access = PL0_RW, .accessfn = aa64_daif_access,
3296 .fieldoffset = offsetof(CPUARMState, daif),
3297 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3298 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3300 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3301 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3302 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3303 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3304 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3306 .access = PL0_R, .type = ARM_CP_NO_RAW,
3307 .readfn = aa64_dczid_read },
3308 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3310 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3311 #ifndef CONFIG_USER_ONLY
3312 /* Avoid overhead of an access check that always passes in user-mode */
3313 .accessfn = aa64_zva_access,
3316 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3318 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3319 /* Cache ops: all NOPs since we don't emulate caches */
3320 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3322 .access = PL1_W, .type = ARM_CP_NOP },
3323 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3325 .access = PL1_W, .type = ARM_CP_NOP },
3326 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3328 .access = PL0_W, .type = ARM_CP_NOP,
3329 .accessfn = aa64_cacheop_access },
3330 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3332 .access = PL1_W, .type = ARM_CP_NOP },
3333 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3335 .access = PL1_W, .type = ARM_CP_NOP },
3336 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3338 .access = PL0_W, .type = ARM_CP_NOP,
3339 .accessfn = aa64_cacheop_access },
3340 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3342 .access = PL1_W, .type = ARM_CP_NOP },
3343 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3345 .access = PL0_W, .type = ARM_CP_NOP,
3346 .accessfn = aa64_cacheop_access },
3347 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3349 .access = PL0_W, .type = ARM_CP_NOP,
3350 .accessfn = aa64_cacheop_access },
3351 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3353 .access = PL1_W, .type = ARM_CP_NOP },
3354 /* TLBI operations */
3355 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3357 .access = PL1_W, .type = ARM_CP_NO_RAW,
3358 .writefn = tlbi_aa64_vmalle1is_write },
3359 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3361 .access = PL1_W, .type = ARM_CP_NO_RAW,
3362 .writefn = tlbi_aa64_vae1is_write },
3363 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3365 .access = PL1_W, .type = ARM_CP_NO_RAW,
3366 .writefn = tlbi_aa64_vmalle1is_write },
3367 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3369 .access = PL1_W, .type = ARM_CP_NO_RAW,
3370 .writefn = tlbi_aa64_vae1is_write },
3371 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3373 .access = PL1_W, .type = ARM_CP_NO_RAW,
3374 .writefn = tlbi_aa64_vae1is_write },
3375 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3377 .access = PL1_W, .type = ARM_CP_NO_RAW,
3378 .writefn = tlbi_aa64_vae1is_write },
3379 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3381 .access = PL1_W, .type = ARM_CP_NO_RAW,
3382 .writefn = tlbi_aa64_vmalle1_write },
3383 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3385 .access = PL1_W, .type = ARM_CP_NO_RAW,
3386 .writefn = tlbi_aa64_vae1_write },
3387 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3389 .access = PL1_W, .type = ARM_CP_NO_RAW,
3390 .writefn = tlbi_aa64_vmalle1_write },
3391 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3393 .access = PL1_W, .type = ARM_CP_NO_RAW,
3394 .writefn = tlbi_aa64_vae1_write },
3395 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3397 .access = PL1_W, .type = ARM_CP_NO_RAW,
3398 .writefn = tlbi_aa64_vae1_write },
3399 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3400 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3401 .access = PL1_W, .type = ARM_CP_NO_RAW,
3402 .writefn = tlbi_aa64_vae1_write },
3403 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3405 .access = PL2_W, .type = ARM_CP_NO_RAW,
3406 .writefn = tlbi_aa64_ipas2e1is_write },
3407 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3409 .access = PL2_W, .type = ARM_CP_NO_RAW,
3410 .writefn = tlbi_aa64_ipas2e1is_write },
3411 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3412 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3413 .access = PL2_W, .type = ARM_CP_NO_RAW,
3414 .writefn = tlbi_aa64_alle1is_write },
3415 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3416 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3417 .access = PL2_W, .type = ARM_CP_NO_RAW,
3418 .writefn = tlbi_aa64_alle1is_write },
3419 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3421 .access = PL2_W, .type = ARM_CP_NO_RAW,
3422 .writefn = tlbi_aa64_ipas2e1_write },
3423 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3425 .access = PL2_W, .type = ARM_CP_NO_RAW,
3426 .writefn = tlbi_aa64_ipas2e1_write },
3427 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3429 .access = PL2_W, .type = ARM_CP_NO_RAW,
3430 .writefn = tlbi_aa64_alle1_write },
3431 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3433 .access = PL2_W, .type = ARM_CP_NO_RAW,
3434 .writefn = tlbi_aa64_alle1is_write },
3435 #ifndef CONFIG_USER_ONLY
3436 /* 64 bit address translation operations */
3437 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3438 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3439 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3440 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3442 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3443 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3444 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3445 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3446 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3448 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3449 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3450 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3451 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3452 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3454 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3455 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3456 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3457 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3458 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3460 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3461 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3462 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3463 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3464 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3465 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3466 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3467 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3468 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3469 .type = ARM_CP_ALIAS,
3470 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3471 .access = PL1_RW, .resetvalue = 0,
3472 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3473 .writefn = par_write },
3475 /* TLB invalidate last level of translation table walk */
3476 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3477 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3478 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3479 .type = ARM_CP_NO_RAW, .access = PL1_W,
3480 .writefn = tlbimvaa_is_write },
3481 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3483 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3484 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3485 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3486 .type = ARM_CP_NO_RAW, .access = PL2_W,
3487 .writefn = tlbimva_hyp_write },
3488 { .name = "TLBIMVALHIS",
3489 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3490 .type = ARM_CP_NO_RAW, .access = PL2_W,
3491 .writefn = tlbimva_hyp_is_write },
3492 { .name = "TLBIIPAS2",
3493 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3494 .type = ARM_CP_NO_RAW, .access = PL2_W,
3495 .writefn = tlbiipas2_write },
3496 { .name = "TLBIIPAS2IS",
3497 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3498 .type = ARM_CP_NO_RAW, .access = PL2_W,
3499 .writefn = tlbiipas2_is_write },
3500 { .name = "TLBIIPAS2L",
3501 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3502 .type = ARM_CP_NO_RAW, .access = PL2_W,
3503 .writefn = tlbiipas2_write },
3504 { .name = "TLBIIPAS2LIS",
3505 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3506 .type = ARM_CP_NO_RAW, .access = PL2_W,
3507 .writefn = tlbiipas2_is_write },
3508 /* 32 bit cache operations */
3509 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3510 .type = ARM_CP_NOP, .access = PL1_W },
3511 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3512 .type = ARM_CP_NOP, .access = PL1_W },
3513 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3514 .type = ARM_CP_NOP, .access = PL1_W },
3515 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3516 .type = ARM_CP_NOP, .access = PL1_W },
3517 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3518 .type = ARM_CP_NOP, .access = PL1_W },
3519 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3520 .type = ARM_CP_NOP, .access = PL1_W },
3521 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3522 .type = ARM_CP_NOP, .access = PL1_W },
3523 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3524 .type = ARM_CP_NOP, .access = PL1_W },
3525 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3526 .type = ARM_CP_NOP, .access = PL1_W },
3527 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3528 .type = ARM_CP_NOP, .access = PL1_W },
3529 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3530 .type = ARM_CP_NOP, .access = PL1_W },
3531 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3532 .type = ARM_CP_NOP, .access = PL1_W },
3533 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3534 .type = ARM_CP_NOP, .access = PL1_W },
3535 /* MMU Domain access control / MPU write buffer control */
3536 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3537 .access = PL1_RW, .resetvalue = 0,
3538 .writefn = dacr_write, .raw_writefn = raw_write,
3539 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3540 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3541 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3542 .type = ARM_CP_ALIAS,
3543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3545 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3546 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3547 .type = ARM_CP_ALIAS,
3548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3550 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3551 /* We rely on the access checks not allowing the guest to write to the
3552 * state field when SPSel indicates that it's being used as the stack
3555 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3557 .access = PL1_RW, .accessfn = sp_el0_access,
3558 .type = ARM_CP_ALIAS,
3559 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3560 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3562 .access = PL2_RW, .type = ARM_CP_ALIAS,
3563 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3564 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3566 .type = ARM_CP_NO_RAW,
3567 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3568 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3570 .type = ARM_CP_ALIAS,
3571 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3572 .access = PL2_RW, .accessfn = fpexc32_access },
3573 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3575 .access = PL2_RW, .resetvalue = 0,
3576 .writefn = dacr_write, .raw_writefn = raw_write,
3577 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3578 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3580 .access = PL2_RW, .resetvalue = 0,
3581 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3582 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3583 .type = ARM_CP_ALIAS,
3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3587 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3588 .type = ARM_CP_ALIAS,
3589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3592 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3597 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3602 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3606 { .name = "SDCR", .type = ARM_CP_ALIAS,
3607 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3608 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3609 .writefn = sdcr_write,
3610 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3614 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3615 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3616 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3620 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3621 .type = ARM_CP_NO_RAW,
3622 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3625 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3626 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3628 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3630 .access = PL2_RW, .type = ARM_CP_CONST,
3632 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3633 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3634 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3635 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3636 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3637 .access = PL2_RW, .type = ARM_CP_CONST,
3639 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3640 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3641 .access = PL2_RW, .type = ARM_CP_CONST,
3643 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3644 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3645 .access = PL2_RW, .type = ARM_CP_CONST,
3647 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3648 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3649 .access = PL2_RW, .type = ARM_CP_CONST,
3651 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3652 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3653 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3654 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3655 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3656 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3657 .type = ARM_CP_CONST, .resetvalue = 0 },
3658 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3659 .cp = 15, .opc1 = 6, .crm = 2,
3660 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3661 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3662 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3663 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3664 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3665 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3666 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3667 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3668 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3669 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3670 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3671 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3672 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3673 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3674 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3675 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3678 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3679 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3680 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3681 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3682 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3683 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3684 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3687 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3688 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3689 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3690 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3693 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3694 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3695 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3696 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3697 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3698 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3699 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3700 .access = PL2_RW, .accessfn = access_tda,
3701 .type = ARM_CP_CONST, .resetvalue = 0 },
3702 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3704 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3705 .type = ARM_CP_CONST, .resetvalue = 0 },
3706 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3707 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3708 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3712 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714 ARMCPU *cpu = arm_env_get_cpu(env);
3715 uint64_t valid_mask = HCR_MASK;
3717 if (arm_feature(env, ARM_FEATURE_EL3)) {
3718 valid_mask &= ~HCR_HCD;
3720 valid_mask &= ~HCR_TSC;
3723 /* Clear RES0 bits. */
3724 value &= valid_mask;
3726 /* These bits change the MMU setup:
3727 * HCR_VM enables stage 2 translation
3728 * HCR_PTW forbids certain page-table setups
3729 * HCR_DC Disables stage1 and enables stage2 translation
3731 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3732 tlb_flush(CPU(cpu));
3734 raw_write(env, ri, value);
3737 static const ARMCPRegInfo el2_cp_reginfo[] = {
3738 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3739 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3740 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3741 .writefn = hcr_write },
3742 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3743 .type = ARM_CP_ALIAS,
3744 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3746 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3747 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3749 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3750 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3751 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3752 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3753 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3754 .type = ARM_CP_ALIAS,
3755 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3757 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3758 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3759 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3760 .access = PL2_RW, .writefn = vbar_write,
3761 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3763 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3765 .access = PL3_RW, .type = ARM_CP_ALIAS,
3766 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3767 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3769 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3770 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3771 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3772 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3773 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3775 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3776 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3777 .access = PL2_RW, .type = ARM_CP_ALIAS,
3778 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3779 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3781 .access = PL2_RW, .type = ARM_CP_CONST,
3783 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3784 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3785 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3788 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3789 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3790 .access = PL2_RW, .type = ARM_CP_CONST,
3792 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3793 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3794 .access = PL2_RW, .type = ARM_CP_CONST,
3796 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3799 /* no .writefn needed as this can't cause an ASID change;
3800 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3802 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3803 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3804 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3805 .type = ARM_CP_ALIAS,
3806 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3807 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3808 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3811 /* no .writefn needed as this can't cause an ASID change;
3812 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3814 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3815 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3816 .cp = 15, .opc1 = 6, .crm = 2,
3817 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3818 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3819 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3820 .writefn = vttbr_write },
3821 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3823 .access = PL2_RW, .writefn = vttbr_write,
3824 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3825 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3827 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3828 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3829 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3831 .access = PL2_RW, .resetvalue = 0,
3832 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3833 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3834 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3835 .access = PL2_RW, .resetvalue = 0,
3836 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3837 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3838 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3839 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3840 { .name = "TLBIALLNSNH",
3841 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3842 .type = ARM_CP_NO_RAW, .access = PL2_W,
3843 .writefn = tlbiall_nsnh_write },
3844 { .name = "TLBIALLNSNHIS",
3845 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3846 .type = ARM_CP_NO_RAW, .access = PL2_W,
3847 .writefn = tlbiall_nsnh_is_write },
3848 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3849 .type = ARM_CP_NO_RAW, .access = PL2_W,
3850 .writefn = tlbiall_hyp_write },
3851 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3852 .type = ARM_CP_NO_RAW, .access = PL2_W,
3853 .writefn = tlbiall_hyp_is_write },
3854 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3855 .type = ARM_CP_NO_RAW, .access = PL2_W,
3856 .writefn = tlbimva_hyp_write },
3857 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3858 .type = ARM_CP_NO_RAW, .access = PL2_W,
3859 .writefn = tlbimva_hyp_is_write },
3860 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3862 .type = ARM_CP_NO_RAW, .access = PL2_W,
3863 .writefn = tlbi_aa64_alle2_write },
3864 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3866 .type = ARM_CP_NO_RAW, .access = PL2_W,
3867 .writefn = tlbi_aa64_vae2_write },
3868 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3870 .access = PL2_W, .type = ARM_CP_NO_RAW,
3871 .writefn = tlbi_aa64_vae2_write },
3872 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3874 .access = PL2_W, .type = ARM_CP_NO_RAW,
3875 .writefn = tlbi_aa64_alle2is_write },
3876 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3878 .type = ARM_CP_NO_RAW, .access = PL2_W,
3879 .writefn = tlbi_aa64_vae2is_write },
3880 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3882 .access = PL2_W, .type = ARM_CP_NO_RAW,
3883 .writefn = tlbi_aa64_vae2is_write },
3884 #ifndef CONFIG_USER_ONLY
3885 /* Unlike the other EL2-related AT operations, these must
3886 * UNDEF from EL3 if EL2 is not implemented, which is why we
3887 * define them here rather than with the rest of the AT ops.
3889 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3890 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3891 .access = PL2_W, .accessfn = at_s1e2_access,
3892 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3893 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3894 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3895 .access = PL2_W, .accessfn = at_s1e2_access,
3896 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3897 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3898 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3899 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3900 * to behave as if SCR.NS was 1.
3902 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3904 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3905 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3907 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3908 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3909 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3910 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3911 * reset values as IMPDEF. We choose to reset to 3 to comply with
3912 * both ARMv7 and ARMv8.
3914 .access = PL2_RW, .resetvalue = 3,
3915 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3916 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3917 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3918 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3919 .writefn = gt_cntvoff_write,
3920 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3921 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3922 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3923 .writefn = gt_cntvoff_write,
3924 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3925 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3926 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3927 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3928 .type = ARM_CP_IO, .access = PL2_RW,
3929 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3930 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3931 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3932 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3933 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3934 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3935 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3936 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3937 .resetfn = gt_hyp_timer_reset,
3938 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3939 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3941 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3943 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3945 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3947 /* The only field of MDCR_EL2 that has a defined architectural reset value
3948 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3949 * don't impelment any PMU event counters, so using zero as a reset
3950 * value for MDCR_EL2 is okay
3952 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3954 .access = PL2_RW, .resetvalue = 0,
3955 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3956 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3957 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3958 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3959 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3960 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3961 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3964 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3965 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3967 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3971 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3974 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3975 * At Secure EL1 it traps to EL3.
3977 if (arm_current_el(env) == 3) {
3978 return CP_ACCESS_OK;
3980 if (arm_is_secure_below_el3(env)) {
3981 return CP_ACCESS_TRAP_EL3;
3983 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3985 return CP_ACCESS_OK;
3987 return CP_ACCESS_TRAP_UNCATEGORIZED;
3990 static const ARMCPRegInfo el3_cp_reginfo[] = {
3991 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3993 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3994 .resetvalue = 0, .writefn = scr_write },
3995 { .name = "SCR", .type = ARM_CP_ALIAS,
3996 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3997 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3998 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3999 .writefn = scr_write },
4000 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4002 .access = PL3_RW, .resetvalue = 0,
4003 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4005 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4006 .access = PL3_RW, .resetvalue = 0,
4007 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4008 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4009 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4010 .writefn = vbar_write, .resetvalue = 0,
4011 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4012 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4013 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4014 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4015 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4016 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4017 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4019 /* no .writefn needed as this can't cause an ASID change;
4020 * we must provide a .raw_writefn and .resetfn because we handle
4021 * reset and migration for the AArch32 TTBCR(S), which might be
4022 * using mask and base_mask.
4024 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4025 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4026 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4027 .type = ARM_CP_ALIAS,
4028 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4030 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4031 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4032 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4033 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4034 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4035 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4036 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4037 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4038 .type = ARM_CP_ALIAS,
4039 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4041 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4042 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .writefn = vbar_write,
4045 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4047 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4048 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4049 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4050 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4051 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4052 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4053 .access = PL3_RW, .resetvalue = 0,
4054 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4055 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4057 .access = PL3_RW, .type = ARM_CP_CONST,
4059 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4060 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4061 .access = PL3_RW, .type = ARM_CP_CONST,
4063 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4064 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4065 .access = PL3_RW, .type = ARM_CP_CONST,
4067 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4068 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4069 .access = PL3_W, .type = ARM_CP_NO_RAW,
4070 .writefn = tlbi_aa64_alle3is_write },
4071 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4072 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4073 .access = PL3_W, .type = ARM_CP_NO_RAW,
4074 .writefn = tlbi_aa64_vae3is_write },
4075 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4076 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4077 .access = PL3_W, .type = ARM_CP_NO_RAW,
4078 .writefn = tlbi_aa64_vae3is_write },
4079 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4081 .access = PL3_W, .type = ARM_CP_NO_RAW,
4082 .writefn = tlbi_aa64_alle3_write },
4083 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4085 .access = PL3_W, .type = ARM_CP_NO_RAW,
4086 .writefn = tlbi_aa64_vae3_write },
4087 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4089 .access = PL3_W, .type = ARM_CP_NO_RAW,
4090 .writefn = tlbi_aa64_vae3_write },
4094 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4097 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4098 * but the AArch32 CTR has its own reginfo struct)
4100 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4101 return CP_ACCESS_TRAP;
4103 return CP_ACCESS_OK;
4106 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4110 * read via a bit in OSLSR_EL1.
4114 if (ri->state == ARM_CP_STATE_AA32) {
4115 oslock = (value == 0xC5ACCE55);
4120 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4123 static const ARMCPRegInfo debug_cp_reginfo[] = {
4124 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4125 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4126 * unlike DBGDRAR it is never accessible from EL0.
4127 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4130 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4131 .access = PL0_R, .accessfn = access_tdra,
4132 .type = ARM_CP_CONST, .resetvalue = 0 },
4133 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4135 .access = PL1_R, .accessfn = access_tdra,
4136 .type = ARM_CP_CONST, .resetvalue = 0 },
4137 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4138 .access = PL0_R, .accessfn = access_tdra,
4139 .type = ARM_CP_CONST, .resetvalue = 0 },
4140 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4141 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4143 .access = PL1_RW, .accessfn = access_tda,
4144 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4146 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4147 * We don't implement the configurable EL0 access.
4149 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4151 .type = ARM_CP_ALIAS,
4152 .access = PL1_R, .accessfn = access_tda,
4153 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4154 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4156 .access = PL1_W, .type = ARM_CP_NO_RAW,
4157 .accessfn = access_tdosa,
4158 .writefn = oslar_write },
4159 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4161 .access = PL1_R, .resetvalue = 10,
4162 .accessfn = access_tdosa,
4163 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4164 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4165 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4167 .access = PL1_RW, .accessfn = access_tdosa,
4168 .type = ARM_CP_NOP },
4169 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4170 * implement vector catch debug events yet.
4173 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4174 .access = PL1_RW, .accessfn = access_tda,
4175 .type = ARM_CP_NOP },
4176 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4177 * to save and restore a 32-bit guest's DBGVCR)
4179 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4180 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4181 .access = PL2_RW, .accessfn = access_tda,
4182 .type = ARM_CP_NOP },
4183 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4184 * Channel but Linux may try to access this register. The 32-bit
4185 * alias is DBGDCCINT.
4187 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4188 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4189 .access = PL1_RW, .accessfn = access_tda,
4190 .type = ARM_CP_NOP },
4194 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4195 /* 64 bit access versions of the (dummy) debug registers */
4196 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4197 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4198 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4199 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4203 void hw_watchpoint_update(ARMCPU *cpu, int n)
4205 CPUARMState *env = &cpu->env;
4207 vaddr wvr = env->cp15.dbgwvr[n];
4208 uint64_t wcr = env->cp15.dbgwcr[n];
4210 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4212 if (env->cpu_watchpoint[n]) {
4213 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4214 env->cpu_watchpoint[n] = NULL;
4217 if (!extract64(wcr, 0, 1)) {
4218 /* E bit clear : watchpoint disabled */
4222 switch (extract64(wcr, 3, 2)) {
4224 /* LSC 00 is reserved and must behave as if the wp is disabled */
4227 flags |= BP_MEM_READ;
4230 flags |= BP_MEM_WRITE;
4233 flags |= BP_MEM_ACCESS;
4237 /* Attempts to use both MASK and BAS fields simultaneously are
4238 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4239 * thus generating a watchpoint for every byte in the masked region.
4241 mask = extract64(wcr, 24, 4);
4242 if (mask == 1 || mask == 2) {
4243 /* Reserved values of MASK; we must act as if the mask value was
4244 * some non-reserved value, or as if the watchpoint were disabled.
4245 * We choose the latter.
4249 /* Watchpoint covers an aligned area up to 2GB in size */
4251 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4252 * whether the watchpoint fires when the unmasked bits match; we opt
4253 * to generate the exceptions.
4257 /* Watchpoint covers bytes defined by the byte address select bits */
4258 int bas = extract64(wcr, 5, 8);
4262 /* This must act as if the watchpoint is disabled */
4266 if (extract64(wvr, 2, 1)) {
4267 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4268 * ignored, and BAS[3:0] define which bytes to watch.
4272 /* The BAS bits are supposed to be programmed to indicate a contiguous
4273 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4274 * we fire for each byte in the word/doubleword addressed by the WVR.
4275 * We choose to ignore any non-zero bits after the first range of 1s.
4277 basstart = ctz32(bas);
4278 len = cto32(bas >> basstart);
4282 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4283 &env->cpu_watchpoint[n]);
4286 void hw_watchpoint_update_all(ARMCPU *cpu)
4289 CPUARMState *env = &cpu->env;
4291 /* Completely clear out existing QEMU watchpoints and our array, to
4292 * avoid possible stale entries following migration load.
4294 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4295 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4297 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4298 hw_watchpoint_update(cpu, i);
4302 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4305 ARMCPU *cpu = arm_env_get_cpu(env);
4308 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4309 * register reads and behaves as if values written are sign extended.
4310 * Bits [1:0] are RES0.
4312 value = sextract64(value, 0, 49) & ~3ULL;
4314 raw_write(env, ri, value);
4315 hw_watchpoint_update(cpu, i);
4318 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321 ARMCPU *cpu = arm_env_get_cpu(env);
4324 raw_write(env, ri, value);
4325 hw_watchpoint_update(cpu, i);
4328 void hw_breakpoint_update(ARMCPU *cpu, int n)
4330 CPUARMState *env = &cpu->env;
4331 uint64_t bvr = env->cp15.dbgbvr[n];
4332 uint64_t bcr = env->cp15.dbgbcr[n];
4337 if (env->cpu_breakpoint[n]) {
4338 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4339 env->cpu_breakpoint[n] = NULL;
4342 if (!extract64(bcr, 0, 1)) {
4343 /* E bit clear : watchpoint disabled */
4347 bt = extract64(bcr, 20, 4);
4350 case 4: /* unlinked address mismatch (reserved if AArch64) */
4351 case 5: /* linked address mismatch (reserved if AArch64) */
4352 qemu_log_mask(LOG_UNIMP,
4353 "arm: address mismatch breakpoint types not implemented");
4355 case 0: /* unlinked address match */
4356 case 1: /* linked address match */
4358 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4359 * we behave as if the register was sign extended. Bits [1:0] are
4360 * RES0. The BAS field is used to allow setting breakpoints on 16
4361 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4362 * a bp will fire if the addresses covered by the bp and the addresses
4363 * covered by the insn overlap but the insn doesn't start at the
4364 * start of the bp address range. We choose to require the insn and
4365 * the bp to have the same address. The constraints on writing to
4366 * BAS enforced in dbgbcr_write mean we have only four cases:
4367 * 0b0000 => no breakpoint
4368 * 0b0011 => breakpoint on addr
4369 * 0b1100 => breakpoint on addr + 2
4370 * 0b1111 => breakpoint on addr
4371 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4373 int bas = extract64(bcr, 5, 4);
4374 addr = sextract64(bvr, 0, 49) & ~3ULL;
4383 case 2: /* unlinked context ID match */
4384 case 8: /* unlinked VMID match (reserved if no EL2) */
4385 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4386 qemu_log_mask(LOG_UNIMP,
4387 "arm: unlinked context breakpoint types not implemented");
4389 case 9: /* linked VMID match (reserved if no EL2) */
4390 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4391 case 3: /* linked context ID match */
4393 /* We must generate no events for Linked context matches (unless
4394 * they are linked to by some other bp/wp, which is handled in
4395 * updates for the linking bp/wp). We choose to also generate no events
4396 * for reserved values.
4401 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4404 void hw_breakpoint_update_all(ARMCPU *cpu)
4407 CPUARMState *env = &cpu->env;
4409 /* Completely clear out existing QEMU breakpoints and our array, to
4410 * avoid possible stale entries following migration load.
4412 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4413 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4415 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4416 hw_breakpoint_update(cpu, i);
4420 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 ARMCPU *cpu = arm_env_get_cpu(env);
4426 raw_write(env, ri, value);
4427 hw_breakpoint_update(cpu, i);
4430 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4433 ARMCPU *cpu = arm_env_get_cpu(env);
4436 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4439 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4440 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4442 raw_write(env, ri, value);
4443 hw_breakpoint_update(cpu, i);
4446 static void define_debug_regs(ARMCPU *cpu)
4448 /* Define v7 and v8 architectural debug registers.
4449 * These are just dummy implementations for now.
4452 int wrps, brps, ctx_cmps;
4453 ARMCPRegInfo dbgdidr = {
4454 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4455 .access = PL0_R, .accessfn = access_tda,
4456 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4459 /* Note that all these register fields hold "number of Xs minus 1". */
4460 brps = extract32(cpu->dbgdidr, 24, 4);
4461 wrps = extract32(cpu->dbgdidr, 28, 4);
4462 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4464 assert(ctx_cmps <= brps);
4466 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4467 * of the debug registers such as number of breakpoints;
4468 * check that if they both exist then they agree.
4470 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4471 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4472 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4473 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4476 define_one_arm_cp_reg(cpu, &dbgdidr);
4477 define_arm_cp_regs(cpu, debug_cp_reginfo);
4479 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4480 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4483 for (i = 0; i < brps + 1; i++) {
4484 ARMCPRegInfo dbgregs[] = {
4485 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4486 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4487 .access = PL1_RW, .accessfn = access_tda,
4488 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4489 .writefn = dbgbvr_write, .raw_writefn = raw_write
4491 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4492 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4493 .access = PL1_RW, .accessfn = access_tda,
4494 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4495 .writefn = dbgbcr_write, .raw_writefn = raw_write
4499 define_arm_cp_regs(cpu, dbgregs);
4502 for (i = 0; i < wrps + 1; i++) {
4503 ARMCPRegInfo dbgregs[] = {
4504 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4505 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4506 .access = PL1_RW, .accessfn = access_tda,
4507 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4508 .writefn = dbgwvr_write, .raw_writefn = raw_write
4510 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4511 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4512 .access = PL1_RW, .accessfn = access_tda,
4513 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4514 .writefn = dbgwcr_write, .raw_writefn = raw_write
4518 define_arm_cp_regs(cpu, dbgregs);
4522 void register_cp_regs_for_features(ARMCPU *cpu)
4524 /* Register all the coprocessor registers based on feature bits */
4525 CPUARMState *env = &cpu->env;
4526 if (arm_feature(env, ARM_FEATURE_M)) {
4527 /* M profile has no coprocessor registers */
4531 define_arm_cp_regs(cpu, cp_reginfo);
4532 if (!arm_feature(env, ARM_FEATURE_V8)) {
4533 /* Must go early as it is full of wildcards that may be
4534 * overridden by later definitions.
4536 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4539 if (arm_feature(env, ARM_FEATURE_V6)) {
4540 /* The ID registers all have impdef reset values */
4541 ARMCPRegInfo v6_idregs[] = {
4542 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4544 .access = PL1_R, .type = ARM_CP_CONST,
4545 .resetvalue = cpu->id_pfr0 },
4546 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4548 .access = PL1_R, .type = ARM_CP_CONST,
4549 .resetvalue = cpu->id_pfr1 },
4550 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4552 .access = PL1_R, .type = ARM_CP_CONST,
4553 .resetvalue = cpu->id_dfr0 },
4554 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4556 .access = PL1_R, .type = ARM_CP_CONST,
4557 .resetvalue = cpu->id_afr0 },
4558 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4560 .access = PL1_R, .type = ARM_CP_CONST,
4561 .resetvalue = cpu->id_mmfr0 },
4562 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4564 .access = PL1_R, .type = ARM_CP_CONST,
4565 .resetvalue = cpu->id_mmfr1 },
4566 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4568 .access = PL1_R, .type = ARM_CP_CONST,
4569 .resetvalue = cpu->id_mmfr2 },
4570 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4572 .access = PL1_R, .type = ARM_CP_CONST,
4573 .resetvalue = cpu->id_mmfr3 },
4574 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4576 .access = PL1_R, .type = ARM_CP_CONST,
4577 .resetvalue = cpu->id_isar0 },
4578 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4580 .access = PL1_R, .type = ARM_CP_CONST,
4581 .resetvalue = cpu->id_isar1 },
4582 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4584 .access = PL1_R, .type = ARM_CP_CONST,
4585 .resetvalue = cpu->id_isar2 },
4586 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4588 .access = PL1_R, .type = ARM_CP_CONST,
4589 .resetvalue = cpu->id_isar3 },
4590 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4592 .access = PL1_R, .type = ARM_CP_CONST,
4593 .resetvalue = cpu->id_isar4 },
4594 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4596 .access = PL1_R, .type = ARM_CP_CONST,
4597 .resetvalue = cpu->id_isar5 },
4598 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4600 .access = PL1_R, .type = ARM_CP_CONST,
4601 .resetvalue = cpu->id_mmfr4 },
4602 /* 7 is as yet unallocated and must RAZ */
4603 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4605 .access = PL1_R, .type = ARM_CP_CONST,
4609 define_arm_cp_regs(cpu, v6_idregs);
4610 define_arm_cp_regs(cpu, v6_cp_reginfo);
4612 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4614 if (arm_feature(env, ARM_FEATURE_V6K)) {
4615 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4617 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4618 !arm_feature(env, ARM_FEATURE_PMSA)) {
4619 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4621 if (arm_feature(env, ARM_FEATURE_V7)) {
4622 /* v7 performance monitor control register: same implementor
4623 * field as main ID register, and we implement only the cycle
4626 #ifndef CONFIG_USER_ONLY
4627 ARMCPRegInfo pmcr = {
4628 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4630 .type = ARM_CP_IO | ARM_CP_ALIAS,
4631 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4632 .accessfn = pmreg_access, .writefn = pmcr_write,
4633 .raw_writefn = raw_write,
4635 ARMCPRegInfo pmcr64 = {
4636 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4637 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4638 .access = PL0_RW, .accessfn = pmreg_access,
4640 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4641 .resetvalue = cpu->midr & 0xff000000,
4642 .writefn = pmcr_write, .raw_writefn = raw_write,
4644 define_one_arm_cp_reg(cpu, &pmcr);
4645 define_one_arm_cp_reg(cpu, &pmcr64);
4647 ARMCPRegInfo clidr = {
4648 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4649 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4650 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4652 define_one_arm_cp_reg(cpu, &clidr);
4653 define_arm_cp_regs(cpu, v7_cp_reginfo);
4654 define_debug_regs(cpu);
4656 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4658 if (arm_feature(env, ARM_FEATURE_V8)) {
4659 /* AArch64 ID registers, which all have impdef reset values.
4660 * Note that within the ID register ranges the unused slots
4661 * must all RAZ, not UNDEF; future architecture versions may
4662 * define new registers here.
4664 ARMCPRegInfo v8_idregs[] = {
4665 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4667 .access = PL1_R, .type = ARM_CP_CONST,
4668 .resetvalue = cpu->id_aa64pfr0 },
4669 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4671 .access = PL1_R, .type = ARM_CP_CONST,
4672 .resetvalue = cpu->id_aa64pfr1},
4673 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4675 .access = PL1_R, .type = ARM_CP_CONST,
4677 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4679 .access = PL1_R, .type = ARM_CP_CONST,
4681 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4683 .access = PL1_R, .type = ARM_CP_CONST,
4685 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4687 .access = PL1_R, .type = ARM_CP_CONST,
4689 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4691 .access = PL1_R, .type = ARM_CP_CONST,
4693 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4695 .access = PL1_R, .type = ARM_CP_CONST,
4697 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4699 .access = PL1_R, .type = ARM_CP_CONST,
4700 .resetvalue = cpu->id_aa64dfr0 },
4701 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4703 .access = PL1_R, .type = ARM_CP_CONST,
4704 .resetvalue = cpu->id_aa64dfr1 },
4705 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4707 .access = PL1_R, .type = ARM_CP_CONST,
4709 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4711 .access = PL1_R, .type = ARM_CP_CONST,
4713 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4715 .access = PL1_R, .type = ARM_CP_CONST,
4716 .resetvalue = cpu->id_aa64afr0 },
4717 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4719 .access = PL1_R, .type = ARM_CP_CONST,
4720 .resetvalue = cpu->id_aa64afr1 },
4721 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4723 .access = PL1_R, .type = ARM_CP_CONST,
4725 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4727 .access = PL1_R, .type = ARM_CP_CONST,
4729 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4731 .access = PL1_R, .type = ARM_CP_CONST,
4732 .resetvalue = cpu->id_aa64isar0 },
4733 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4735 .access = PL1_R, .type = ARM_CP_CONST,
4736 .resetvalue = cpu->id_aa64isar1 },
4737 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4739 .access = PL1_R, .type = ARM_CP_CONST,
4741 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4743 .access = PL1_R, .type = ARM_CP_CONST,
4745 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4747 .access = PL1_R, .type = ARM_CP_CONST,
4749 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4751 .access = PL1_R, .type = ARM_CP_CONST,
4753 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4755 .access = PL1_R, .type = ARM_CP_CONST,
4757 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4759 .access = PL1_R, .type = ARM_CP_CONST,
4761 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4763 .access = PL1_R, .type = ARM_CP_CONST,
4764 .resetvalue = cpu->id_aa64mmfr0 },
4765 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4767 .access = PL1_R, .type = ARM_CP_CONST,
4768 .resetvalue = cpu->id_aa64mmfr1 },
4769 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4771 .access = PL1_R, .type = ARM_CP_CONST,
4773 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4775 .access = PL1_R, .type = ARM_CP_CONST,
4777 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4779 .access = PL1_R, .type = ARM_CP_CONST,
4781 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4783 .access = PL1_R, .type = ARM_CP_CONST,
4785 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4787 .access = PL1_R, .type = ARM_CP_CONST,
4789 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4791 .access = PL1_R, .type = ARM_CP_CONST,
4793 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4795 .access = PL1_R, .type = ARM_CP_CONST,
4796 .resetvalue = cpu->mvfr0 },
4797 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4799 .access = PL1_R, .type = ARM_CP_CONST,
4800 .resetvalue = cpu->mvfr1 },
4801 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4803 .access = PL1_R, .type = ARM_CP_CONST,
4804 .resetvalue = cpu->mvfr2 },
4805 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4807 .access = PL1_R, .type = ARM_CP_CONST,
4809 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4811 .access = PL1_R, .type = ARM_CP_CONST,
4813 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4815 .access = PL1_R, .type = ARM_CP_CONST,
4817 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4821 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4823 .access = PL1_R, .type = ARM_CP_CONST,
4825 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4826 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4827 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4828 .resetvalue = cpu->pmceid0 },
4829 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4831 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4832 .resetvalue = cpu->pmceid0 },
4833 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4834 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4835 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836 .resetvalue = cpu->pmceid1 },
4837 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4839 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->pmceid1 },
4843 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4844 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4845 !arm_feature(env, ARM_FEATURE_EL2)) {
4846 ARMCPRegInfo rvbar = {
4847 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4849 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4851 define_one_arm_cp_reg(cpu, &rvbar);
4853 define_arm_cp_regs(cpu, v8_idregs);
4854 define_arm_cp_regs(cpu, v8_cp_reginfo);
4856 if (arm_feature(env, ARM_FEATURE_EL2)) {
4857 uint64_t vmpidr_def = mpidr_read_val(env);
4858 ARMCPRegInfo vpidr_regs[] = {
4859 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4860 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4861 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4862 .resetvalue = cpu->midr,
4863 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4864 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4866 .access = PL2_RW, .resetvalue = cpu->midr,
4867 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4868 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4869 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4870 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4871 .resetvalue = vmpidr_def,
4872 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4873 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4876 .resetvalue = vmpidr_def,
4877 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4880 define_arm_cp_regs(cpu, vpidr_regs);
4881 define_arm_cp_regs(cpu, el2_cp_reginfo);
4882 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4883 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4884 ARMCPRegInfo rvbar = {
4885 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4887 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4889 define_one_arm_cp_reg(cpu, &rvbar);
4892 /* If EL2 is missing but higher ELs are enabled, we need to
4893 * register the no_el2 reginfos.
4895 if (arm_feature(env, ARM_FEATURE_EL3)) {
4896 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4897 * of MIDR_EL1 and MPIDR_EL1.
4899 ARMCPRegInfo vpidr_regs[] = {
4900 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4901 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4902 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4903 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4904 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4905 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4906 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4908 .type = ARM_CP_NO_RAW,
4909 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4912 define_arm_cp_regs(cpu, vpidr_regs);
4913 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4916 if (arm_feature(env, ARM_FEATURE_EL3)) {
4917 define_arm_cp_regs(cpu, el3_cp_reginfo);
4918 ARMCPRegInfo el3_regs[] = {
4919 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4921 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4922 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4925 .raw_writefn = raw_write, .writefn = sctlr_write,
4926 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4927 .resetvalue = cpu->reset_sctlr },
4931 define_arm_cp_regs(cpu, el3_regs);
4933 /* The behaviour of NSACR is sufficiently various that we don't
4934 * try to describe it in a single reginfo:
4935 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4936 * reads as constant 0xc00 from NS EL1 and NS EL2
4937 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4938 * if v7 without EL3, register doesn't exist
4939 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4941 if (arm_feature(env, ARM_FEATURE_EL3)) {
4942 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4943 ARMCPRegInfo nsacr = {
4944 .name = "NSACR", .type = ARM_CP_CONST,
4945 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4946 .access = PL1_RW, .accessfn = nsacr_access,
4949 define_one_arm_cp_reg(cpu, &nsacr);
4951 ARMCPRegInfo nsacr = {
4953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954 .access = PL3_RW | PL1_R,
4956 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4958 define_one_arm_cp_reg(cpu, &nsacr);
4961 if (arm_feature(env, ARM_FEATURE_V8)) {
4962 ARMCPRegInfo nsacr = {
4963 .name = "NSACR", .type = ARM_CP_CONST,
4964 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4968 define_one_arm_cp_reg(cpu, &nsacr);
4972 if (arm_feature(env, ARM_FEATURE_PMSA)) {
4973 if (arm_feature(env, ARM_FEATURE_V6)) {
4974 /* PMSAv6 not implemented */
4975 assert(arm_feature(env, ARM_FEATURE_V7));
4976 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4977 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4979 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4982 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4983 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4985 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4986 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4988 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4989 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4991 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4992 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4994 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4995 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4997 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4998 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5000 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5001 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5003 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5004 define_arm_cp_regs(cpu, omap_cp_reginfo);
5006 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5007 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5009 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5010 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5012 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5013 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5015 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5016 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5018 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5019 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5020 * be read-only (ie write causes UNDEF exception).
5023 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5024 /* Pre-v8 MIDR space.
5025 * Note that the MIDR isn't a simple constant register because
5026 * of the TI925 behaviour where writes to another register can
5027 * cause the MIDR value to change.
5029 * Unimplemented registers in the c15 0 0 0 space default to
5030 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5031 * and friends override accordingly.
5034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5035 .access = PL1_R, .resetvalue = cpu->midr,
5036 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5037 .readfn = midr_read,
5038 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5039 .type = ARM_CP_OVERRIDE },
5040 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5042 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5043 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5045 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5046 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5048 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5049 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5051 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5052 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5054 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5055 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5059 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5061 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5062 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5063 .readfn = midr_read },
5064 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5065 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5066 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5067 .access = PL1_R, .resetvalue = cpu->midr },
5068 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5069 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5070 .access = PL1_R, .resetvalue = cpu->midr },
5071 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5076 ARMCPRegInfo id_cp_reginfo[] = {
5077 /* These are common to v8 and pre-v8 */
5079 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5080 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5081 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5083 .access = PL0_R, .accessfn = ctr_el0_access,
5084 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5085 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5088 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5091 /* TLBTR is specific to VMSA */
5092 ARMCPRegInfo id_tlbtr_reginfo = {
5094 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5097 /* MPUIR is specific to PMSA V6+ */
5098 ARMCPRegInfo id_mpuir_reginfo = {
5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5101 .access = PL1_R, .type = ARM_CP_CONST,
5102 .resetvalue = cpu->pmsav7_dregion << 8
5104 ARMCPRegInfo crn0_wi_reginfo = {
5105 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5106 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5107 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5109 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5110 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5112 /* Register the blanket "writes ignored" value first to cover the
5113 * whole space. Then update the specific ID registers to allow write
5114 * access, so that they ignore writes rather than causing them to
5117 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5118 for (r = id_pre_v8_midr_cp_reginfo;
5119 r->type != ARM_CP_SENTINEL; r++) {
5122 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5125 id_tlbtr_reginfo.access = PL1_RW;
5126 id_tlbtr_reginfo.access = PL1_RW;
5128 if (arm_feature(env, ARM_FEATURE_V8)) {
5129 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5131 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5133 define_arm_cp_regs(cpu, id_cp_reginfo);
5134 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5135 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5136 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5137 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5141 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5142 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5145 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5146 ARMCPRegInfo auxcr_reginfo[] = {
5147 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5148 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5149 .access = PL1_RW, .type = ARM_CP_CONST,
5150 .resetvalue = cpu->reset_auxcr },
5151 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5153 .access = PL2_RW, .type = ARM_CP_CONST,
5155 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5157 .access = PL3_RW, .type = ARM_CP_CONST,
5161 define_arm_cp_regs(cpu, auxcr_reginfo);
5164 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5165 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5166 /* 32 bit view is [31:18] 0...0 [43:32]. */
5167 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5168 | extract64(cpu->reset_cbar, 32, 12);
5169 ARMCPRegInfo cbar_reginfo[] = {
5171 .type = ARM_CP_CONST,
5172 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5173 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5174 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5175 .type = ARM_CP_CONST,
5176 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5177 .access = PL1_R, .resetvalue = cbar32 },
5180 /* We don't implement a r/w 64 bit CBAR currently */
5181 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5182 define_arm_cp_regs(cpu, cbar_reginfo);
5184 ARMCPRegInfo cbar = {
5186 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5187 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5188 .fieldoffset = offsetof(CPUARMState,
5189 cp15.c15_config_base_address)
5191 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5192 cbar.access = PL1_R;
5193 cbar.fieldoffset = 0;
5194 cbar.type = ARM_CP_CONST;
5196 define_one_arm_cp_reg(cpu, &cbar);
5200 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5201 ARMCPRegInfo vbar_cp_reginfo[] = {
5202 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5203 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5204 .access = PL1_RW, .writefn = vbar_write,
5205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5206 offsetof(CPUARMState, cp15.vbar_ns) },
5210 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5213 /* Generic registers whose values depend on the implementation */
5215 ARMCPRegInfo sctlr = {
5216 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5217 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5219 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5220 offsetof(CPUARMState, cp15.sctlr_ns) },
5221 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5222 .raw_writefn = raw_write,
5224 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5225 /* Normally we would always end the TB on an SCTLR write, but Linux
5226 * arch/arm/mach-pxa/sleep.S expects two instructions following
5227 * an MMU enable to execute from cache. Imitate this behaviour.
5229 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5231 define_one_arm_cp_reg(cpu, &sctlr);
5235 ARMCPU *cpu_arm_init(const char *cpu_model)
5237 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5240 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5242 CPUState *cs = CPU(cpu);
5243 CPUARMState *env = &cpu->env;
5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5246 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5247 aarch64_fpu_gdb_set_reg,
5248 34, "aarch64-fpu.xml", 0);
5249 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5250 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5251 51, "arm-neon.xml", 0);
5252 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5253 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5254 35, "arm-vfp3.xml", 0);
5255 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5256 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5257 19, "arm-vfp.xml", 0);
5261 /* Sort alphabetically by type name, except for "any". */
5262 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5264 ObjectClass *class_a = (ObjectClass *)a;
5265 ObjectClass *class_b = (ObjectClass *)b;
5266 const char *name_a, *name_b;
5268 name_a = object_class_get_name(class_a);
5269 name_b = object_class_get_name(class_b);
5270 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5272 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5275 return strcmp(name_a, name_b);
5279 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5281 ObjectClass *oc = data;
5282 CPUListState *s = user_data;
5283 const char *typename;
5286 typename = object_class_get_name(oc);
5287 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5288 (*s->cpu_fprintf)(s->file, " %s\n",
5293 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5297 .cpu_fprintf = cpu_fprintf,
5301 list = object_class_get_list(TYPE_ARM_CPU, false);
5302 list = g_slist_sort(list, arm_cpu_list_compare);
5303 (*cpu_fprintf)(f, "Available CPUs:\n");
5304 g_slist_foreach(list, arm_cpu_list_entry, &s);
5307 /* The 'host' CPU type is dynamically registered only if KVM is
5308 * enabled, so we have to special-case it here:
5310 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5314 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5316 ObjectClass *oc = data;
5317 CpuDefinitionInfoList **cpu_list = user_data;
5318 CpuDefinitionInfoList *entry;
5319 CpuDefinitionInfo *info;
5320 const char *typename;
5322 typename = object_class_get_name(oc);
5323 info = g_malloc0(sizeof(*info));
5324 info->name = g_strndup(typename,
5325 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5326 info->q_typename = g_strdup(typename);
5328 entry = g_malloc0(sizeof(*entry));
5329 entry->value = info;
5330 entry->next = *cpu_list;
5334 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5336 CpuDefinitionInfoList *cpu_list = NULL;
5339 list = object_class_get_list(TYPE_ARM_CPU, false);
5340 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5346 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5347 void *opaque, int state, int secstate,
5348 int crm, int opc1, int opc2)
5350 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5351 * add a single reginfo struct to the hash table.
5353 uint32_t *key = g_new(uint32_t, 1);
5354 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5355 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5356 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5358 /* Reset the secure state to the specific incoming state. This is
5359 * necessary as the register may have been defined with both states.
5361 r2->secure = secstate;
5363 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5364 /* Register is banked (using both entries in array).
5365 * Overwriting fieldoffset as the array is only used to define
5366 * banked registers but later only fieldoffset is used.
5368 r2->fieldoffset = r->bank_fieldoffsets[ns];
5371 if (state == ARM_CP_STATE_AA32) {
5372 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5373 /* If the register is banked then we don't need to migrate or
5374 * reset the 32-bit instance in certain cases:
5376 * 1) If the register has both 32-bit and 64-bit instances then we
5377 * can count on the 64-bit instance taking care of the
5379 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5380 * taking care of the secure bank. This requires that separate
5381 * 32 and 64-bit definitions are provided.
5383 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5384 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5385 r2->type |= ARM_CP_ALIAS;
5387 } else if ((secstate != r->secure) && !ns) {
5388 /* The register is not banked so we only want to allow migration of
5389 * the non-secure instance.
5391 r2->type |= ARM_CP_ALIAS;
5394 if (r->state == ARM_CP_STATE_BOTH) {
5395 /* We assume it is a cp15 register if the .cp field is left unset.
5401 #ifdef HOST_WORDS_BIGENDIAN
5402 if (r2->fieldoffset) {
5403 r2->fieldoffset += sizeof(uint32_t);
5408 if (state == ARM_CP_STATE_AA64) {
5409 /* To allow abbreviation of ARMCPRegInfo
5410 * definitions, we treat cp == 0 as equivalent to
5411 * the value for "standard guest-visible sysreg".
5412 * STATE_BOTH definitions are also always "standard
5413 * sysreg" in their AArch64 view (the .cp value may
5414 * be non-zero for the benefit of the AArch32 view).
5416 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5417 r2->cp = CP_REG_ARM64_SYSREG_CP;
5419 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5420 r2->opc0, opc1, opc2);
5422 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5425 r2->opaque = opaque;
5427 /* reginfo passed to helpers is correct for the actual access,
5428 * and is never ARM_CP_STATE_BOTH:
5431 /* Make sure reginfo passed to helpers for wildcarded regs
5432 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5437 /* By convention, for wildcarded registers only the first
5438 * entry is used for migration; the others are marked as
5439 * ALIAS so we don't try to transfer the register
5440 * multiple times. Special registers (ie NOP/WFI) are
5441 * never migratable and not even raw-accessible.
5443 if ((r->type & ARM_CP_SPECIAL)) {
5444 r2->type |= ARM_CP_NO_RAW;
5446 if (((r->crm == CP_ANY) && crm != 0) ||
5447 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5448 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5449 r2->type |= ARM_CP_ALIAS;
5452 /* Check that raw accesses are either forbidden or handled. Note that
5453 * we can't assert this earlier because the setup of fieldoffset for
5454 * banked registers has to be done first.
5456 if (!(r2->type & ARM_CP_NO_RAW)) {
5457 assert(!raw_accessors_invalid(r2));
5460 /* Overriding of an existing definition must be explicitly
5463 if (!(r->type & ARM_CP_OVERRIDE)) {
5464 ARMCPRegInfo *oldreg;
5465 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5466 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5467 fprintf(stderr, "Register redefined: cp=%d %d bit "
5468 "crn=%d crm=%d opc1=%d opc2=%d, "
5469 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5470 r2->crn, r2->crm, r2->opc1, r2->opc2,
5471 oldreg->name, r2->name);
5472 g_assert_not_reached();
5475 g_hash_table_insert(cpu->cp_regs, key, r2);
5479 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5480 const ARMCPRegInfo *r, void *opaque)
5482 /* Define implementations of coprocessor registers.
5483 * We store these in a hashtable because typically
5484 * there are less than 150 registers in a space which
5485 * is 16*16*16*8*8 = 262144 in size.
5486 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5487 * If a register is defined twice then the second definition is
5488 * used, so this can be used to define some generic registers and
5489 * then override them with implementation specific variations.
5490 * At least one of the original and the second definition should
5491 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5492 * against accidental use.
5494 * The state field defines whether the register is to be
5495 * visible in the AArch32 or AArch64 execution state. If the
5496 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5497 * reginfo structure for the AArch32 view, which sees the lower
5498 * 32 bits of the 64 bit register.
5500 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5501 * be wildcarded. AArch64 registers are always considered to be 64
5502 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5503 * the register, if any.
5505 int crm, opc1, opc2, state;
5506 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5507 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5508 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5509 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5510 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5511 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5512 /* 64 bit registers have only CRm and Opc1 fields */
5513 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5514 /* op0 only exists in the AArch64 encodings */
5515 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5516 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5517 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5518 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5519 * encodes a minimum access level for the register. We roll this
5520 * runtime check into our general permission check code, so check
5521 * here that the reginfo's specified permissions are strict enough
5522 * to encompass the generic architectural permission check.
5524 if (r->state != ARM_CP_STATE_AA32) {
5527 case 0: case 1: case 2:
5540 /* unallocated encoding, so not possible */
5548 /* min_EL EL1, secure mode only (we don't check the latter) */
5552 /* broken reginfo with out-of-range opc1 */
5556 /* assert our permissions are not too lax (stricter is fine) */
5557 assert((r->access & ~mask) == 0);
5560 /* Check that the register definition has enough info to handle
5561 * reads and writes if they are permitted.
5563 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5564 if (r->access & PL3_R) {
5565 assert((r->fieldoffset ||
5566 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5569 if (r->access & PL3_W) {
5570 assert((r->fieldoffset ||
5571 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5575 /* Bad type field probably means missing sentinel at end of reg list */
5576 assert(cptype_valid(r->type));
5577 for (crm = crmmin; crm <= crmmax; crm++) {
5578 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5579 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5580 for (state = ARM_CP_STATE_AA32;
5581 state <= ARM_CP_STATE_AA64; state++) {
5582 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5585 if (state == ARM_CP_STATE_AA32) {
5586 /* Under AArch32 CP registers can be common
5587 * (same for secure and non-secure world) or banked.
5589 switch (r->secure) {
5590 case ARM_CP_SECSTATE_S:
5591 case ARM_CP_SECSTATE_NS:
5592 add_cpreg_to_hashtable(cpu, r, opaque, state,
5593 r->secure, crm, opc1, opc2);
5596 add_cpreg_to_hashtable(cpu, r, opaque, state,
5599 add_cpreg_to_hashtable(cpu, r, opaque, state,
5605 /* AArch64 registers get mapped to non-secure instance
5607 add_cpreg_to_hashtable(cpu, r, opaque, state,
5617 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5618 const ARMCPRegInfo *regs, void *opaque)
5620 /* Define a whole list of registers */
5621 const ARMCPRegInfo *r;
5622 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5623 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5627 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5629 return g_hash_table_lookup(cpregs, &encoded_cp);
5632 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5635 /* Helper coprocessor write function for write-ignore registers */
5638 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5640 /* Helper coprocessor write function for read-as-zero registers */
5644 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5646 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5649 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5651 /* Return true if it is not valid for us to switch to
5652 * this CPU mode (ie all the UNPREDICTABLE cases in
5653 * the ARM ARM CPSRWriteByInstr pseudocode).
5656 /* Changes to or from Hyp via MSR and CPS are illegal. */
5657 if (write_type == CPSRWriteByInstr &&
5658 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5659 mode == ARM_CPU_MODE_HYP)) {
5664 case ARM_CPU_MODE_USR:
5666 case ARM_CPU_MODE_SYS:
5667 case ARM_CPU_MODE_SVC:
5668 case ARM_CPU_MODE_ABT:
5669 case ARM_CPU_MODE_UND:
5670 case ARM_CPU_MODE_IRQ:
5671 case ARM_CPU_MODE_FIQ:
5672 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5673 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5675 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5676 * and CPS are treated as illegal mode changes.
5678 if (write_type == CPSRWriteByInstr &&
5679 (env->cp15.hcr_el2 & HCR_TGE) &&
5680 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5681 !arm_is_secure_below_el3(env)) {
5685 case ARM_CPU_MODE_HYP:
5686 return !arm_feature(env, ARM_FEATURE_EL2)
5687 || arm_current_el(env) < 2 || arm_is_secure(env);
5688 case ARM_CPU_MODE_MON:
5689 return arm_current_el(env) < 3;
5695 uint32_t cpsr_read(CPUARMState *env)
5698 ZF = (env->ZF == 0);
5699 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5700 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5701 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5702 | ((env->condexec_bits & 0xfc) << 8)
5703 | (env->GE << 16) | (env->daif & CPSR_AIF);
5706 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5707 CPSRWriteType write_type)
5709 uint32_t changed_daif;
5711 if (mask & CPSR_NZCV) {
5712 env->ZF = (~val) & CPSR_Z;
5714 env->CF = (val >> 29) & 1;
5715 env->VF = (val << 3) & 0x80000000;
5718 env->QF = ((val & CPSR_Q) != 0);
5720 env->thumb = ((val & CPSR_T) != 0);
5721 if (mask & CPSR_IT_0_1) {
5722 env->condexec_bits &= ~3;
5723 env->condexec_bits |= (val >> 25) & 3;
5725 if (mask & CPSR_IT_2_7) {
5726 env->condexec_bits &= 3;
5727 env->condexec_bits |= (val >> 8) & 0xfc;
5729 if (mask & CPSR_GE) {
5730 env->GE = (val >> 16) & 0xf;
5733 /* In a V7 implementation that includes the security extensions but does
5734 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5735 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5736 * bits respectively.
5738 * In a V8 implementation, it is permitted for privileged software to
5739 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5741 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5742 arm_feature(env, ARM_FEATURE_EL3) &&
5743 !arm_feature(env, ARM_FEATURE_EL2) &&
5744 !arm_is_secure(env)) {
5746 changed_daif = (env->daif ^ val) & mask;
5748 if (changed_daif & CPSR_A) {
5749 /* Check to see if we are allowed to change the masking of async
5750 * abort exceptions from a non-secure state.
5752 if (!(env->cp15.scr_el3 & SCR_AW)) {
5753 qemu_log_mask(LOG_GUEST_ERROR,
5754 "Ignoring attempt to switch CPSR_A flag from "
5755 "non-secure world with SCR.AW bit clear\n");
5760 if (changed_daif & CPSR_F) {
5761 /* Check to see if we are allowed to change the masking of FIQ
5762 * exceptions from a non-secure state.
5764 if (!(env->cp15.scr_el3 & SCR_FW)) {
5765 qemu_log_mask(LOG_GUEST_ERROR,
5766 "Ignoring attempt to switch CPSR_F flag from "
5767 "non-secure world with SCR.FW bit clear\n");
5771 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5772 * If this bit is set software is not allowed to mask
5773 * FIQs, but is allowed to set CPSR_F to 0.
5775 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5777 qemu_log_mask(LOG_GUEST_ERROR,
5778 "Ignoring attempt to enable CPSR_F flag "
5779 "(non-maskable FIQ [NMFI] support enabled)\n");
5785 env->daif &= ~(CPSR_AIF & mask);
5786 env->daif |= val & CPSR_AIF & mask;
5788 if (write_type != CPSRWriteRaw &&
5789 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5790 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5791 /* Note that we can only get here in USR mode if this is a
5792 * gdb stub write; for this case we follow the architectural
5793 * behaviour for guest writes in USR mode of ignoring an attempt
5794 * to switch mode. (Those are caught by translate.c for writes
5795 * triggered by guest instructions.)
5798 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5799 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5800 * v7, and has defined behaviour in v8:
5801 * + leave CPSR.M untouched
5802 * + allow changes to the other CPSR fields
5804 * For user changes via the GDB stub, we don't set PSTATE.IL,
5805 * as this would be unnecessarily harsh for a user error.
5808 if (write_type != CPSRWriteByGDBStub &&
5809 arm_feature(env, ARM_FEATURE_V8)) {
5814 switch_mode(env, val & CPSR_M);
5817 mask &= ~CACHED_CPSR_BITS;
5818 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5821 /* Sign/zero extend */
5822 uint32_t HELPER(sxtb16)(uint32_t x)
5825 res = (uint16_t)(int8_t)x;
5826 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5830 uint32_t HELPER(uxtb16)(uint32_t x)
5833 res = (uint16_t)(uint8_t)x;
5834 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5838 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5842 if (num == INT_MIN && den == -1)
5847 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5854 uint32_t HELPER(rbit)(uint32_t x)
5859 #if defined(CONFIG_USER_ONLY)
5861 /* These should probably raise undefined insn exceptions. */
5862 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5864 ARMCPU *cpu = arm_env_get_cpu(env);
5866 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5869 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5871 ARMCPU *cpu = arm_env_get_cpu(env);
5873 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5877 void switch_mode(CPUARMState *env, int mode)
5879 ARMCPU *cpu = arm_env_get_cpu(env);
5881 if (mode != ARM_CPU_MODE_USR) {
5882 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5886 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5887 uint32_t cur_el, bool secure)
5892 void aarch64_sync_64_to_32(CPUARMState *env)
5894 g_assert_not_reached();
5899 void switch_mode(CPUARMState *env, int mode)
5904 old_mode = env->uncached_cpsr & CPSR_M;
5905 if (mode == old_mode)
5908 if (old_mode == ARM_CPU_MODE_FIQ) {
5909 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5910 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5911 } else if (mode == ARM_CPU_MODE_FIQ) {
5912 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5913 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5916 i = bank_number(old_mode);
5917 env->banked_r13[i] = env->regs[13];
5918 env->banked_r14[i] = env->regs[14];
5919 env->banked_spsr[i] = env->spsr;
5921 i = bank_number(mode);
5922 env->regs[13] = env->banked_r13[i];
5923 env->regs[14] = env->banked_r14[i];
5924 env->spsr = env->banked_spsr[i];
5927 /* Physical Interrupt Target EL Lookup Table
5929 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5931 * The below multi-dimensional table is used for looking up the target
5932 * exception level given numerous condition criteria. Specifically, the
5933 * target EL is based on SCR and HCR routing controls as well as the
5934 * currently executing EL and secure state.
5937 * target_el_table[2][2][2][2][2][4]
5938 * | | | | | +--- Current EL
5939 * | | | | +------ Non-secure(0)/Secure(1)
5940 * | | | +--------- HCR mask override
5941 * | | +------------ SCR exec state control
5942 * | +--------------- SCR mask override
5943 * +------------------ 32-bit(0)/64-bit(1) EL3
5945 * The table values are as such:
5949 * The ARM ARM target EL table includes entries indicating that an "exception
5950 * is not taken". The two cases where this is applicable are:
5951 * 1) An exception is taken from EL3 but the SCR does not have the exception
5953 * 2) An exception is taken from EL2 but the HCR does not have the exception
5955 * In these two cases, the below table contain a target of EL1. This value is
5956 * returned as it is expected that the consumer of the table data will check
5957 * for "target EL >= current EL" to ensure the exception is not taken.
5961 * BIT IRQ IMO Non-secure Secure
5962 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5964 static const int8_t target_el_table[2][2][2][2][2][4] = {
5965 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5966 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5967 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5968 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5969 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5970 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5971 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5972 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5973 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5974 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5975 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5976 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5977 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5978 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5979 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5980 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5984 * Determine the target EL for physical exceptions
5986 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5987 uint32_t cur_el, bool secure)
5989 CPUARMState *env = cs->env_ptr;
5994 /* Is the highest EL AArch64? */
5995 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5997 if (arm_feature(env, ARM_FEATURE_EL3)) {
5998 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6000 /* Either EL2 is the highest EL (and so the EL2 register width
6001 * is given by is64); or there is no EL2 or EL3, in which case
6002 * the value of 'rw' does not affect the table lookup anyway.
6009 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6010 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6013 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6014 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6017 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6018 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6022 /* If HCR.TGE is set then HCR is treated as being 1 */
6023 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6025 /* Perform a table-lookup for the target EL given the current state */
6026 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6028 assert(target_el > 0);
6033 static void v7m_push(CPUARMState *env, uint32_t val)
6035 CPUState *cs = CPU(arm_env_get_cpu(env));
6038 stl_phys(cs->as, env->regs[13], val);
6041 static uint32_t v7m_pop(CPUARMState *env)
6043 CPUState *cs = CPU(arm_env_get_cpu(env));
6046 val = ldl_phys(cs->as, env->regs[13]);
6051 /* Switch to V7M main or process stack pointer. */
6052 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6055 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6057 if (old_spsel != new_spsel) {
6058 tmp = env->v7m.other_sp;
6059 env->v7m.other_sp = env->regs[13];
6060 env->regs[13] = tmp;
6062 env->v7m.control = deposit32(env->v7m.control,
6063 R_V7M_CONTROL_SPSEL_SHIFT,
6064 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6068 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6070 CPUState *cs = CPU(cpu);
6071 CPUARMState *env = &cpu->env;
6073 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6076 addr = address_space_ldl(cs->as, vec,
6077 MEMTXATTRS_UNSPECIFIED, &result);
6078 if (result != MEMTX_OK) {
6079 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6080 * which would then be immediately followed by our failing to load
6081 * the entry vector for that HardFault, which is a Lockup case.
6082 * Since we don't model Lockup, we just report this guest error
6085 cpu_abort(cs, "Failed to read from exception vector table "
6086 "entry %08x\n", (unsigned)vec);
6091 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6093 /* Do the "take the exception" parts of exception entry,
6094 * but not the pushing of state to the stack. This is
6095 * similar to the pseudocode ExceptionTaken() function.
6097 CPUARMState *env = &cpu->env;
6100 armv7m_nvic_acknowledge_irq(env->nvic);
6101 switch_v7m_sp(env, 0);
6103 env->condexec_bits = 0;
6105 addr = arm_v7m_load_vector(cpu);
6106 env->regs[15] = addr & 0xfffffffe;
6107 env->thumb = addr & 1;
6110 static void v7m_push_stack(ARMCPU *cpu)
6112 /* Do the "set up stack frame" part of exception entry,
6113 * similar to pseudocode PushStack().
6115 CPUARMState *env = &cpu->env;
6116 uint32_t xpsr = xpsr_read(env);
6118 /* Align stack pointer if the guest wants that */
6119 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6123 /* Switch to the handler mode. */
6124 v7m_push(env, xpsr);
6125 v7m_push(env, env->regs[15]);
6126 v7m_push(env, env->regs[14]);
6127 v7m_push(env, env->regs[12]);
6128 v7m_push(env, env->regs[3]);
6129 v7m_push(env, env->regs[2]);
6130 v7m_push(env, env->regs[1]);
6131 v7m_push(env, env->regs[0]);
6134 static void do_v7m_exception_exit(ARMCPU *cpu)
6136 CPUARMState *env = &cpu->env;
6139 bool ufault = false;
6140 bool return_to_sp_process = false;
6141 bool return_to_handler = false;
6142 bool rettobase = false;
6144 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6145 * arm_v7m_do_unassigned_access() enforces the architectural rule
6146 * that jumps to magic addresses don't have magic behaviour unless
6147 * we're in Handler mode (compare pseudocode BXWritePC()).
6149 assert(env->v7m.exception != 0);
6151 /* In the spec pseudocode ExceptionReturn() is called directly
6152 * from BXWritePC() and gets the full target PC value including
6153 * bit zero. In QEMU's implementation we treat it as a normal
6154 * jump-to-register (which is then caught later on), and so split
6155 * the target value up between env->regs[15] and env->thumb in
6156 * gen_bx(). Reconstitute it.
6158 type = env->regs[15];
6163 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6164 " previous exception %d\n",
6165 type, env->v7m.exception);
6167 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6168 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6169 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6172 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6173 /* Auto-clear FAULTMASK on return from other than NMI */
6174 env->daif &= ~PSTATE_F;
6177 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6179 /* attempt to exit an exception that isn't active */
6183 /* still an irq active now */
6186 /* we returned to base exception level, no nesting.
6187 * (In the pseudocode this is written using "NestedActivation != 1"
6188 * where we have 'rettobase == false'.)
6193 g_assert_not_reached();
6196 switch (type & 0xf) {
6197 case 1: /* Return to Handler */
6198 return_to_handler = true;
6200 case 13: /* Return to Thread using Process stack */
6201 return_to_sp_process = true;
6203 case 9: /* Return to Thread using Main stack */
6205 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6214 /* Bad exception return: instead of popping the exception
6215 * stack, directly take a usage fault on the current stack.
6217 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6218 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6219 v7m_exception_taken(cpu, type | 0xf0000000);
6220 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6221 "stackframe: failed exception return integrity check\n");
6225 /* Switch to the target stack. */
6226 switch_v7m_sp(env, return_to_sp_process);
6227 /* Pop registers. */
6228 env->regs[0] = v7m_pop(env);
6229 env->regs[1] = v7m_pop(env);
6230 env->regs[2] = v7m_pop(env);
6231 env->regs[3] = v7m_pop(env);
6232 env->regs[12] = v7m_pop(env);
6233 env->regs[14] = v7m_pop(env);
6234 env->regs[15] = v7m_pop(env);
6235 if (env->regs[15] & 1) {
6236 qemu_log_mask(LOG_GUEST_ERROR,
6237 "M profile return from interrupt with misaligned "
6238 "PC is UNPREDICTABLE\n");
6239 /* Actual hardware seems to ignore the lsbit, and there are several
6240 * RTOSes out there which incorrectly assume the r15 in the stack
6241 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6243 env->regs[15] &= ~1U;
6245 xpsr = v7m_pop(env);
6246 xpsr_write(env, xpsr, 0xfffffdff);
6247 /* Undo stack alignment. */
6251 /* The restored xPSR exception field will be zero if we're
6252 * resuming in Thread mode. If that doesn't match what the
6253 * exception return type specified then this is a UsageFault.
6255 if (return_to_handler == (env->v7m.exception == 0)) {
6256 /* Take an INVPC UsageFault by pushing the stack again. */
6257 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6258 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6259 v7m_push_stack(cpu);
6260 v7m_exception_taken(cpu, type | 0xf0000000);
6261 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6262 "failed exception return integrity check\n");
6266 /* Otherwise, we have a successful exception exit. */
6267 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6270 static void arm_log_exception(int idx)
6272 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6273 const char *exc = NULL;
6274 static const char * const excnames[] = {
6275 [EXCP_UDEF] = "Undefined Instruction",
6277 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6278 [EXCP_DATA_ABORT] = "Data Abort",
6281 [EXCP_BKPT] = "Breakpoint",
6282 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6283 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6284 [EXCP_HVC] = "Hypervisor Call",
6285 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6286 [EXCP_SMC] = "Secure Monitor Call",
6287 [EXCP_VIRQ] = "Virtual IRQ",
6288 [EXCP_VFIQ] = "Virtual FIQ",
6289 [EXCP_SEMIHOST] = "Semihosting call",
6290 [EXCP_NOCP] = "v7M NOCP UsageFault",
6291 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6294 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6295 exc = excnames[idx];
6300 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6304 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6306 ARMCPU *cpu = ARM_CPU(cs);
6307 CPUARMState *env = &cpu->env;
6310 arm_log_exception(cs->exception_index);
6313 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6316 if (env->v7m.exception == 0)
6319 /* For exceptions we just mark as pending on the NVIC, and let that
6321 switch (cs->exception_index) {
6323 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6324 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6327 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6328 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6331 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6332 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6335 /* The PC already points to the next instruction. */
6336 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6338 case EXCP_PREFETCH_ABORT:
6339 case EXCP_DATA_ABORT:
6340 /* TODO: if we implemented the MPU registers, this is where we
6341 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6343 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6346 if (semihosting_enabled()) {
6348 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6351 qemu_log_mask(CPU_LOG_INT,
6352 "...handling as semihosting call 0x%x\n",
6354 env->regs[0] = do_arm_semihosting(env);
6358 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6362 case EXCP_EXCEPTION_EXIT:
6363 do_v7m_exception_exit(cpu);
6366 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6367 return; /* Never happens. Keep compiler happy. */
6370 v7m_push_stack(cpu);
6371 v7m_exception_taken(cpu, lr);
6372 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6375 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6376 * register set. This is necessary when switching between AArch32 and AArch64
6379 void aarch64_sync_32_to_64(CPUARMState *env)
6382 uint32_t mode = env->uncached_cpsr & CPSR_M;
6384 /* We can blanket copy R[0:7] to X[0:7] */
6385 for (i = 0; i < 8; i++) {
6386 env->xregs[i] = env->regs[i];
6389 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6390 * Otherwise, they come from the banked user regs.
6392 if (mode == ARM_CPU_MODE_FIQ) {
6393 for (i = 8; i < 13; i++) {
6394 env->xregs[i] = env->usr_regs[i - 8];
6397 for (i = 8; i < 13; i++) {
6398 env->xregs[i] = env->regs[i];
6402 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6403 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6404 * from the mode banked register.
6406 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6407 env->xregs[13] = env->regs[13];
6408 env->xregs[14] = env->regs[14];
6410 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6411 /* HYP is an exception in that it is copied from r14 */
6412 if (mode == ARM_CPU_MODE_HYP) {
6413 env->xregs[14] = env->regs[14];
6415 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6419 if (mode == ARM_CPU_MODE_HYP) {
6420 env->xregs[15] = env->regs[13];
6422 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6425 if (mode == ARM_CPU_MODE_IRQ) {
6426 env->xregs[16] = env->regs[14];
6427 env->xregs[17] = env->regs[13];
6429 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6430 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6433 if (mode == ARM_CPU_MODE_SVC) {
6434 env->xregs[18] = env->regs[14];
6435 env->xregs[19] = env->regs[13];
6437 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6438 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6441 if (mode == ARM_CPU_MODE_ABT) {
6442 env->xregs[20] = env->regs[14];
6443 env->xregs[21] = env->regs[13];
6445 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6446 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6449 if (mode == ARM_CPU_MODE_UND) {
6450 env->xregs[22] = env->regs[14];
6451 env->xregs[23] = env->regs[13];
6453 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6454 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6457 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6458 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6459 * FIQ bank for r8-r14.
6461 if (mode == ARM_CPU_MODE_FIQ) {
6462 for (i = 24; i < 31; i++) {
6463 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6466 for (i = 24; i < 29; i++) {
6467 env->xregs[i] = env->fiq_regs[i - 24];
6469 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6470 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6473 env->pc = env->regs[15];
6476 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6477 * register set. This is necessary when switching between AArch32 and AArch64
6480 void aarch64_sync_64_to_32(CPUARMState *env)
6483 uint32_t mode = env->uncached_cpsr & CPSR_M;
6485 /* We can blanket copy X[0:7] to R[0:7] */
6486 for (i = 0; i < 8; i++) {
6487 env->regs[i] = env->xregs[i];
6490 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6491 * Otherwise, we copy x8-x12 into the banked user regs.
6493 if (mode == ARM_CPU_MODE_FIQ) {
6494 for (i = 8; i < 13; i++) {
6495 env->usr_regs[i - 8] = env->xregs[i];
6498 for (i = 8; i < 13; i++) {
6499 env->regs[i] = env->xregs[i];
6503 /* Registers r13 & r14 depend on the current mode.
6504 * If we are in a given mode, we copy the corresponding x registers to r13
6505 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6508 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6509 env->regs[13] = env->xregs[13];
6510 env->regs[14] = env->xregs[14];
6512 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6514 /* HYP is an exception in that it does not have its own banked r14 but
6515 * shares the USR r14
6517 if (mode == ARM_CPU_MODE_HYP) {
6518 env->regs[14] = env->xregs[14];
6520 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6524 if (mode == ARM_CPU_MODE_HYP) {
6525 env->regs[13] = env->xregs[15];
6527 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6530 if (mode == ARM_CPU_MODE_IRQ) {
6531 env->regs[14] = env->xregs[16];
6532 env->regs[13] = env->xregs[17];
6534 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6535 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6538 if (mode == ARM_CPU_MODE_SVC) {
6539 env->regs[14] = env->xregs[18];
6540 env->regs[13] = env->xregs[19];
6542 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6543 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6546 if (mode == ARM_CPU_MODE_ABT) {
6547 env->regs[14] = env->xregs[20];
6548 env->regs[13] = env->xregs[21];
6550 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6551 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6554 if (mode == ARM_CPU_MODE_UND) {
6555 env->regs[14] = env->xregs[22];
6556 env->regs[13] = env->xregs[23];
6558 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6559 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6562 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6563 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6564 * FIQ bank for r8-r14.
6566 if (mode == ARM_CPU_MODE_FIQ) {
6567 for (i = 24; i < 31; i++) {
6568 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6571 for (i = 24; i < 29; i++) {
6572 env->fiq_regs[i - 24] = env->xregs[i];
6574 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6575 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6578 env->regs[15] = env->pc;
6581 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6583 ARMCPU *cpu = ARM_CPU(cs);
6584 CPUARMState *env = &cpu->env;
6591 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6592 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6594 case EC_BREAKPOINT_SAME_EL:
6598 case EC_WATCHPOINT_SAME_EL:
6604 case EC_VECTORCATCH:
6613 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6616 /* TODO: Vectored interrupt controller. */
6617 switch (cs->exception_index) {
6619 new_mode = ARM_CPU_MODE_UND;
6628 new_mode = ARM_CPU_MODE_SVC;
6631 /* The PC already points to the next instruction. */
6635 env->exception.fsr = 2;
6636 /* Fall through to prefetch abort. */
6637 case EXCP_PREFETCH_ABORT:
6638 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6639 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6640 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6641 env->exception.fsr, (uint32_t)env->exception.vaddress);
6642 new_mode = ARM_CPU_MODE_ABT;
6644 mask = CPSR_A | CPSR_I;
6647 case EXCP_DATA_ABORT:
6648 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6649 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6650 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6652 (uint32_t)env->exception.vaddress);
6653 new_mode = ARM_CPU_MODE_ABT;
6655 mask = CPSR_A | CPSR_I;
6659 new_mode = ARM_CPU_MODE_IRQ;
6661 /* Disable IRQ and imprecise data aborts. */
6662 mask = CPSR_A | CPSR_I;
6664 if (env->cp15.scr_el3 & SCR_IRQ) {
6665 /* IRQ routed to monitor mode */
6666 new_mode = ARM_CPU_MODE_MON;
6671 new_mode = ARM_CPU_MODE_FIQ;
6673 /* Disable FIQ, IRQ and imprecise data aborts. */
6674 mask = CPSR_A | CPSR_I | CPSR_F;
6675 if (env->cp15.scr_el3 & SCR_FIQ) {
6676 /* FIQ routed to monitor mode */
6677 new_mode = ARM_CPU_MODE_MON;
6682 new_mode = ARM_CPU_MODE_IRQ;
6684 /* Disable IRQ and imprecise data aborts. */
6685 mask = CPSR_A | CPSR_I;
6689 new_mode = ARM_CPU_MODE_FIQ;
6691 /* Disable FIQ, IRQ and imprecise data aborts. */
6692 mask = CPSR_A | CPSR_I | CPSR_F;
6696 new_mode = ARM_CPU_MODE_MON;
6698 mask = CPSR_A | CPSR_I | CPSR_F;
6702 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6703 return; /* Never happens. Keep compiler happy. */
6706 if (new_mode == ARM_CPU_MODE_MON) {
6707 addr += env->cp15.mvbar;
6708 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6709 /* High vectors. When enabled, base address cannot be remapped. */
6712 /* ARM v7 architectures provide a vector base address register to remap
6713 * the interrupt vector table.
6714 * This register is only followed in non-monitor mode, and is banked.
6715 * Note: only bits 31:5 are valid.
6717 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6720 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6721 env->cp15.scr_el3 &= ~SCR_NS;
6724 switch_mode (env, new_mode);
6725 /* For exceptions taken to AArch32 we must clear the SS bit in both
6726 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6728 env->uncached_cpsr &= ~PSTATE_SS;
6729 env->spsr = cpsr_read(env);
6730 /* Clear IT bits. */
6731 env->condexec_bits = 0;
6732 /* Switch to the new mode, and to the correct instruction set. */
6733 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6734 /* Set new mode endianness */
6735 env->uncached_cpsr &= ~CPSR_E;
6736 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6737 env->uncached_cpsr |= CPSR_E;
6740 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6741 * and we should just guard the thumb mode on V4 */
6742 if (arm_feature(env, ARM_FEATURE_V4T)) {
6743 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6745 env->regs[14] = env->regs[15] + offset;
6746 env->regs[15] = addr;
6749 /* Handle exception entry to a target EL which is using AArch64 */
6750 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6752 ARMCPU *cpu = ARM_CPU(cs);
6753 CPUARMState *env = &cpu->env;
6754 unsigned int new_el = env->exception.target_el;
6755 target_ulong addr = env->cp15.vbar_el[new_el];
6756 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6758 if (arm_current_el(env) < new_el) {
6759 /* Entry vector offset depends on whether the implemented EL
6760 * immediately lower than the target level is using AArch32 or AArch64
6766 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6769 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6772 is_aa64 = is_a64(env);
6775 g_assert_not_reached();
6783 } else if (pstate_read(env) & PSTATE_SP) {
6787 switch (cs->exception_index) {
6788 case EXCP_PREFETCH_ABORT:
6789 case EXCP_DATA_ABORT:
6790 env->cp15.far_el[new_el] = env->exception.vaddress;
6791 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6792 env->cp15.far_el[new_el]);
6800 env->cp15.esr_el[new_el] = env->exception.syndrome;
6811 qemu_log_mask(CPU_LOG_INT,
6812 "...handling as semihosting call 0x%" PRIx64 "\n",
6814 env->xregs[0] = do_arm_semihosting(env);
6817 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6821 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6822 aarch64_save_sp(env, arm_current_el(env));
6823 env->elr_el[new_el] = env->pc;
6825 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6826 env->elr_el[new_el] = env->regs[15];
6828 aarch64_sync_32_to_64(env);
6830 env->condexec_bits = 0;
6832 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6833 env->elr_el[new_el]);
6835 pstate_write(env, PSTATE_DAIF | new_mode);
6837 aarch64_restore_sp(env, new_el);
6841 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6842 new_el, env->pc, pstate_read(env));
6845 static inline bool check_for_semihosting(CPUState *cs)
6847 /* Check whether this exception is a semihosting call; if so
6848 * then handle it and return true; otherwise return false.
6850 ARMCPU *cpu = ARM_CPU(cs);
6851 CPUARMState *env = &cpu->env;
6854 if (cs->exception_index == EXCP_SEMIHOST) {
6855 /* This is always the 64-bit semihosting exception.
6856 * The "is this usermode" and "is semihosting enabled"
6857 * checks have been done at translate time.
6859 qemu_log_mask(CPU_LOG_INT,
6860 "...handling as semihosting call 0x%" PRIx64 "\n",
6862 env->xregs[0] = do_arm_semihosting(env);
6869 /* Only intercept calls from privileged modes, to provide some
6870 * semblance of security.
6872 if (cs->exception_index != EXCP_SEMIHOST &&
6873 (!semihosting_enabled() ||
6874 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6878 switch (cs->exception_index) {
6880 /* This is always a semihosting call; the "is this usermode"
6881 * and "is semihosting enabled" checks have been done at
6886 /* Check for semihosting interrupt. */
6888 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6894 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6896 if (imm == 0x123456) {
6902 /* See if this is a semihosting syscall. */
6904 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6916 qemu_log_mask(CPU_LOG_INT,
6917 "...handling as semihosting call 0x%x\n",
6919 env->regs[0] = do_arm_semihosting(env);
6924 /* Handle a CPU exception for A and R profile CPUs.
6925 * Do any appropriate logging, handle PSCI calls, and then hand off
6926 * to the AArch64-entry or AArch32-entry function depending on the
6927 * target exception level's register width.
6929 void arm_cpu_do_interrupt(CPUState *cs)
6931 ARMCPU *cpu = ARM_CPU(cs);
6932 CPUARMState *env = &cpu->env;
6933 unsigned int new_el = env->exception.target_el;
6935 assert(!arm_feature(env, ARM_FEATURE_M));
6937 arm_log_exception(cs->exception_index);
6938 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6940 if (qemu_loglevel_mask(CPU_LOG_INT)
6941 && !excp_is_internal(cs->exception_index)) {
6942 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
6943 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6944 env->exception.syndrome);
6947 if (arm_is_psci_call(cpu, cs->exception_index)) {
6948 arm_handle_psci_call(cpu);
6949 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6953 /* Semihosting semantics depend on the register width of the
6954 * code that caused the exception, not the target exception level,
6955 * so must be handled here.
6957 if (check_for_semihosting(cs)) {
6961 assert(!excp_is_internal(cs->exception_index));
6962 if (arm_el_is_aa64(env, new_el)) {
6963 arm_cpu_do_interrupt_aarch64(cs);
6965 arm_cpu_do_interrupt_aarch32(cs);
6968 /* Hooks may change global state so BQL should be held, also the
6969 * BQL needs to be held for any modification of
6970 * cs->interrupt_request.
6972 g_assert(qemu_mutex_iothread_locked());
6974 arm_call_el_change_hook(cpu);
6976 if (!kvm_enabled()) {
6977 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6981 /* Return the exception level which controls this address translation regime */
6982 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6985 case ARMMMUIdx_S2NS:
6986 case ARMMMUIdx_S1E2:
6988 case ARMMMUIdx_S1E3:
6990 case ARMMMUIdx_S1SE0:
6991 return arm_el_is_aa64(env, 3) ? 1 : 3;
6992 case ARMMMUIdx_S1SE1:
6993 case ARMMMUIdx_S1NSE0:
6994 case ARMMMUIdx_S1NSE1:
6995 case ARMMMUIdx_MPriv:
6996 case ARMMMUIdx_MUser:
6999 g_assert_not_reached();
7003 /* Return true if this address translation regime is secure */
7004 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
7007 case ARMMMUIdx_S12NSE0:
7008 case ARMMMUIdx_S12NSE1:
7009 case ARMMMUIdx_S1NSE0:
7010 case ARMMMUIdx_S1NSE1:
7011 case ARMMMUIdx_S1E2:
7012 case ARMMMUIdx_S2NS:
7013 case ARMMMUIdx_MPriv:
7014 case ARMMMUIdx_MUser:
7016 case ARMMMUIdx_S1E3:
7017 case ARMMMUIdx_S1SE0:
7018 case ARMMMUIdx_S1SE1:
7021 g_assert_not_reached();
7025 /* Return the SCTLR value which controls this address translation regime */
7026 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7028 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7031 /* Return true if the specified stage of address translation is disabled */
7032 static inline bool regime_translation_disabled(CPUARMState *env,
7035 if (mmu_idx == ARMMMUIdx_S2NS) {
7036 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7038 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7041 static inline bool regime_translation_big_endian(CPUARMState *env,
7044 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7047 /* Return the TCR controlling this translation regime */
7048 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7050 if (mmu_idx == ARMMMUIdx_S2NS) {
7051 return &env->cp15.vtcr_el2;
7053 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7056 /* Convert a possible stage1+2 MMU index into the appropriate
7059 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7061 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7062 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7067 /* Returns TBI0 value for current regime el */
7068 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7073 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7074 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7076 mmu_idx = stage_1_mmu_idx(mmu_idx);
7078 tcr = regime_tcr(env, mmu_idx);
7079 el = regime_el(env, mmu_idx);
7082 return extract64(tcr->raw_tcr, 20, 1);
7084 return extract64(tcr->raw_tcr, 37, 1);
7088 /* Returns TBI1 value for current regime el */
7089 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7094 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7095 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7097 mmu_idx = stage_1_mmu_idx(mmu_idx);
7099 tcr = regime_tcr(env, mmu_idx);
7100 el = regime_el(env, mmu_idx);
7105 return extract64(tcr->raw_tcr, 38, 1);
7109 /* Return the TTBR associated with this translation regime */
7110 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7113 if (mmu_idx == ARMMMUIdx_S2NS) {
7114 return env->cp15.vttbr_el2;
7117 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7119 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7123 /* Return true if the translation regime is using LPAE format page tables */
7124 static inline bool regime_using_lpae_format(CPUARMState *env,
7127 int el = regime_el(env, mmu_idx);
7128 if (el == 2 || arm_el_is_aa64(env, el)) {
7131 if (arm_feature(env, ARM_FEATURE_LPAE)
7132 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7138 /* Returns true if the stage 1 translation regime is using LPAE format page
7139 * tables. Used when raising alignment exceptions, whose FSR changes depending
7140 * on whether the long or short descriptor format is in use. */
7141 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7143 mmu_idx = stage_1_mmu_idx(mmu_idx);
7145 return regime_using_lpae_format(env, mmu_idx);
7148 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7151 case ARMMMUIdx_S1SE0:
7152 case ARMMMUIdx_S1NSE0:
7153 case ARMMMUIdx_MUser:
7157 case ARMMMUIdx_S12NSE0:
7158 case ARMMMUIdx_S12NSE1:
7159 g_assert_not_reached();
7163 /* Translate section/page access permissions to page
7164 * R/W protection flags
7167 * @mmu_idx: MMU index indicating required translation regime
7168 * @ap: The 3-bit access permissions (AP[2:0])
7169 * @domain_prot: The 2-bit domain access permissions
7171 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7172 int ap, int domain_prot)
7174 bool is_user = regime_is_user(env, mmu_idx);
7176 if (domain_prot == 3) {
7177 return PAGE_READ | PAGE_WRITE;
7182 if (arm_feature(env, ARM_FEATURE_V7)) {
7185 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7187 return is_user ? 0 : PAGE_READ;
7194 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7199 return PAGE_READ | PAGE_WRITE;
7202 return PAGE_READ | PAGE_WRITE;
7203 case 4: /* Reserved. */
7206 return is_user ? 0 : PAGE_READ;
7210 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7215 g_assert_not_reached();
7219 /* Translate section/page access permissions to page
7220 * R/W protection flags.
7222 * @ap: The 2-bit simple AP (AP[2:1])
7223 * @is_user: TRUE if accessing from PL0
7225 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7229 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7231 return PAGE_READ | PAGE_WRITE;
7233 return is_user ? 0 : PAGE_READ;
7237 g_assert_not_reached();
7242 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7244 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7247 /* Translate S2 section/page access permissions to protection flags
7250 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7251 * @xn: XN (execute-never) bit
7253 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7264 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7271 /* Translate section/page access permissions to protection flags
7274 * @mmu_idx: MMU index indicating required translation regime
7275 * @is_aa64: TRUE if AArch64
7276 * @ap: The 2-bit simple AP (AP[2:1])
7277 * @ns: NS (non-secure) bit
7278 * @xn: XN (execute-never) bit
7279 * @pxn: PXN (privileged execute-never) bit
7281 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7282 int ap, int ns, int xn, int pxn)
7284 bool is_user = regime_is_user(env, mmu_idx);
7285 int prot_rw, user_rw;
7289 assert(mmu_idx != ARMMMUIdx_S2NS);
7291 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7295 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7298 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7302 /* TODO have_wxn should be replaced with
7303 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7304 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7305 * compatible processors have EL2, which is required for [U]WXN.
7307 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7310 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7314 switch (regime_el(env, mmu_idx)) {
7317 xn = pxn || (user_rw & PAGE_WRITE);
7324 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7325 switch (regime_el(env, mmu_idx)) {
7329 xn = xn || !(user_rw & PAGE_READ);
7333 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7335 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7336 (uwxn && (user_rw & PAGE_WRITE));
7346 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7349 return prot_rw | PAGE_EXEC;
7352 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7353 uint32_t *table, uint32_t address)
7355 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7356 TCR *tcr = regime_tcr(env, mmu_idx);
7358 if (address & tcr->mask) {
7359 if (tcr->raw_tcr & TTBCR_PD1) {
7360 /* Translation table walk disabled for TTBR1 */
7363 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7365 if (tcr->raw_tcr & TTBCR_PD0) {
7366 /* Translation table walk disabled for TTBR0 */
7369 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7371 *table |= (address >> 18) & 0x3ffc;
7375 /* Translate a S1 pagetable walk through S2 if needed. */
7376 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7377 hwaddr addr, MemTxAttrs txattrs,
7379 ARMMMUFaultInfo *fi)
7381 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7382 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7383 target_ulong s2size;
7388 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7389 &txattrs, &s2prot, &s2size, fsr, fi);
7401 /* All loads done in the course of a page table walk go through here.
7402 * TODO: rather than ignoring errors from physical memory reads (which
7403 * are external aborts in ARM terminology) we should propagate this
7404 * error out so that we can turn it into a Data Abort if this walk
7405 * was being done for a CPU load/store or an address translation instruction
7406 * (but not if it was for a debug access).
7408 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7409 ARMMMUIdx mmu_idx, uint32_t *fsr,
7410 ARMMMUFaultInfo *fi)
7412 ARMCPU *cpu = ARM_CPU(cs);
7413 CPUARMState *env = &cpu->env;
7414 MemTxAttrs attrs = {};
7417 attrs.secure = is_secure;
7418 as = arm_addressspace(cs, attrs);
7419 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7423 if (regime_translation_big_endian(env, mmu_idx)) {
7424 return address_space_ldl_be(as, addr, attrs, NULL);
7426 return address_space_ldl_le(as, addr, attrs, NULL);
7430 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7431 ARMMMUIdx mmu_idx, uint32_t *fsr,
7432 ARMMMUFaultInfo *fi)
7434 ARMCPU *cpu = ARM_CPU(cs);
7435 CPUARMState *env = &cpu->env;
7436 MemTxAttrs attrs = {};
7439 attrs.secure = is_secure;
7440 as = arm_addressspace(cs, attrs);
7441 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7445 if (regime_translation_big_endian(env, mmu_idx)) {
7446 return address_space_ldq_be(as, addr, attrs, NULL);
7448 return address_space_ldq_le(as, addr, attrs, NULL);
7452 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7453 int access_type, ARMMMUIdx mmu_idx,
7454 hwaddr *phys_ptr, int *prot,
7455 target_ulong *page_size, uint32_t *fsr,
7456 ARMMMUFaultInfo *fi)
7458 CPUState *cs = CPU(arm_env_get_cpu(env));
7469 /* Pagetable walk. */
7470 /* Lookup l1 descriptor. */
7471 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7472 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7476 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7479 domain = (desc >> 5) & 0x0f;
7480 if (regime_el(env, mmu_idx) == 1) {
7481 dacr = env->cp15.dacr_ns;
7483 dacr = env->cp15.dacr_s;
7485 domain_prot = (dacr >> (domain * 2)) & 3;
7487 /* Section translation fault. */
7491 if (domain_prot == 0 || domain_prot == 2) {
7493 code = 9; /* Section domain fault. */
7495 code = 11; /* Page domain fault. */
7500 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7501 ap = (desc >> 10) & 3;
7503 *page_size = 1024 * 1024;
7505 /* Lookup l2 entry. */
7507 /* Coarse pagetable. */
7508 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7510 /* Fine pagetable. */
7511 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7513 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7516 case 0: /* Page translation fault. */
7519 case 1: /* 64k page. */
7520 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7521 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7522 *page_size = 0x10000;
7524 case 2: /* 4k page. */
7525 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7526 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7527 *page_size = 0x1000;
7529 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7531 /* ARMv6/XScale extended small page format */
7532 if (arm_feature(env, ARM_FEATURE_XSCALE)
7533 || arm_feature(env, ARM_FEATURE_V6)) {
7534 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7535 *page_size = 0x1000;
7537 /* UNPREDICTABLE in ARMv5; we choose to take a
7538 * page translation fault.
7544 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7547 ap = (desc >> 4) & 3;
7550 /* Never happens, but compiler isn't smart enough to tell. */
7555 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7556 *prot |= *prot ? PAGE_EXEC : 0;
7557 if (!(*prot & (1 << access_type))) {
7558 /* Access permission fault. */
7561 *phys_ptr = phys_addr;
7564 *fsr = code | (domain << 4);
7568 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7569 int access_type, ARMMMUIdx mmu_idx,
7570 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7571 target_ulong *page_size, uint32_t *fsr,
7572 ARMMMUFaultInfo *fi)
7574 CPUState *cs = CPU(arm_env_get_cpu(env));
7588 /* Pagetable walk. */
7589 /* Lookup l1 descriptor. */
7590 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7591 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7595 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7598 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7599 /* Section translation fault, or attempt to use the encoding
7600 * which is Reserved on implementations without PXN.
7605 if ((type == 1) || !(desc & (1 << 18))) {
7606 /* Page or Section. */
7607 domain = (desc >> 5) & 0x0f;
7609 if (regime_el(env, mmu_idx) == 1) {
7610 dacr = env->cp15.dacr_ns;
7612 dacr = env->cp15.dacr_s;
7614 domain_prot = (dacr >> (domain * 2)) & 3;
7615 if (domain_prot == 0 || domain_prot == 2) {
7617 code = 9; /* Section domain fault. */
7619 code = 11; /* Page domain fault. */
7624 if (desc & (1 << 18)) {
7626 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7627 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7628 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7629 *page_size = 0x1000000;
7632 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7633 *page_size = 0x100000;
7635 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7636 xn = desc & (1 << 4);
7639 ns = extract32(desc, 19, 1);
7641 if (arm_feature(env, ARM_FEATURE_PXN)) {
7642 pxn = (desc >> 2) & 1;
7644 ns = extract32(desc, 3, 1);
7645 /* Lookup l2 entry. */
7646 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7647 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7649 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7651 case 0: /* Page translation fault. */
7654 case 1: /* 64k page. */
7655 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7656 xn = desc & (1 << 15);
7657 *page_size = 0x10000;
7659 case 2: case 3: /* 4k page. */
7660 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7662 *page_size = 0x1000;
7665 /* Never happens, but compiler isn't smart enough to tell. */
7670 if (domain_prot == 3) {
7671 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7673 if (pxn && !regime_is_user(env, mmu_idx)) {
7676 if (xn && access_type == 2)
7679 if (arm_feature(env, ARM_FEATURE_V6K) &&
7680 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7681 /* The simplified model uses AP[0] as an access control bit. */
7682 if ((ap & 1) == 0) {
7683 /* Access flag fault. */
7684 code = (code == 15) ? 6 : 3;
7687 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7689 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7694 if (!(*prot & (1 << access_type))) {
7695 /* Access permission fault. */
7700 /* The NS bit will (as required by the architecture) have no effect if
7701 * the CPU doesn't support TZ or this is a non-secure translation
7702 * regime, because the attribute will already be non-secure.
7704 attrs->secure = false;
7706 *phys_ptr = phys_addr;
7709 *fsr = code | (domain << 4);
7713 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7714 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7717 translation_fault = 1,
7719 permission_fault = 3,
7723 * check_s2_mmu_setup
7725 * @is_aa64: True if the translation regime is in AArch64 state
7726 * @startlevel: Suggested starting level
7727 * @inputsize: Bitsize of IPAs
7728 * @stride: Page-table stride (See the ARM ARM)
7730 * Returns true if the suggested S2 translation parameters are OK and
7733 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7734 int inputsize, int stride)
7736 const int grainsize = stride + 3;
7739 /* Negative levels are never allowed. */
7744 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7745 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7750 CPUARMState *env = &cpu->env;
7751 unsigned int pamax = arm_pamax(cpu);
7754 case 13: /* 64KB Pages. */
7755 if (level == 0 || (level == 1 && pamax <= 42)) {
7759 case 11: /* 16KB Pages. */
7760 if (level == 0 || (level == 1 && pamax <= 40)) {
7764 case 9: /* 4KB Pages. */
7765 if (level == 0 && pamax <= 42) {
7770 g_assert_not_reached();
7773 /* Inputsize checks. */
7774 if (inputsize > pamax &&
7775 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7776 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7780 /* AArch32 only supports 4KB pages. Assert on that. */
7781 assert(stride == 9);
7790 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7791 int access_type, ARMMMUIdx mmu_idx,
7792 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7793 target_ulong *page_size_ptr, uint32_t *fsr,
7794 ARMMMUFaultInfo *fi)
7796 ARMCPU *cpu = arm_env_get_cpu(env);
7797 CPUState *cs = CPU(cpu);
7798 /* Read an LPAE long-descriptor translation table. */
7799 MMUFaultType fault_type = translation_fault;
7806 hwaddr descaddr, indexmask, indexmask_grainsize;
7807 uint32_t tableattrs;
7808 target_ulong page_size;
7814 TCR *tcr = regime_tcr(env, mmu_idx);
7815 int ap, ns, xn, pxn;
7816 uint32_t el = regime_el(env, mmu_idx);
7817 bool ttbr1_valid = true;
7818 uint64_t descaddrmask;
7819 bool aarch64 = arm_el_is_aa64(env, el);
7822 * This code does not handle the different format TCR for VTCR_EL2.
7823 * This code also does not support shareability levels.
7824 * Attribute and permission bit handling should also be checked when adding
7825 * support for those page table walks.
7831 if (mmu_idx != ARMMMUIdx_S2NS) {
7832 tbi = extract64(tcr->raw_tcr, 20, 1);
7835 if (extract64(address, 55, 1)) {
7836 tbi = extract64(tcr->raw_tcr, 38, 1);
7838 tbi = extract64(tcr->raw_tcr, 37, 1);
7843 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7847 ttbr1_valid = false;
7852 /* There is no TTBR1 for EL2 */
7854 ttbr1_valid = false;
7858 /* Determine whether this address is in the region controlled by
7859 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7860 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7861 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7864 /* AArch64 translation. */
7865 t0sz = extract32(tcr->raw_tcr, 0, 6);
7866 t0sz = MIN(t0sz, 39);
7867 t0sz = MAX(t0sz, 16);
7868 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7869 /* AArch32 stage 1 translation. */
7870 t0sz = extract32(tcr->raw_tcr, 0, 3);
7872 /* AArch32 stage 2 translation. */
7873 bool sext = extract32(tcr->raw_tcr, 4, 1);
7874 bool sign = extract32(tcr->raw_tcr, 3, 1);
7875 /* Address size is 40-bit for a stage 2 translation,
7876 * and t0sz can be negative (from -8 to 7),
7877 * so we need to adjust it to use the TTBR selecting logic below.
7880 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7882 /* If the sign-extend bit is not the same as t0sz[3], the result
7883 * is unpredictable. Flag this as a guest error. */
7885 qemu_log_mask(LOG_GUEST_ERROR,
7886 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7889 t1sz = extract32(tcr->raw_tcr, 16, 6);
7891 t1sz = MIN(t1sz, 39);
7892 t1sz = MAX(t1sz, 16);
7894 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7895 /* there is a ttbr0 region and we are in it (high bits all zero) */
7897 } else if (ttbr1_valid && t1sz &&
7898 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7899 /* there is a ttbr1 region and we are in it (high bits all one) */
7902 /* ttbr0 region is "everything not in the ttbr1 region" */
7904 } else if (!t1sz && ttbr1_valid) {
7905 /* ttbr1 region is "everything not in the ttbr0 region" */
7908 /* in the gap between the two regions, this is a Translation fault */
7909 fault_type = translation_fault;
7913 /* Note that QEMU ignores shareability and cacheability attributes,
7914 * so we don't need to do anything with the SH, ORGN, IRGN fields
7915 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7916 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7917 * implement any ASID-like capability so we can ignore it (instead
7918 * we will always flush the TLB any time the ASID is changed).
7920 if (ttbr_select == 0) {
7921 ttbr = regime_ttbr(env, mmu_idx, 0);
7923 epd = extract32(tcr->raw_tcr, 7, 1);
7925 inputsize = addrsize - t0sz;
7927 tg = extract32(tcr->raw_tcr, 14, 2);
7928 if (tg == 1) { /* 64KB pages */
7931 if (tg == 2) { /* 16KB pages */
7935 /* We should only be here if TTBR1 is valid */
7936 assert(ttbr1_valid);
7938 ttbr = regime_ttbr(env, mmu_idx, 1);
7939 epd = extract32(tcr->raw_tcr, 23, 1);
7940 inputsize = addrsize - t1sz;
7942 tg = extract32(tcr->raw_tcr, 30, 2);
7943 if (tg == 3) { /* 64KB pages */
7946 if (tg == 1) { /* 16KB pages */
7951 /* Here we should have set up all the parameters for the translation:
7952 * inputsize, ttbr, epd, stride, tbi
7956 /* Translation table walk disabled => Translation fault on TLB miss
7957 * Note: This is always 0 on 64-bit EL2 and EL3.
7962 if (mmu_idx != ARMMMUIdx_S2NS) {
7963 /* The starting level depends on the virtual address size (which can
7964 * be up to 48 bits) and the translation granule size. It indicates
7965 * the number of strides (stride bits at a time) needed to
7966 * consume the bits of the input address. In the pseudocode this is:
7967 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7968 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7969 * our 'stride + 3' and 'stride' is our 'stride'.
7970 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7971 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7972 * = 4 - (inputsize - 4) / stride;
7974 level = 4 - (inputsize - 4) / stride;
7976 /* For stage 2 translations the starting level is specified by the
7977 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7979 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7980 uint32_t startlevel;
7983 if (!aarch64 || stride == 9) {
7984 /* AArch32 or 4KB pages */
7985 startlevel = 2 - sl0;
7987 /* 16KB or 64KB pages */
7988 startlevel = 3 - sl0;
7991 /* Check that the starting level is valid. */
7992 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7995 fault_type = translation_fault;
8001 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8002 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8004 /* Now we can extract the actual base address from the TTBR */
8005 descaddr = extract64(ttbr, 0, 48);
8006 descaddr &= ~indexmask;
8008 /* The address field in the descriptor goes up to bit 39 for ARMv7
8009 * but up to bit 47 for ARMv8, but we use the descaddrmask
8010 * up to bit 39 for AArch32, because we don't need other bits in that case
8011 * to construct next descriptor address (anyway they should be all zeroes).
8013 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8014 ~indexmask_grainsize;
8016 /* Secure accesses start with the page table in secure memory and
8017 * can be downgraded to non-secure at any step. Non-secure accesses
8018 * remain non-secure. We implement this by just ORing in the NSTable/NS
8019 * bits at each step.
8021 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8023 uint64_t descriptor;
8026 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8028 nstable = extract32(tableattrs, 4, 1);
8029 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8034 if (!(descriptor & 1) ||
8035 (!(descriptor & 2) && (level == 3))) {
8036 /* Invalid, or the Reserved level 3 encoding */
8039 descaddr = descriptor & descaddrmask;
8041 if ((descriptor & 2) && (level < 3)) {
8042 /* Table entry. The top five bits are attributes which may
8043 * propagate down through lower levels of the table (and
8044 * which are all arranged so that 0 means "no effect", so
8045 * we can gather them up by ORing in the bits at each level).
8047 tableattrs |= extract64(descriptor, 59, 5);
8049 indexmask = indexmask_grainsize;
8052 /* Block entry at level 1 or 2, or page entry at level 3.
8053 * These are basically the same thing, although the number
8054 * of bits we pull in from the vaddr varies.
8056 page_size = (1ULL << ((stride * (4 - level)) + 3));
8057 descaddr |= (address & (page_size - 1));
8058 /* Extract attributes from the descriptor */
8059 attrs = extract64(descriptor, 2, 10)
8060 | (extract64(descriptor, 52, 12) << 10);
8062 if (mmu_idx == ARMMMUIdx_S2NS) {
8063 /* Stage 2 table descriptors do not include any attribute fields */
8066 /* Merge in attributes from table descriptors */
8067 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8068 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8069 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8070 * means "force PL1 access only", which means forcing AP[1] to 0.
8072 if (extract32(tableattrs, 2, 1)) {
8075 attrs |= nstable << 3; /* NS */
8078 /* Here descaddr is the final physical address, and attributes
8081 fault_type = access_fault;
8082 if ((attrs & (1 << 8)) == 0) {
8087 ap = extract32(attrs, 4, 2);
8088 xn = extract32(attrs, 12, 1);
8090 if (mmu_idx == ARMMMUIdx_S2NS) {
8092 *prot = get_S2prot(env, ap, xn);
8094 ns = extract32(attrs, 3, 1);
8095 pxn = extract32(attrs, 11, 1);
8096 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8099 fault_type = permission_fault;
8100 if (!(*prot & (1 << access_type))) {
8105 /* The NS bit will (as required by the architecture) have no effect if
8106 * the CPU doesn't support TZ or this is a non-secure translation
8107 * regime, because the attribute will already be non-secure.
8109 txattrs->secure = false;
8111 *phys_ptr = descaddr;
8112 *page_size_ptr = page_size;
8116 /* Long-descriptor format IFSR/DFSR value */
8117 *fsr = (1 << 9) | (fault_type << 2) | level;
8118 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8119 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8123 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8125 int32_t address, int *prot)
8127 *prot = PAGE_READ | PAGE_WRITE;
8129 case 0xF0000000 ... 0xFFFFFFFF:
8130 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
8134 case 0x00000000 ... 0x7FFFFFFF:
8141 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8142 int access_type, ARMMMUIdx mmu_idx,
8143 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8145 ARMCPU *cpu = arm_env_get_cpu(env);
8147 bool is_user = regime_is_user(env, mmu_idx);
8149 *phys_ptr = address;
8152 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8153 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8154 } else { /* MPU enabled */
8155 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8157 uint32_t base = env->pmsav7.drbar[n];
8158 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8162 if (!(env->pmsav7.drsr[n] & 0x1)) {
8167 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
8171 rmask = (1ull << rsize) - 1;
8174 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
8175 "to DRSR region size, mask = %" PRIx32,
8180 if (address < base || address > base + rmask) {
8184 /* Region matched */
8186 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8188 uint32_t srdis_mask;
8190 rsize -= 3; /* sub region size (power of 2) */
8191 snd = ((address - base) >> rsize) & 0x7;
8192 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8194 srdis_mask = srdis ? 0x3 : 0x0;
8195 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8196 /* This will check in groups of 2, 4 and then 8, whether
8197 * the subregion bits are consistent. rsize is incremented
8198 * back up to give the region size, considering consistent
8199 * adjacent subregions as one region. Stop testing if rsize
8200 * is already big enough for an entire QEMU page.
8202 int snd_rounded = snd & ~(i - 1);
8203 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8204 snd_rounded + 8, i);
8205 if (srdis_mask ^ srdis_multi) {
8208 srdis_mask = (srdis_mask << i) | srdis_mask;
8212 if (rsize < TARGET_PAGE_BITS) {
8213 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
8214 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8215 rsize, TARGET_PAGE_BITS);
8224 if (n == -1) { /* no hits */
8225 if (cpu->pmsav7_dregion &&
8226 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
8227 /* background fault */
8231 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8232 } else { /* a MPU hit! */
8233 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8235 if (is_user) { /* User mode AP bit decoding */
8240 break; /* no access */
8242 *prot |= PAGE_WRITE;
8246 *prot |= PAGE_READ | PAGE_EXEC;
8249 qemu_log_mask(LOG_GUEST_ERROR,
8250 "Bad value for AP bits in DRACR %"
8253 } else { /* Priv. mode AP bits decoding */
8256 break; /* no access */
8260 *prot |= PAGE_WRITE;
8264 *prot |= PAGE_READ | PAGE_EXEC;
8267 qemu_log_mask(LOG_GUEST_ERROR,
8268 "Bad value for AP bits in DRACR %"
8274 if (env->pmsav7.dracr[n] & (1 << 12)) {
8275 *prot &= ~PAGE_EXEC;
8280 *fsr = 0x00d; /* Permission fault */
8281 return !(*prot & (1 << access_type));
8284 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8285 int access_type, ARMMMUIdx mmu_idx,
8286 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8291 bool is_user = regime_is_user(env, mmu_idx);
8293 *phys_ptr = address;
8294 for (n = 7; n >= 0; n--) {
8295 base = env->cp15.c6_region[n];
8296 if ((base & 1) == 0) {
8299 mask = 1 << ((base >> 1) & 0x1f);
8300 /* Keep this shift separate from the above to avoid an
8301 (undefined) << 32. */
8302 mask = (mask << 1) - 1;
8303 if (((base ^ address) & ~mask) == 0) {
8312 if (access_type == 2) {
8313 mask = env->cp15.pmsav5_insn_ap;
8315 mask = env->cp15.pmsav5_data_ap;
8317 mask = (mask >> (n * 4)) & 0xf;
8327 *prot = PAGE_READ | PAGE_WRITE;
8332 *prot |= PAGE_WRITE;
8336 *prot = PAGE_READ | PAGE_WRITE;
8349 /* Bad permission. */
8357 /* get_phys_addr - get the physical address for this virtual address
8359 * Find the physical address corresponding to the given virtual address,
8360 * by doing a translation table walk on MMU based systems or using the
8361 * MPU state on MPU based systems.
8363 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8364 * prot and page_size may not be filled in, and the populated fsr value provides
8365 * information on why the translation aborted, in the format of a
8366 * DFSR/IFSR fault register, with the following caveats:
8367 * * we honour the short vs long DFSR format differences.
8368 * * the WnR bit is never set (the caller must do this).
8369 * * for PSMAv5 based systems we don't bother to return a full FSR format
8373 * @address: virtual address to get physical address for
8374 * @access_type: 0 for read, 1 for write, 2 for execute
8375 * @mmu_idx: MMU index indicating required translation regime
8376 * @phys_ptr: set to the physical address corresponding to the virtual address
8377 * @attrs: set to the memory transaction attributes to use
8378 * @prot: set to the permissions for the page containing phys_ptr
8379 * @page_size: set to the size of the page containing phys_ptr
8380 * @fsr: set to the DFSR/IFSR value on failure
8382 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8383 int access_type, ARMMMUIdx mmu_idx,
8384 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8385 target_ulong *page_size, uint32_t *fsr,
8386 ARMMMUFaultInfo *fi)
8388 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8389 /* Call ourselves recursively to do the stage 1 and then stage 2
8392 if (arm_feature(env, ARM_FEATURE_EL2)) {
8397 ret = get_phys_addr(env, address, access_type,
8398 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8399 prot, page_size, fsr, fi);
8401 /* If S1 fails or S2 is disabled, return early. */
8402 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8407 /* S1 is done. Now do S2 translation. */
8408 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8409 phys_ptr, attrs, &s2_prot,
8410 page_size, fsr, fi);
8412 /* Combine the S1 and S2 perms. */
8417 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8419 mmu_idx = stage_1_mmu_idx(mmu_idx);
8423 /* The page table entries may downgrade secure to non-secure, but
8424 * cannot upgrade an non-secure translation regime's attributes
8427 attrs->secure = regime_is_secure(env, mmu_idx);
8428 attrs->user = regime_is_user(env, mmu_idx);
8430 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8431 * In v7 and earlier it affects all stage 1 translations.
8433 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8434 && !arm_feature(env, ARM_FEATURE_V8)) {
8435 if (regime_el(env, mmu_idx) == 3) {
8436 address += env->cp15.fcseidr_s;
8438 address += env->cp15.fcseidr_ns;
8442 /* pmsav7 has special handling for when MPU is disabled so call it before
8443 * the common MMU/MPU disabled check below.
8445 if (arm_feature(env, ARM_FEATURE_PMSA) &&
8446 arm_feature(env, ARM_FEATURE_V7)) {
8447 *page_size = TARGET_PAGE_SIZE;
8448 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8449 phys_ptr, prot, fsr);
8452 if (regime_translation_disabled(env, mmu_idx)) {
8453 /* MMU/MPU disabled. */
8454 *phys_ptr = address;
8455 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8456 *page_size = TARGET_PAGE_SIZE;
8460 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8462 *page_size = TARGET_PAGE_SIZE;
8463 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8464 phys_ptr, prot, fsr);
8467 if (regime_using_lpae_format(env, mmu_idx)) {
8468 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8469 attrs, prot, page_size, fsr, fi);
8470 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8471 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8472 attrs, prot, page_size, fsr, fi);
8474 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8475 prot, page_size, fsr, fi);
8479 /* Walk the page table and (if the mapping exists) add the page
8480 * to the TLB. Return false on success, or true on failure. Populate
8481 * fsr with ARM DFSR/IFSR fault register format value on failure.
8483 bool arm_tlb_fill(CPUState *cs, vaddr address,
8484 int access_type, int mmu_idx, uint32_t *fsr,
8485 ARMMMUFaultInfo *fi)
8487 ARMCPU *cpu = ARM_CPU(cs);
8488 CPUARMState *env = &cpu->env;
8490 target_ulong page_size;
8493 MemTxAttrs attrs = {};
8495 ret = get_phys_addr(env, address, access_type,
8496 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8497 &attrs, &prot, &page_size, fsr, fi);
8499 /* Map a single [sub]page. */
8500 phys_addr &= TARGET_PAGE_MASK;
8501 address &= TARGET_PAGE_MASK;
8502 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8503 prot, mmu_idx, page_size);
8510 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8513 ARMCPU *cpu = ARM_CPU(cs);
8514 CPUARMState *env = &cpu->env;
8516 target_ulong page_size;
8520 ARMMMUFaultInfo fi = {};
8521 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8523 *attrs = (MemTxAttrs) {};
8525 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8526 attrs, &prot, &page_size, &fsr, &fi);
8534 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8537 unsigned el = arm_current_el(env);
8539 /* First handle registers which unprivileged can read */
8542 case 0 ... 7: /* xPSR sub-fields */
8544 if ((reg & 1) && el) {
8545 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8548 mask |= 0xf8000000; /* APSR */
8550 /* EPSR reads as zero */
8551 return xpsr_read(env) & mask;
8553 case 20: /* CONTROL */
8554 return env->v7m.control;
8558 return 0; /* unprivileged reads others as zero */
8563 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8564 env->v7m.other_sp : env->regs[13];
8566 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8567 env->regs[13] : env->v7m.other_sp;
8568 case 16: /* PRIMASK */
8569 return (env->daif & PSTATE_I) != 0;
8570 case 17: /* BASEPRI */
8571 case 18: /* BASEPRI_MAX */
8572 return env->v7m.basepri;
8573 case 19: /* FAULTMASK */
8574 return (env->daif & PSTATE_F) != 0;
8576 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8577 " register %d\n", reg);
8582 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8584 /* We're passed bits [11..0] of the instruction; extract
8585 * SYSm and the mask bits.
8586 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8587 * we choose to treat them as if the mask bits were valid.
8588 * NB that the pseudocode 'mask' variable is bits [11..10],
8589 * whereas ours is [11..8].
8591 uint32_t mask = extract32(maskreg, 8, 4);
8592 uint32_t reg = extract32(maskreg, 0, 8);
8594 if (arm_current_el(env) == 0 && reg > 7) {
8595 /* only xPSR sub-fields may be written by unprivileged */
8600 case 0 ... 7: /* xPSR sub-fields */
8601 /* only APSR is actually writable */
8603 uint32_t apsrmask = 0;
8606 apsrmask |= 0xf8000000; /* APSR NZCVQ */
8608 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
8609 apsrmask |= 0x000f0000; /* APSR GE[3:0] */
8611 xpsr_write(env, val, apsrmask);
8615 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8616 env->v7m.other_sp = val;
8618 env->regs[13] = val;
8622 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8623 env->regs[13] = val;
8625 env->v7m.other_sp = val;
8628 case 16: /* PRIMASK */
8630 env->daif |= PSTATE_I;
8632 env->daif &= ~PSTATE_I;
8635 case 17: /* BASEPRI */
8636 env->v7m.basepri = val & 0xff;
8638 case 18: /* BASEPRI_MAX */
8640 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8641 env->v7m.basepri = val;
8643 case 19: /* FAULTMASK */
8645 env->daif |= PSTATE_F;
8647 env->daif &= ~PSTATE_F;
8650 case 20: /* CONTROL */
8651 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8652 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8653 R_V7M_CONTROL_NPRIV_MASK);
8656 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8657 " register %d\n", reg);
8664 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8666 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8667 * Note that we do not implement the (architecturally mandated)
8668 * alignment fault for attempts to use this on Device memory
8669 * (which matches the usual QEMU behaviour of not implementing either
8670 * alignment faults or any memory attribute handling).
8673 ARMCPU *cpu = arm_env_get_cpu(env);
8674 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8675 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8677 #ifndef CONFIG_USER_ONLY
8679 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8680 * the block size so we might have to do more than one TLB lookup.
8681 * We know that in fact for any v8 CPU the page size is at least 4K
8682 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8683 * 1K as an artefact of legacy v5 subpage support being present in the
8684 * same QEMU executable.
8686 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8687 void *hostaddr[maxidx];
8689 unsigned mmu_idx = cpu_mmu_index(env, false);
8690 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8692 for (try = 0; try < 2; try++) {
8694 for (i = 0; i < maxidx; i++) {
8695 hostaddr[i] = tlb_vaddr_to_host(env,
8696 vaddr + TARGET_PAGE_SIZE * i,
8703 /* If it's all in the TLB it's fair game for just writing to;
8704 * we know we don't need to update dirty status, etc.
8706 for (i = 0; i < maxidx - 1; i++) {
8707 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8709 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8712 /* OK, try a store and see if we can populate the tlb. This
8713 * might cause an exception if the memory isn't writable,
8714 * in which case we will longjmp out of here. We must for
8715 * this purpose use the actual register value passed to us
8716 * so that we get the fault address right.
8718 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8719 /* Now we can populate the other TLB entries, if any */
8720 for (i = 0; i < maxidx; i++) {
8721 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8722 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8723 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8728 /* Slow path (probably attempt to do this to an I/O device or
8729 * similar, or clearing of a block of code we have translations
8730 * cached for). Just do a series of byte writes as the architecture
8731 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8732 * memset(), unmap() sequence here because:
8733 * + we'd need to account for the blocksize being larger than a page
8734 * + the direct-RAM access case is almost always going to be dealt
8735 * with in the fastpath code above, so there's no speed benefit
8736 * + we would have to deal with the map returning NULL because the
8737 * bounce buffer was in use
8739 for (i = 0; i < blocklen; i++) {
8740 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8744 memset(g2h(vaddr), 0, blocklen);
8748 /* Note that signed overflow is undefined in C. The following routines are
8749 careful to use unsigned types where modulo arithmetic is required.
8750 Failure to do so _will_ break on newer gcc. */
8752 /* Signed saturating arithmetic. */
8754 /* Perform 16-bit signed saturating addition. */
8755 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8760 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8769 /* Perform 8-bit signed saturating addition. */
8770 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8775 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8784 /* Perform 16-bit signed saturating subtraction. */
8785 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8790 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8799 /* Perform 8-bit signed saturating subtraction. */
8800 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8805 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8814 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8815 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8816 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8817 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8820 #include "op_addsub.h"
8822 /* Unsigned saturating arithmetic. */
8823 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8832 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8840 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8849 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8857 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8858 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8859 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8860 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8863 #include "op_addsub.h"
8865 /* Signed modulo arithmetic. */
8866 #define SARITH16(a, b, n, op) do { \
8868 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8869 RESULT(sum, n, 16); \
8871 ge |= 3 << (n * 2); \
8874 #define SARITH8(a, b, n, op) do { \
8876 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8877 RESULT(sum, n, 8); \
8883 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8884 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8885 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8886 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8890 #include "op_addsub.h"
8892 /* Unsigned modulo arithmetic. */
8893 #define ADD16(a, b, n) do { \
8895 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8896 RESULT(sum, n, 16); \
8897 if ((sum >> 16) == 1) \
8898 ge |= 3 << (n * 2); \
8901 #define ADD8(a, b, n) do { \
8903 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8904 RESULT(sum, n, 8); \
8905 if ((sum >> 8) == 1) \
8909 #define SUB16(a, b, n) do { \
8911 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8912 RESULT(sum, n, 16); \
8913 if ((sum >> 16) == 0) \
8914 ge |= 3 << (n * 2); \
8917 #define SUB8(a, b, n) do { \
8919 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8920 RESULT(sum, n, 8); \
8921 if ((sum >> 8) == 0) \
8928 #include "op_addsub.h"
8930 /* Halved signed arithmetic. */
8931 #define ADD16(a, b, n) \
8932 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8933 #define SUB16(a, b, n) \
8934 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8935 #define ADD8(a, b, n) \
8936 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8937 #define SUB8(a, b, n) \
8938 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8941 #include "op_addsub.h"
8943 /* Halved unsigned arithmetic. */
8944 #define ADD16(a, b, n) \
8945 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8946 #define SUB16(a, b, n) \
8947 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8948 #define ADD8(a, b, n) \
8949 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8950 #define SUB8(a, b, n) \
8951 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8954 #include "op_addsub.h"
8956 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8964 /* Unsigned sum of absolute byte differences. */
8965 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8968 sum = do_usad(a, b);
8969 sum += do_usad(a >> 8, b >> 8);
8970 sum += do_usad(a >> 16, b >>16);
8971 sum += do_usad(a >> 24, b >> 24);
8975 /* For ARMv6 SEL instruction. */
8976 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8989 return (a & mask) | (b & ~mask);
8992 /* VFP support. We follow the convention used for VFP instructions:
8993 Single precision routines have a "s" suffix, double precision a
8996 /* Convert host exception flags to vfp form. */
8997 static inline int vfp_exceptbits_from_host(int host_bits)
8999 int target_bits = 0;
9001 if (host_bits & float_flag_invalid)
9003 if (host_bits & float_flag_divbyzero)
9005 if (host_bits & float_flag_overflow)
9007 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9009 if (host_bits & float_flag_inexact)
9010 target_bits |= 0x10;
9011 if (host_bits & float_flag_input_denormal)
9012 target_bits |= 0x80;
9016 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9021 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9022 | (env->vfp.vec_len << 16)
9023 | (env->vfp.vec_stride << 20);
9024 i = get_float_exception_flags(&env->vfp.fp_status);
9025 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9026 fpscr |= vfp_exceptbits_from_host(i);
9030 uint32_t vfp_get_fpscr(CPUARMState *env)
9032 return HELPER(vfp_get_fpscr)(env);
9035 /* Convert vfp exception flags to target form. */
9036 static inline int vfp_exceptbits_to_host(int target_bits)
9040 if (target_bits & 1)
9041 host_bits |= float_flag_invalid;
9042 if (target_bits & 2)
9043 host_bits |= float_flag_divbyzero;
9044 if (target_bits & 4)
9045 host_bits |= float_flag_overflow;
9046 if (target_bits & 8)
9047 host_bits |= float_flag_underflow;
9048 if (target_bits & 0x10)
9049 host_bits |= float_flag_inexact;
9050 if (target_bits & 0x80)
9051 host_bits |= float_flag_input_denormal;
9055 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9060 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9061 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9062 env->vfp.vec_len = (val >> 16) & 7;
9063 env->vfp.vec_stride = (val >> 20) & 3;
9066 if (changed & (3 << 22)) {
9067 i = (val >> 22) & 3;
9069 case FPROUNDING_TIEEVEN:
9070 i = float_round_nearest_even;
9072 case FPROUNDING_POSINF:
9075 case FPROUNDING_NEGINF:
9076 i = float_round_down;
9078 case FPROUNDING_ZERO:
9079 i = float_round_to_zero;
9082 set_float_rounding_mode(i, &env->vfp.fp_status);
9084 if (changed & (1 << 24)) {
9085 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9086 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9088 if (changed & (1 << 25))
9089 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9091 i = vfp_exceptbits_to_host(val);
9092 set_float_exception_flags(i, &env->vfp.fp_status);
9093 set_float_exception_flags(0, &env->vfp.standard_fp_status);
9096 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9098 HELPER(vfp_set_fpscr)(env, val);
9101 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9103 #define VFP_BINOP(name) \
9104 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9106 float_status *fpst = fpstp; \
9107 return float32_ ## name(a, b, fpst); \
9109 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9111 float_status *fpst = fpstp; \
9112 return float64_ ## name(a, b, fpst); \
9124 float32 VFP_HELPER(neg, s)(float32 a)
9126 return float32_chs(a);
9129 float64 VFP_HELPER(neg, d)(float64 a)
9131 return float64_chs(a);
9134 float32 VFP_HELPER(abs, s)(float32 a)
9136 return float32_abs(a);
9139 float64 VFP_HELPER(abs, d)(float64 a)
9141 return float64_abs(a);
9144 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9146 return float32_sqrt(a, &env->vfp.fp_status);
9149 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9151 return float64_sqrt(a, &env->vfp.fp_status);
9154 /* XXX: check quiet/signaling case */
9155 #define DO_VFP_cmp(p, type) \
9156 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9159 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9160 case 0: flags = 0x6; break; \
9161 case -1: flags = 0x8; break; \
9162 case 1: flags = 0x2; break; \
9163 default: case 2: flags = 0x3; break; \
9165 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9166 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9168 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9171 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9172 case 0: flags = 0x6; break; \
9173 case -1: flags = 0x8; break; \
9174 case 1: flags = 0x2; break; \
9175 default: case 2: flags = 0x3; break; \
9177 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9178 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9180 DO_VFP_cmp(s, float32)
9181 DO_VFP_cmp(d, float64)
9184 /* Integer to float and float to integer conversions */
9186 #define CONV_ITOF(name, fsz, sign) \
9187 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9189 float_status *fpst = fpstp; \
9190 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9193 #define CONV_FTOI(name, fsz, sign, round) \
9194 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9196 float_status *fpst = fpstp; \
9197 if (float##fsz##_is_any_nan(x)) { \
9198 float_raise(float_flag_invalid, fpst); \
9201 return float##fsz##_to_##sign##int32##round(x, fpst); \
9204 #define FLOAT_CONVS(name, p, fsz, sign) \
9205 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9206 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9207 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9209 FLOAT_CONVS(si, s, 32, )
9210 FLOAT_CONVS(si, d, 64, )
9211 FLOAT_CONVS(ui, s, 32, u)
9212 FLOAT_CONVS(ui, d, 64, u)
9218 /* floating point conversion */
9219 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9221 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9222 /* ARM requires that S<->D conversion of any kind of NaN generates
9223 * a quiet NaN by forcing the most significant frac bit to 1.
9225 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9228 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9230 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9231 /* ARM requires that S<->D conversion of any kind of NaN generates
9232 * a quiet NaN by forcing the most significant frac bit to 1.
9234 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9237 /* VFP3 fixed point conversion. */
9238 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9239 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9242 float_status *fpst = fpstp; \
9244 tmp = itype##_to_##float##fsz(x, fpst); \
9245 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9248 /* Notice that we want only input-denormal exception flags from the
9249 * scalbn operation: the other possible flags (overflow+inexact if
9250 * we overflow to infinity, output-denormal) aren't correct for the
9251 * complete scale-and-convert operation.
9253 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9254 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9258 float_status *fpst = fpstp; \
9259 int old_exc_flags = get_float_exception_flags(fpst); \
9261 if (float##fsz##_is_any_nan(x)) { \
9262 float_raise(float_flag_invalid, fpst); \
9265 tmp = float##fsz##_scalbn(x, shift, fpst); \
9266 old_exc_flags |= get_float_exception_flags(fpst) \
9267 & float_flag_input_denormal; \
9268 set_float_exception_flags(old_exc_flags, fpst); \
9269 return float##fsz##_to_##itype##round(tmp, fpst); \
9272 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9273 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9274 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9275 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9277 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9278 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9279 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9281 VFP_CONV_FIX(sh, d, 64, 64, int16)
9282 VFP_CONV_FIX(sl, d, 64, 64, int32)
9283 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9284 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9285 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9286 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9287 VFP_CONV_FIX(sh, s, 32, 32, int16)
9288 VFP_CONV_FIX(sl, s, 32, 32, int32)
9289 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9290 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9291 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9292 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9294 #undef VFP_CONV_FIX_FLOAT
9295 #undef VFP_CONV_FLOAT_FIX_ROUND
9297 /* Set the current fp rounding mode and return the old one.
9298 * The argument is a softfloat float_round_ value.
9300 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9302 float_status *fp_status = &env->vfp.fp_status;
9304 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9305 set_float_rounding_mode(rmode, fp_status);
9310 /* Set the current fp rounding mode in the standard fp status and return
9311 * the old one. This is for NEON instructions that need to change the
9312 * rounding mode but wish to use the standard FPSCR values for everything
9313 * else. Always set the rounding mode back to the correct value after
9315 * The argument is a softfloat float_round_ value.
9317 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9319 float_status *fp_status = &env->vfp.standard_fp_status;
9321 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9322 set_float_rounding_mode(rmode, fp_status);
9327 /* Half precision conversions. */
9328 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9330 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9331 float32 r = float16_to_float32(make_float16(a), ieee, s);
9333 return float32_maybe_silence_nan(r, s);
9338 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9340 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9341 float16 r = float32_to_float16(a, ieee, s);
9343 r = float16_maybe_silence_nan(r, s);
9345 return float16_val(r);
9348 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9350 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9353 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9355 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9358 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9360 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9363 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9365 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9368 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9370 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9371 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9373 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9378 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9380 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9381 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9383 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9385 return float16_val(r);
9388 #define float32_two make_float32(0x40000000)
9389 #define float32_three make_float32(0x40400000)
9390 #define float32_one_point_five make_float32(0x3fc00000)
9392 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9394 float_status *s = &env->vfp.standard_fp_status;
9395 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9396 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9397 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9398 float_raise(float_flag_input_denormal, s);
9402 return float32_sub(float32_two, float32_mul(a, b, s), s);
9405 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9407 float_status *s = &env->vfp.standard_fp_status;
9409 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9410 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9411 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9412 float_raise(float_flag_input_denormal, s);
9414 return float32_one_point_five;
9416 product = float32_mul(a, b, s);
9417 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9422 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9423 * int->float conversions at run-time. */
9424 #define float64_256 make_float64(0x4070000000000000LL)
9425 #define float64_512 make_float64(0x4080000000000000LL)
9426 #define float32_maxnorm make_float32(0x7f7fffff)
9427 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9429 /* Reciprocal functions
9431 * The algorithm that must be used to calculate the estimate
9432 * is specified by the ARM ARM, see FPRecipEstimate()
9435 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9437 /* These calculations mustn't set any fp exception flags,
9438 * so we use a local copy of the fp_status.
9440 float_status dummy_status = *real_fp_status;
9441 float_status *s = &dummy_status;
9442 /* q = (int)(a * 512.0) */
9443 float64 q = float64_mul(float64_512, a, s);
9444 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9446 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9447 q = int64_to_float64(q_int, s);
9448 q = float64_add(q, float64_half, s);
9449 q = float64_div(q, float64_512, s);
9450 q = float64_div(float64_one, q, s);
9452 /* s = (int)(256.0 * r + 0.5) */
9453 q = float64_mul(q, float64_256, s);
9454 q = float64_add(q, float64_half, s);
9455 q_int = float64_to_int64_round_to_zero(q, s);
9457 /* return (double)s / 256.0 */
9458 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9461 /* Common wrapper to call recip_estimate */
9462 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9464 uint64_t val64 = float64_val(num);
9465 uint64_t frac = extract64(val64, 0, 52);
9466 int64_t exp = extract64(val64, 52, 11);
9468 float64 scaled, estimate;
9470 /* Generate the scaled number for the estimate function */
9472 if (extract64(frac, 51, 1) == 0) {
9474 frac = extract64(frac, 0, 50) << 2;
9476 frac = extract64(frac, 0, 51) << 1;
9480 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9481 scaled = make_float64((0x3feULL << 52)
9482 | extract64(frac, 44, 8) << 44);
9484 estimate = recip_estimate(scaled, fpst);
9486 /* Build new result */
9487 val64 = float64_val(estimate);
9488 sbit = 0x8000000000000000ULL & val64;
9490 frac = extract64(val64, 0, 52);
9493 frac = 1ULL << 51 | extract64(frac, 1, 51);
9494 } else if (exp == -1) {
9495 frac = 1ULL << 50 | extract64(frac, 2, 50);
9499 return make_float64(sbit | (exp << 52) | frac);
9502 static bool round_to_inf(float_status *fpst, bool sign_bit)
9504 switch (fpst->float_rounding_mode) {
9505 case float_round_nearest_even: /* Round to Nearest */
9507 case float_round_up: /* Round to +Inf */
9509 case float_round_down: /* Round to -Inf */
9511 case float_round_to_zero: /* Round to Zero */
9515 g_assert_not_reached();
9518 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9520 float_status *fpst = fpstp;
9521 float32 f32 = float32_squash_input_denormal(input, fpst);
9522 uint32_t f32_val = float32_val(f32);
9523 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9524 int32_t f32_exp = extract32(f32_val, 23, 8);
9525 uint32_t f32_frac = extract32(f32_val, 0, 23);
9531 if (float32_is_any_nan(f32)) {
9533 if (float32_is_signaling_nan(f32, fpst)) {
9534 float_raise(float_flag_invalid, fpst);
9535 nan = float32_maybe_silence_nan(f32, fpst);
9537 if (fpst->default_nan_mode) {
9538 nan = float32_default_nan(fpst);
9541 } else if (float32_is_infinity(f32)) {
9542 return float32_set_sign(float32_zero, float32_is_neg(f32));
9543 } else if (float32_is_zero(f32)) {
9544 float_raise(float_flag_divbyzero, fpst);
9545 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9546 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9547 /* Abs(value) < 2.0^-128 */
9548 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9549 if (round_to_inf(fpst, f32_sbit)) {
9550 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9552 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9554 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9555 float_raise(float_flag_underflow, fpst);
9556 return float32_set_sign(float32_zero, float32_is_neg(f32));
9560 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9561 r64 = call_recip_estimate(f64, 253, fpst);
9562 r64_val = float64_val(r64);
9563 r64_exp = extract64(r64_val, 52, 11);
9564 r64_frac = extract64(r64_val, 0, 52);
9566 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9567 return make_float32(f32_sbit |
9568 (r64_exp & 0xff) << 23 |
9569 extract64(r64_frac, 29, 24));
9572 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9574 float_status *fpst = fpstp;
9575 float64 f64 = float64_squash_input_denormal(input, fpst);
9576 uint64_t f64_val = float64_val(f64);
9577 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9578 int64_t f64_exp = extract64(f64_val, 52, 11);
9584 /* Deal with any special cases */
9585 if (float64_is_any_nan(f64)) {
9587 if (float64_is_signaling_nan(f64, fpst)) {
9588 float_raise(float_flag_invalid, fpst);
9589 nan = float64_maybe_silence_nan(f64, fpst);
9591 if (fpst->default_nan_mode) {
9592 nan = float64_default_nan(fpst);
9595 } else if (float64_is_infinity(f64)) {
9596 return float64_set_sign(float64_zero, float64_is_neg(f64));
9597 } else if (float64_is_zero(f64)) {
9598 float_raise(float_flag_divbyzero, fpst);
9599 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9600 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9601 /* Abs(value) < 2.0^-1024 */
9602 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9603 if (round_to_inf(fpst, f64_sbit)) {
9604 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9606 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9608 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9609 float_raise(float_flag_underflow, fpst);
9610 return float64_set_sign(float64_zero, float64_is_neg(f64));
9613 r64 = call_recip_estimate(f64, 2045, fpst);
9614 r64_val = float64_val(r64);
9615 r64_exp = extract64(r64_val, 52, 11);
9616 r64_frac = extract64(r64_val, 0, 52);
9618 /* result = sign : result_exp<10:0> : fraction<51:0> */
9619 return make_float64(f64_sbit |
9620 ((r64_exp & 0x7ff) << 52) |
9624 /* The algorithm that must be used to calculate the estimate
9625 * is specified by the ARM ARM.
9627 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9629 /* These calculations mustn't set any fp exception flags,
9630 * so we use a local copy of the fp_status.
9632 float_status dummy_status = *real_fp_status;
9633 float_status *s = &dummy_status;
9637 if (float64_lt(a, float64_half, s)) {
9638 /* range 0.25 <= a < 0.5 */
9640 /* a in units of 1/512 rounded down */
9641 /* q0 = (int)(a * 512.0); */
9642 q = float64_mul(float64_512, a, s);
9643 q_int = float64_to_int64_round_to_zero(q, s);
9645 /* reciprocal root r */
9646 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9647 q = int64_to_float64(q_int, s);
9648 q = float64_add(q, float64_half, s);
9649 q = float64_div(q, float64_512, s);
9650 q = float64_sqrt(q, s);
9651 q = float64_div(float64_one, q, s);
9653 /* range 0.5 <= a < 1.0 */
9655 /* a in units of 1/256 rounded down */
9656 /* q1 = (int)(a * 256.0); */
9657 q = float64_mul(float64_256, a, s);
9658 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9660 /* reciprocal root r */
9661 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9662 q = int64_to_float64(q_int, s);
9663 q = float64_add(q, float64_half, s);
9664 q = float64_div(q, float64_256, s);
9665 q = float64_sqrt(q, s);
9666 q = float64_div(float64_one, q, s);
9668 /* r in units of 1/256 rounded to nearest */
9669 /* s = (int)(256.0 * r + 0.5); */
9671 q = float64_mul(q, float64_256,s );
9672 q = float64_add(q, float64_half, s);
9673 q_int = float64_to_int64_round_to_zero(q, s);
9675 /* return (double)s / 256.0;*/
9676 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9679 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9681 float_status *s = fpstp;
9682 float32 f32 = float32_squash_input_denormal(input, s);
9683 uint32_t val = float32_val(f32);
9684 uint32_t f32_sbit = 0x80000000 & val;
9685 int32_t f32_exp = extract32(val, 23, 8);
9686 uint32_t f32_frac = extract32(val, 0, 23);
9692 if (float32_is_any_nan(f32)) {
9694 if (float32_is_signaling_nan(f32, s)) {
9695 float_raise(float_flag_invalid, s);
9696 nan = float32_maybe_silence_nan(f32, s);
9698 if (s->default_nan_mode) {
9699 nan = float32_default_nan(s);
9702 } else if (float32_is_zero(f32)) {
9703 float_raise(float_flag_divbyzero, s);
9704 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9705 } else if (float32_is_neg(f32)) {
9706 float_raise(float_flag_invalid, s);
9707 return float32_default_nan(s);
9708 } else if (float32_is_infinity(f32)) {
9709 return float32_zero;
9712 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9713 * preserving the parity of the exponent. */
9715 f64_frac = ((uint64_t) f32_frac) << 29;
9717 while (extract64(f64_frac, 51, 1) == 0) {
9718 f64_frac = f64_frac << 1;
9719 f32_exp = f32_exp-1;
9721 f64_frac = extract64(f64_frac, 0, 51) << 1;
9724 if (extract64(f32_exp, 0, 1) == 0) {
9725 f64 = make_float64(((uint64_t) f32_sbit) << 32
9729 f64 = make_float64(((uint64_t) f32_sbit) << 32
9734 result_exp = (380 - f32_exp) / 2;
9736 f64 = recip_sqrt_estimate(f64, s);
9738 val64 = float64_val(f64);
9740 val = ((result_exp & 0xff) << 23)
9741 | ((val64 >> 29) & 0x7fffff);
9742 return make_float32(val);
9745 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9747 float_status *s = fpstp;
9748 float64 f64 = float64_squash_input_denormal(input, s);
9749 uint64_t val = float64_val(f64);
9750 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9751 int64_t f64_exp = extract64(val, 52, 11);
9752 uint64_t f64_frac = extract64(val, 0, 52);
9754 uint64_t result_frac;
9756 if (float64_is_any_nan(f64)) {
9758 if (float64_is_signaling_nan(f64, s)) {
9759 float_raise(float_flag_invalid, s);
9760 nan = float64_maybe_silence_nan(f64, s);
9762 if (s->default_nan_mode) {
9763 nan = float64_default_nan(s);
9766 } else if (float64_is_zero(f64)) {
9767 float_raise(float_flag_divbyzero, s);
9768 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9769 } else if (float64_is_neg(f64)) {
9770 float_raise(float_flag_invalid, s);
9771 return float64_default_nan(s);
9772 } else if (float64_is_infinity(f64)) {
9773 return float64_zero;
9776 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9777 * preserving the parity of the exponent. */
9780 while (extract64(f64_frac, 51, 1) == 0) {
9781 f64_frac = f64_frac << 1;
9782 f64_exp = f64_exp - 1;
9784 f64_frac = extract64(f64_frac, 0, 51) << 1;
9787 if (extract64(f64_exp, 0, 1) == 0) {
9788 f64 = make_float64(f64_sbit
9792 f64 = make_float64(f64_sbit
9797 result_exp = (3068 - f64_exp) / 2;
9799 f64 = recip_sqrt_estimate(f64, s);
9801 result_frac = extract64(float64_val(f64), 0, 52);
9803 return make_float64(f64_sbit |
9804 ((result_exp & 0x7ff) << 52) |
9808 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9810 float_status *s = fpstp;
9813 if ((a & 0x80000000) == 0) {
9817 f64 = make_float64((0x3feULL << 52)
9818 | ((int64_t)(a & 0x7fffffff) << 21));
9820 f64 = recip_estimate(f64, s);
9822 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9825 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9827 float_status *fpst = fpstp;
9830 if ((a & 0xc0000000) == 0) {
9834 if (a & 0x80000000) {
9835 f64 = make_float64((0x3feULL << 52)
9836 | ((uint64_t)(a & 0x7fffffff) << 21));
9837 } else { /* bits 31-30 == '01' */
9838 f64 = make_float64((0x3fdULL << 52)
9839 | ((uint64_t)(a & 0x3fffffff) << 22));
9842 f64 = recip_sqrt_estimate(f64, fpst);
9844 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9847 /* VFPv4 fused multiply-accumulate */
9848 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9850 float_status *fpst = fpstp;
9851 return float32_muladd(a, b, c, 0, fpst);
9854 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9856 float_status *fpst = fpstp;
9857 return float64_muladd(a, b, c, 0, fpst);
9860 /* ARMv8 round to integral */
9861 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9863 return float32_round_to_int(x, fp_status);
9866 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9868 return float64_round_to_int(x, fp_status);
9871 float32 HELPER(rints)(float32 x, void *fp_status)
9873 int old_flags = get_float_exception_flags(fp_status), new_flags;
9876 ret = float32_round_to_int(x, fp_status);
9878 /* Suppress any inexact exceptions the conversion produced */
9879 if (!(old_flags & float_flag_inexact)) {
9880 new_flags = get_float_exception_flags(fp_status);
9881 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9887 float64 HELPER(rintd)(float64 x, void *fp_status)
9889 int old_flags = get_float_exception_flags(fp_status), new_flags;
9892 ret = float64_round_to_int(x, fp_status);
9894 new_flags = get_float_exception_flags(fp_status);
9896 /* Suppress any inexact exceptions the conversion produced */
9897 if (!(old_flags & float_flag_inexact)) {
9898 new_flags = get_float_exception_flags(fp_status);
9899 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9905 /* Convert ARM rounding mode to softfloat */
9906 int arm_rmode_to_sf(int rmode)
9909 case FPROUNDING_TIEAWAY:
9910 rmode = float_round_ties_away;
9912 case FPROUNDING_ODD:
9913 /* FIXME: add support for TIEAWAY and ODD */
9914 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9916 case FPROUNDING_TIEEVEN:
9918 rmode = float_round_nearest_even;
9920 case FPROUNDING_POSINF:
9921 rmode = float_round_up;
9923 case FPROUNDING_NEGINF:
9924 rmode = float_round_down;
9926 case FPROUNDING_ZERO:
9927 rmode = float_round_to_zero;
9934 * The upper bytes of val (above the number specified by 'bytes') must have
9935 * been zeroed out by the caller.
9937 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9943 /* zlib crc32 converts the accumulator and output to one's complement. */
9944 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9947 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9953 /* Linux crc32c converts the output to one's complement. */
9954 return crc32c(acc, buf, bytes) ^ 0xffffffff;