]> Git Repo - qemu.git/blob - block.c
f23eccccd6d229a832f8d0c9abd4d32ecf33db7e
[qemu.git] / block.c
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52     BDRV_REQ_COPY_ON_READ = 0x1,
53     BDRV_REQ_ZERO_WRITE   = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59         BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64                                          int64_t sector_num, int nb_sectors,
65                                          QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71     BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76                                                int64_t sector_num,
77                                                QEMUIOVector *qiov,
78                                                int nb_sectors,
79                                                BlockDriverCompletionFunc *cb,
80                                                void *opaque,
81                                                bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85         bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87         double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89         bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92     QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95     QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108             filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113     if (is_windows_drive_prefix(filename) &&
114         filename[2] == '\0')
115         return 1;
116     if (strstart(filename, "\\\\.\\", NULL) ||
117         strstart(filename, "//./", NULL))
118         return 1;
119     return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126     bs->io_limits_enabled = false;
127
128     while (qemu_co_queue_next(&bs->throttled_reqs));
129
130     if (bs->block_timer) {
131         qemu_del_timer(bs->block_timer);
132         qemu_free_timer(bs->block_timer);
133         bs->block_timer = NULL;
134     }
135
136     bs->slice_start = 0;
137     bs->slice_end   = 0;
138     bs->slice_time  = 0;
139     memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144     BlockDriverState *bs = opaque;
145
146     qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151     qemu_co_queue_init(&bs->throttled_reqs);
152     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153     bs->slice_time  = 5 * BLOCK_IO_SLICE_TIME;
154     bs->slice_start = qemu_get_clock_ns(vm_clock);
155     bs->slice_end   = bs->slice_start + bs->slice_time;
156     memset(&bs->io_base, 0, sizeof(bs->io_base));
157     bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162     BlockIOLimit *io_limits = &bs->io_limits;
163     return io_limits->bps[BLOCK_IO_LIMIT_READ]
164          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166          || io_limits->iops[BLOCK_IO_LIMIT_READ]
167          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172                                      bool is_write, int nb_sectors)
173 {
174     int64_t wait_time = -1;
175
176     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177         qemu_co_queue_wait(&bs->throttled_reqs);
178     }
179
180     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181      * throttled requests will not be dequeued until the current request is
182      * allowed to be serviced. So if the current request still exceeds the
183      * limits, it will be inserted to the head. All requests followed it will
184      * be still in throttled_reqs queue.
185      */
186
187     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188         qemu_mod_timer(bs->block_timer,
189                        wait_time + qemu_get_clock_ns(vm_clock));
190         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191     }
192
193     qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200     if (is_windows_drive(path) ||
201         is_windows_drive_prefix(path)) {
202         return 0;
203     }
204 #endif
205
206     return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211     const char *p;
212 #ifdef _WIN32
213     /* specific case for names like: "\\.\d:" */
214     if (*path == '/' || *path == '\\')
215         return 1;
216 #endif
217     p = strchr(path, ':');
218     if (p)
219         p++;
220     else
221         p = path;
222 #ifdef _WIN32
223     return (*p == '/' || *p == '\\');
224 #else
225     return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230    path to it by considering it is relative to base_path. URL are
231    supported. */
232 void path_combine(char *dest, int dest_size,
233                   const char *base_path,
234                   const char *filename)
235 {
236     const char *p, *p1;
237     int len;
238
239     if (dest_size <= 0)
240         return;
241     if (path_is_absolute(filename)) {
242         pstrcpy(dest, dest_size, filename);
243     } else {
244         p = strchr(base_path, ':');
245         if (p)
246             p++;
247         else
248             p = base_path;
249         p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251         {
252             const char *p2;
253             p2 = strrchr(base_path, '\\');
254             if (!p1 || p2 > p1)
255                 p1 = p2;
256         }
257 #endif
258         if (p1)
259             p1++;
260         else
261             p1 = base_path;
262         if (p1 > p)
263             p = p1;
264         len = p - base_path;
265         if (len > dest_size - 1)
266             len = dest_size - 1;
267         memcpy(dest, base_path, len);
268         dest[len] = '\0';
269         pstrcat(dest, dest_size, filename);
270     }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275     /* Block drivers without coroutine functions need emulation */
276     if (!bdrv->bdrv_co_readv) {
277         bdrv->bdrv_co_readv = bdrv_co_readv_em;
278         bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281          * the block driver lacks aio we need to emulate that too.
282          */
283         if (!bdrv->bdrv_aio_readv) {
284             /* add AIO emulation layer */
285             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287         }
288     }
289
290     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296     BlockDriverState *bs;
297
298     bs = g_malloc0(sizeof(BlockDriverState));
299     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300     if (device_name[0] != '\0') {
301         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302     }
303     bdrv_iostatus_disable(bs);
304     return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309     BlockDriver *drv1;
310     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311         if (!strcmp(drv1->format_name, format_name)) {
312             return drv1;
313         }
314     }
315     return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320     static const char *whitelist[] = {
321         CONFIG_BDRV_WHITELIST
322     };
323     const char **p;
324
325     if (!whitelist[0])
326         return 1;               /* no whitelist, anything goes */
327
328     for (p = whitelist; *p; p++) {
329         if (!strcmp(drv->format_name, *p)) {
330             return 1;
331         }
332     }
333     return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338     BlockDriver *drv = bdrv_find_format(format_name);
339     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343     QEMUOptionParameter *options)
344 {
345     if (!drv->bdrv_create)
346         return -ENOTSUP;
347
348     return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353     BlockDriver *drv;
354
355     drv = bdrv_find_protocol(filename);
356     if (drv == NULL) {
357         return -ENOENT;
358     }
359
360     return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366     char temp_dir[MAX_PATH];
367
368     GetTempPath(MAX_PATH, temp_dir);
369     GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374     int fd;
375     const char *tmpdir;
376     /* XXX: race condition possible */
377     tmpdir = getenv("TMPDIR");
378     if (!tmpdir)
379         tmpdir = "/tmp";
380     snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381     fd = mkstemp(filename);
382     close(fd);
383 }
384 #endif
385
386 /*
387  * Detect host devices. By convention, /dev/cdrom[N] is always
388  * recognized as a host CDROM.
389  */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392     int score_max = 0, score;
393     BlockDriver *drv = NULL, *d;
394
395     QLIST_FOREACH(d, &bdrv_drivers, list) {
396         if (d->bdrv_probe_device) {
397             score = d->bdrv_probe_device(filename);
398             if (score > score_max) {
399                 score_max = score;
400                 drv = d;
401             }
402         }
403     }
404
405     return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410     BlockDriver *drv1;
411     char protocol[128];
412     int len;
413     const char *p;
414
415     /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417     /*
418      * XXX(hch): we really should not let host device detection
419      * override an explicit protocol specification, but moving this
420      * later breaks access to device names with colons in them.
421      * Thanks to the brain-dead persistent naming schemes on udev-
422      * based Linux systems those actually are quite common.
423      */
424     drv1 = find_hdev_driver(filename);
425     if (drv1) {
426         return drv1;
427     }
428
429     if (!path_has_protocol(filename)) {
430         return bdrv_find_format("file");
431     }
432     p = strchr(filename, ':');
433     assert(p != NULL);
434     len = p - filename;
435     if (len > sizeof(protocol) - 1)
436         len = sizeof(protocol) - 1;
437     memcpy(protocol, filename, len);
438     protocol[len] = '\0';
439     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440         if (drv1->protocol_name &&
441             !strcmp(drv1->protocol_name, protocol)) {
442             return drv1;
443         }
444     }
445     return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450     int ret, score, score_max;
451     BlockDriver *drv1, *drv;
452     uint8_t buf[2048];
453     BlockDriverState *bs;
454
455     ret = bdrv_file_open(&bs, filename, 0);
456     if (ret < 0) {
457         *pdrv = NULL;
458         return ret;
459     }
460
461     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462     if (bs->sg || !bdrv_is_inserted(bs)) {
463         bdrv_delete(bs);
464         drv = bdrv_find_format("raw");
465         if (!drv) {
466             ret = -ENOENT;
467         }
468         *pdrv = drv;
469         return ret;
470     }
471
472     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473     bdrv_delete(bs);
474     if (ret < 0) {
475         *pdrv = NULL;
476         return ret;
477     }
478
479     score_max = 0;
480     drv = NULL;
481     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482         if (drv1->bdrv_probe) {
483             score = drv1->bdrv_probe(buf, ret, filename);
484             if (score > score_max) {
485                 score_max = score;
486                 drv = drv1;
487             }
488         }
489     }
490     if (!drv) {
491         ret = -ENOENT;
492     }
493     *pdrv = drv;
494     return ret;
495 }
496
497 /**
498  * Set the current 'total_sectors' value
499  */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502     BlockDriver *drv = bs->drv;
503
504     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505     if (bs->sg)
506         return 0;
507
508     /* query actual device if possible, otherwise just trust the hint */
509     if (drv->bdrv_getlength) {
510         int64_t length = drv->bdrv_getlength(bs);
511         if (length < 0) {
512             return length;
513         }
514         hint = length >> BDRV_SECTOR_BITS;
515     }
516
517     bs->total_sectors = hint;
518     return 0;
519 }
520
521 /**
522  * Set open flags for a given cache mode
523  *
524  * Return 0 on success, -1 if the cache mode was invalid.
525  */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528     *flags &= ~BDRV_O_CACHE_MASK;
529
530     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532     } else if (!strcmp(mode, "directsync")) {
533         *flags |= BDRV_O_NOCACHE;
534     } else if (!strcmp(mode, "writeback")) {
535         *flags |= BDRV_O_CACHE_WB;
536     } else if (!strcmp(mode, "unsafe")) {
537         *flags |= BDRV_O_CACHE_WB;
538         *flags |= BDRV_O_NO_FLUSH;
539     } else if (!strcmp(mode, "writethrough")) {
540         /* this is the default */
541     } else {
542         return -1;
543     }
544
545     return 0;
546 }
547
548 /**
549  * The copy-on-read flag is actually a reference count so multiple users may
550  * use the feature without worrying about clobbering its previous state.
551  * Copy-on-read stays enabled until all users have called to disable it.
552  */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555     bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560     assert(bs->copy_on_read > 0);
561     bs->copy_on_read--;
562 }
563
564 /*
565  * Common part for opening disk images and files
566  */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568     int flags, BlockDriver *drv)
569 {
570     int ret, open_flags;
571
572     assert(drv != NULL);
573
574     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576     bs->file = NULL;
577     bs->total_sectors = 0;
578     bs->encrypted = 0;
579     bs->valid_key = 0;
580     bs->sg = 0;
581     bs->open_flags = flags;
582     bs->growable = 0;
583     bs->buffer_alignment = 512;
584
585     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587         bdrv_enable_copy_on_read(bs);
588     }
589
590     pstrcpy(bs->filename, sizeof(bs->filename), filename);
591     bs->backing_file[0] = '\0';
592
593     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594         return -ENOTSUP;
595     }
596
597     bs->drv = drv;
598     bs->opaque = g_malloc0(drv->instance_size);
599
600     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602     /*
603      * Clear flags that are internal to the block layer before opening the
604      * image.
605      */
606     open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608     /*
609      * Snapshots should be writable.
610      */
611     if (bs->is_temporary) {
612         open_flags |= BDRV_O_RDWR;
613     }
614
615     bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617     /* Open the image, either directly or using a protocol */
618     if (drv->bdrv_file_open) {
619         ret = drv->bdrv_file_open(bs, filename, open_flags);
620     } else {
621         ret = bdrv_file_open(&bs->file, filename, open_flags);
622         if (ret >= 0) {
623             ret = drv->bdrv_open(bs, open_flags);
624         }
625     }
626
627     if (ret < 0) {
628         goto free_and_fail;
629     }
630
631     ret = refresh_total_sectors(bs, bs->total_sectors);
632     if (ret < 0) {
633         goto free_and_fail;
634     }
635
636 #ifndef _WIN32
637     if (bs->is_temporary) {
638         unlink(filename);
639     }
640 #endif
641     return 0;
642
643 free_and_fail:
644     if (bs->file) {
645         bdrv_delete(bs->file);
646         bs->file = NULL;
647     }
648     g_free(bs->opaque);
649     bs->opaque = NULL;
650     bs->drv = NULL;
651     return ret;
652 }
653
654 /*
655  * Opens a file using a protocol (file, host_device, nbd, ...)
656  */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659     BlockDriverState *bs;
660     BlockDriver *drv;
661     int ret;
662
663     drv = bdrv_find_protocol(filename);
664     if (!drv) {
665         return -ENOENT;
666     }
667
668     bs = bdrv_new("");
669     ret = bdrv_open_common(bs, filename, flags, drv);
670     if (ret < 0) {
671         bdrv_delete(bs);
672         return ret;
673     }
674     bs->growable = 1;
675     *pbs = bs;
676     return 0;
677 }
678
679 /*
680  * Opens a disk image (raw, qcow2, vmdk, ...)
681  */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683               BlockDriver *drv)
684 {
685     int ret;
686     char tmp_filename[PATH_MAX];
687
688     if (flags & BDRV_O_SNAPSHOT) {
689         BlockDriverState *bs1;
690         int64_t total_size;
691         int is_protocol = 0;
692         BlockDriver *bdrv_qcow2;
693         QEMUOptionParameter *options;
694         char backing_filename[PATH_MAX];
695
696         /* if snapshot, we create a temporary backing file and open it
697            instead of opening 'filename' directly */
698
699         /* if there is a backing file, use it */
700         bs1 = bdrv_new("");
701         ret = bdrv_open(bs1, filename, 0, drv);
702         if (ret < 0) {
703             bdrv_delete(bs1);
704             return ret;
705         }
706         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708         if (bs1->drv && bs1->drv->protocol_name)
709             is_protocol = 1;
710
711         bdrv_delete(bs1);
712
713         get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715         /* Real path is meaningless for protocols */
716         if (is_protocol)
717             snprintf(backing_filename, sizeof(backing_filename),
718                      "%s", filename);
719         else if (!realpath(filename, backing_filename))
720             return -errno;
721
722         bdrv_qcow2 = bdrv_find_format("qcow2");
723         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727         if (drv) {
728             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729                 drv->format_name);
730         }
731
732         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733         free_option_parameters(options);
734         if (ret < 0) {
735             return ret;
736         }
737
738         filename = tmp_filename;
739         drv = bdrv_qcow2;
740         bs->is_temporary = 1;
741     }
742
743     /* Find the right image format driver */
744     if (!drv) {
745         ret = find_image_format(filename, &drv);
746     }
747
748     if (!drv) {
749         goto unlink_and_fail;
750     }
751
752     /* Open the image */
753     ret = bdrv_open_common(bs, filename, flags, drv);
754     if (ret < 0) {
755         goto unlink_and_fail;
756     }
757
758     /* If there is a backing file, use it */
759     if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760         char backing_filename[PATH_MAX];
761         int back_flags;
762         BlockDriver *back_drv = NULL;
763
764         bs->backing_hd = bdrv_new("");
765
766         if (path_has_protocol(bs->backing_file)) {
767             pstrcpy(backing_filename, sizeof(backing_filename),
768                     bs->backing_file);
769         } else {
770             path_combine(backing_filename, sizeof(backing_filename),
771                          filename, bs->backing_file);
772         }
773
774         if (bs->backing_format[0] != '\0') {
775             back_drv = bdrv_find_format(bs->backing_format);
776         }
777
778         /* backing files always opened read-only */
779         back_flags =
780             flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782         ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783         if (ret < 0) {
784             bdrv_close(bs);
785             return ret;
786         }
787         if (bs->is_temporary) {
788             bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789         } else {
790             /* base image inherits from "parent" */
791             bs->backing_hd->keep_read_only = bs->keep_read_only;
792         }
793     }
794
795     if (!bdrv_key_required(bs)) {
796         bdrv_dev_change_media_cb(bs, true);
797     }
798
799     /* throttling disk I/O limits */
800     if (bs->io_limits_enabled) {
801         bdrv_io_limits_enable(bs);
802     }
803
804     return 0;
805
806 unlink_and_fail:
807     if (bs->is_temporary) {
808         unlink(filename);
809     }
810     return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815     if (bs->drv) {
816         if (bs == bs_snapshots) {
817             bs_snapshots = NULL;
818         }
819         if (bs->backing_hd) {
820             bdrv_delete(bs->backing_hd);
821             bs->backing_hd = NULL;
822         }
823         bs->drv->bdrv_close(bs);
824         g_free(bs->opaque);
825 #ifdef _WIN32
826         if (bs->is_temporary) {
827             unlink(bs->filename);
828         }
829 #endif
830         bs->opaque = NULL;
831         bs->drv = NULL;
832         bs->copy_on_read = 0;
833
834         if (bs->file != NULL) {
835             bdrv_close(bs->file);
836         }
837
838         bdrv_dev_change_media_cb(bs, false);
839     }
840
841     /*throttling disk I/O limits*/
842     if (bs->io_limits_enabled) {
843         bdrv_io_limits_disable(bs);
844     }
845 }
846
847 void bdrv_close_all(void)
848 {
849     BlockDriverState *bs;
850
851     QTAILQ_FOREACH(bs, &bdrv_states, list) {
852         bdrv_close(bs);
853     }
854 }
855
856 /*
857  * Wait for pending requests to complete across all BlockDriverStates
858  *
859  * This function does not flush data to disk, use bdrv_flush_all() for that
860  * after calling this function.
861  */
862 void bdrv_drain_all(void)
863 {
864     BlockDriverState *bs;
865
866     qemu_aio_flush();
867
868     /* If requests are still pending there is a bug somewhere */
869     QTAILQ_FOREACH(bs, &bdrv_states, list) {
870         assert(QLIST_EMPTY(&bs->tracked_requests));
871         assert(qemu_co_queue_empty(&bs->throttled_reqs));
872     }
873 }
874
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876    Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879     if (bs->device_name[0] != '\0') {
880         QTAILQ_REMOVE(&bdrv_states, bs, list);
881     }
882     bs->device_name[0] = '\0';
883 }
884
885 void bdrv_delete(BlockDriverState *bs)
886 {
887     assert(!bs->dev);
888
889     /* remove from list, if necessary */
890     bdrv_make_anon(bs);
891
892     bdrv_close(bs);
893     if (bs->file != NULL) {
894         bdrv_delete(bs->file);
895     }
896
897     assert(bs != bs_snapshots);
898     g_free(bs);
899 }
900
901 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
902 /* TODO change to DeviceState *dev when all users are qdevified */
903 {
904     if (bs->dev) {
905         return -EBUSY;
906     }
907     bs->dev = dev;
908     bdrv_iostatus_reset(bs);
909     return 0;
910 }
911
912 /* TODO qdevified devices don't use this, remove when devices are qdevified */
913 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
914 {
915     if (bdrv_attach_dev(bs, dev) < 0) {
916         abort();
917     }
918 }
919
920 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
921 /* TODO change to DeviceState *dev when all users are qdevified */
922 {
923     assert(bs->dev == dev);
924     bs->dev = NULL;
925     bs->dev_ops = NULL;
926     bs->dev_opaque = NULL;
927     bs->buffer_alignment = 512;
928 }
929
930 /* TODO change to return DeviceState * when all users are qdevified */
931 void *bdrv_get_attached_dev(BlockDriverState *bs)
932 {
933     return bs->dev;
934 }
935
936 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
937                       void *opaque)
938 {
939     bs->dev_ops = ops;
940     bs->dev_opaque = opaque;
941     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
942         bs_snapshots = NULL;
943     }
944 }
945
946 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
947                                BlockQMPEventAction action, int is_read)
948 {
949     QObject *data;
950     const char *action_str;
951
952     switch (action) {
953     case BDRV_ACTION_REPORT:
954         action_str = "report";
955         break;
956     case BDRV_ACTION_IGNORE:
957         action_str = "ignore";
958         break;
959     case BDRV_ACTION_STOP:
960         action_str = "stop";
961         break;
962     default:
963         abort();
964     }
965
966     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
967                               bdrv->device_name,
968                               action_str,
969                               is_read ? "read" : "write");
970     monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
971
972     qobject_decref(data);
973 }
974
975 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
976 {
977     QObject *data;
978
979     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
980                               bdrv_get_device_name(bs), ejected);
981     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
982
983     qobject_decref(data);
984 }
985
986 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
987 {
988     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
989         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
990         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
991         if (tray_was_closed) {
992             /* tray open */
993             bdrv_emit_qmp_eject_event(bs, true);
994         }
995         if (load) {
996             /* tray close */
997             bdrv_emit_qmp_eject_event(bs, false);
998         }
999     }
1000 }
1001
1002 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1003 {
1004     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1005 }
1006
1007 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1008 {
1009     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1010         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1011     }
1012 }
1013
1014 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1015 {
1016     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1017         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1018     }
1019     return false;
1020 }
1021
1022 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1023 {
1024     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1025         bs->dev_ops->resize_cb(bs->dev_opaque);
1026     }
1027 }
1028
1029 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1030 {
1031     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1032         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1033     }
1034     return false;
1035 }
1036
1037 /*
1038  * Run consistency checks on an image
1039  *
1040  * Returns 0 if the check could be completed (it doesn't mean that the image is
1041  * free of errors) or -errno when an internal error occurred. The results of the
1042  * check are stored in res.
1043  */
1044 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1045 {
1046     if (bs->drv->bdrv_check == NULL) {
1047         return -ENOTSUP;
1048     }
1049
1050     memset(res, 0, sizeof(*res));
1051     return bs->drv->bdrv_check(bs, res);
1052 }
1053
1054 #define COMMIT_BUF_SECTORS 2048
1055
1056 /* commit COW file into the raw image */
1057 int bdrv_commit(BlockDriverState *bs)
1058 {
1059     BlockDriver *drv = bs->drv;
1060     BlockDriver *backing_drv;
1061     int64_t sector, total_sectors;
1062     int n, ro, open_flags;
1063     int ret = 0, rw_ret = 0;
1064     uint8_t *buf;
1065     char filename[1024];
1066     BlockDriverState *bs_rw, *bs_ro;
1067
1068     if (!drv)
1069         return -ENOMEDIUM;
1070     
1071     if (!bs->backing_hd) {
1072         return -ENOTSUP;
1073     }
1074
1075     if (bs->backing_hd->keep_read_only) {
1076         return -EACCES;
1077     }
1078
1079     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1080         return -EBUSY;
1081     }
1082
1083     backing_drv = bs->backing_hd->drv;
1084     ro = bs->backing_hd->read_only;
1085     strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1086     open_flags =  bs->backing_hd->open_flags;
1087
1088     if (ro) {
1089         /* re-open as RW */
1090         bdrv_delete(bs->backing_hd);
1091         bs->backing_hd = NULL;
1092         bs_rw = bdrv_new("");
1093         rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1094             backing_drv);
1095         if (rw_ret < 0) {
1096             bdrv_delete(bs_rw);
1097             /* try to re-open read-only */
1098             bs_ro = bdrv_new("");
1099             ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1100                 backing_drv);
1101             if (ret < 0) {
1102                 bdrv_delete(bs_ro);
1103                 /* drive not functional anymore */
1104                 bs->drv = NULL;
1105                 return ret;
1106             }
1107             bs->backing_hd = bs_ro;
1108             return rw_ret;
1109         }
1110         bs->backing_hd = bs_rw;
1111     }
1112
1113     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1114     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1115
1116     for (sector = 0; sector < total_sectors; sector += n) {
1117         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1118
1119             if (bdrv_read(bs, sector, buf, n) != 0) {
1120                 ret = -EIO;
1121                 goto ro_cleanup;
1122             }
1123
1124             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1125                 ret = -EIO;
1126                 goto ro_cleanup;
1127             }
1128         }
1129     }
1130
1131     if (drv->bdrv_make_empty) {
1132         ret = drv->bdrv_make_empty(bs);
1133         bdrv_flush(bs);
1134     }
1135
1136     /*
1137      * Make sure all data we wrote to the backing device is actually
1138      * stable on disk.
1139      */
1140     if (bs->backing_hd)
1141         bdrv_flush(bs->backing_hd);
1142
1143 ro_cleanup:
1144     g_free(buf);
1145
1146     if (ro) {
1147         /* re-open as RO */
1148         bdrv_delete(bs->backing_hd);
1149         bs->backing_hd = NULL;
1150         bs_ro = bdrv_new("");
1151         ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1152             backing_drv);
1153         if (ret < 0) {
1154             bdrv_delete(bs_ro);
1155             /* drive not functional anymore */
1156             bs->drv = NULL;
1157             return ret;
1158         }
1159         bs->backing_hd = bs_ro;
1160         bs->backing_hd->keep_read_only = 0;
1161     }
1162
1163     return ret;
1164 }
1165
1166 void bdrv_commit_all(void)
1167 {
1168     BlockDriverState *bs;
1169
1170     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1171         bdrv_commit(bs);
1172     }
1173 }
1174
1175 struct BdrvTrackedRequest {
1176     BlockDriverState *bs;
1177     int64_t sector_num;
1178     int nb_sectors;
1179     bool is_write;
1180     QLIST_ENTRY(BdrvTrackedRequest) list;
1181     Coroutine *co; /* owner, used for deadlock detection */
1182     CoQueue wait_queue; /* coroutines blocked on this request */
1183 };
1184
1185 /**
1186  * Remove an active request from the tracked requests list
1187  *
1188  * This function should be called when a tracked request is completing.
1189  */
1190 static void tracked_request_end(BdrvTrackedRequest *req)
1191 {
1192     QLIST_REMOVE(req, list);
1193     qemu_co_queue_restart_all(&req->wait_queue);
1194 }
1195
1196 /**
1197  * Add an active request to the tracked requests list
1198  */
1199 static void tracked_request_begin(BdrvTrackedRequest *req,
1200                                   BlockDriverState *bs,
1201                                   int64_t sector_num,
1202                                   int nb_sectors, bool is_write)
1203 {
1204     *req = (BdrvTrackedRequest){
1205         .bs = bs,
1206         .sector_num = sector_num,
1207         .nb_sectors = nb_sectors,
1208         .is_write = is_write,
1209         .co = qemu_coroutine_self(),
1210     };
1211
1212     qemu_co_queue_init(&req->wait_queue);
1213
1214     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1215 }
1216
1217 /**
1218  * Round a region to cluster boundaries
1219  */
1220 static void round_to_clusters(BlockDriverState *bs,
1221                               int64_t sector_num, int nb_sectors,
1222                               int64_t *cluster_sector_num,
1223                               int *cluster_nb_sectors)
1224 {
1225     BlockDriverInfo bdi;
1226
1227     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1228         *cluster_sector_num = sector_num;
1229         *cluster_nb_sectors = nb_sectors;
1230     } else {
1231         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1232         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1233         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1234                                             nb_sectors, c);
1235     }
1236 }
1237
1238 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1239                                      int64_t sector_num, int nb_sectors) {
1240     /*        aaaa   bbbb */
1241     if (sector_num >= req->sector_num + req->nb_sectors) {
1242         return false;
1243     }
1244     /* bbbb   aaaa        */
1245     if (req->sector_num >= sector_num + nb_sectors) {
1246         return false;
1247     }
1248     return true;
1249 }
1250
1251 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1252         int64_t sector_num, int nb_sectors)
1253 {
1254     BdrvTrackedRequest *req;
1255     int64_t cluster_sector_num;
1256     int cluster_nb_sectors;
1257     bool retry;
1258
1259     /* If we touch the same cluster it counts as an overlap.  This guarantees
1260      * that allocating writes will be serialized and not race with each other
1261      * for the same cluster.  For example, in copy-on-read it ensures that the
1262      * CoR read and write operations are atomic and guest writes cannot
1263      * interleave between them.
1264      */
1265     round_to_clusters(bs, sector_num, nb_sectors,
1266                       &cluster_sector_num, &cluster_nb_sectors);
1267
1268     do {
1269         retry = false;
1270         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1271             if (tracked_request_overlaps(req, cluster_sector_num,
1272                                          cluster_nb_sectors)) {
1273                 /* Hitting this means there was a reentrant request, for
1274                  * example, a block driver issuing nested requests.  This must
1275                  * never happen since it means deadlock.
1276                  */
1277                 assert(qemu_coroutine_self() != req->co);
1278
1279                 qemu_co_queue_wait(&req->wait_queue);
1280                 retry = true;
1281                 break;
1282             }
1283         }
1284     } while (retry);
1285 }
1286
1287 /*
1288  * Return values:
1289  * 0        - success
1290  * -EINVAL  - backing format specified, but no file
1291  * -ENOSPC  - can't update the backing file because no space is left in the
1292  *            image file header
1293  * -ENOTSUP - format driver doesn't support changing the backing file
1294  */
1295 int bdrv_change_backing_file(BlockDriverState *bs,
1296     const char *backing_file, const char *backing_fmt)
1297 {
1298     BlockDriver *drv = bs->drv;
1299
1300     if (drv->bdrv_change_backing_file != NULL) {
1301         return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1302     } else {
1303         return -ENOTSUP;
1304     }
1305 }
1306
1307 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1308                                    size_t size)
1309 {
1310     int64_t len;
1311
1312     if (!bdrv_is_inserted(bs))
1313         return -ENOMEDIUM;
1314
1315     if (bs->growable)
1316         return 0;
1317
1318     len = bdrv_getlength(bs);
1319
1320     if (offset < 0)
1321         return -EIO;
1322
1323     if ((offset > len) || (len - offset < size))
1324         return -EIO;
1325
1326     return 0;
1327 }
1328
1329 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1330                               int nb_sectors)
1331 {
1332     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1333                                    nb_sectors * BDRV_SECTOR_SIZE);
1334 }
1335
1336 typedef struct RwCo {
1337     BlockDriverState *bs;
1338     int64_t sector_num;
1339     int nb_sectors;
1340     QEMUIOVector *qiov;
1341     bool is_write;
1342     int ret;
1343 } RwCo;
1344
1345 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1346 {
1347     RwCo *rwco = opaque;
1348
1349     if (!rwco->is_write) {
1350         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1351                                      rwco->nb_sectors, rwco->qiov, 0);
1352     } else {
1353         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1354                                       rwco->nb_sectors, rwco->qiov, 0);
1355     }
1356 }
1357
1358 /*
1359  * Process a synchronous request using coroutines
1360  */
1361 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1362                       int nb_sectors, bool is_write)
1363 {
1364     QEMUIOVector qiov;
1365     struct iovec iov = {
1366         .iov_base = (void *)buf,
1367         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1368     };
1369     Coroutine *co;
1370     RwCo rwco = {
1371         .bs = bs,
1372         .sector_num = sector_num,
1373         .nb_sectors = nb_sectors,
1374         .qiov = &qiov,
1375         .is_write = is_write,
1376         .ret = NOT_DONE,
1377     };
1378
1379     qemu_iovec_init_external(&qiov, &iov, 1);
1380
1381     if (qemu_in_coroutine()) {
1382         /* Fast-path if already in coroutine context */
1383         bdrv_rw_co_entry(&rwco);
1384     } else {
1385         co = qemu_coroutine_create(bdrv_rw_co_entry);
1386         qemu_coroutine_enter(co, &rwco);
1387         while (rwco.ret == NOT_DONE) {
1388             qemu_aio_wait();
1389         }
1390     }
1391     return rwco.ret;
1392 }
1393
1394 /* return < 0 if error. See bdrv_write() for the return codes */
1395 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1396               uint8_t *buf, int nb_sectors)
1397 {
1398     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1399 }
1400
1401 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1402                              int nb_sectors, int dirty)
1403 {
1404     int64_t start, end;
1405     unsigned long val, idx, bit;
1406
1407     start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1408     end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1409
1410     for (; start <= end; start++) {
1411         idx = start / (sizeof(unsigned long) * 8);
1412         bit = start % (sizeof(unsigned long) * 8);
1413         val = bs->dirty_bitmap[idx];
1414         if (dirty) {
1415             if (!(val & (1UL << bit))) {
1416                 bs->dirty_count++;
1417                 val |= 1UL << bit;
1418             }
1419         } else {
1420             if (val & (1UL << bit)) {
1421                 bs->dirty_count--;
1422                 val &= ~(1UL << bit);
1423             }
1424         }
1425         bs->dirty_bitmap[idx] = val;
1426     }
1427 }
1428
1429 /* Return < 0 if error. Important errors are:
1430   -EIO         generic I/O error (may happen for all errors)
1431   -ENOMEDIUM   No media inserted.
1432   -EINVAL      Invalid sector number or nb_sectors
1433   -EACCES      Trying to write a read-only device
1434 */
1435 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1436                const uint8_t *buf, int nb_sectors)
1437 {
1438     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1439 }
1440
1441 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1442                void *buf, int count1)
1443 {
1444     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1445     int len, nb_sectors, count;
1446     int64_t sector_num;
1447     int ret;
1448
1449     count = count1;
1450     /* first read to align to sector start */
1451     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1452     if (len > count)
1453         len = count;
1454     sector_num = offset >> BDRV_SECTOR_BITS;
1455     if (len > 0) {
1456         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1457             return ret;
1458         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1459         count -= len;
1460         if (count == 0)
1461             return count1;
1462         sector_num++;
1463         buf += len;
1464     }
1465
1466     /* read the sectors "in place" */
1467     nb_sectors = count >> BDRV_SECTOR_BITS;
1468     if (nb_sectors > 0) {
1469         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1470             return ret;
1471         sector_num += nb_sectors;
1472         len = nb_sectors << BDRV_SECTOR_BITS;
1473         buf += len;
1474         count -= len;
1475     }
1476
1477     /* add data from the last sector */
1478     if (count > 0) {
1479         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1480             return ret;
1481         memcpy(buf, tmp_buf, count);
1482     }
1483     return count1;
1484 }
1485
1486 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1487                 const void *buf, int count1)
1488 {
1489     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1490     int len, nb_sectors, count;
1491     int64_t sector_num;
1492     int ret;
1493
1494     count = count1;
1495     /* first write to align to sector start */
1496     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1497     if (len > count)
1498         len = count;
1499     sector_num = offset >> BDRV_SECTOR_BITS;
1500     if (len > 0) {
1501         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1502             return ret;
1503         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1504         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1505             return ret;
1506         count -= len;
1507         if (count == 0)
1508             return count1;
1509         sector_num++;
1510         buf += len;
1511     }
1512
1513     /* write the sectors "in place" */
1514     nb_sectors = count >> BDRV_SECTOR_BITS;
1515     if (nb_sectors > 0) {
1516         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1517             return ret;
1518         sector_num += nb_sectors;
1519         len = nb_sectors << BDRV_SECTOR_BITS;
1520         buf += len;
1521         count -= len;
1522     }
1523
1524     /* add data from the last sector */
1525     if (count > 0) {
1526         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1527             return ret;
1528         memcpy(tmp_buf, buf, count);
1529         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1530             return ret;
1531     }
1532     return count1;
1533 }
1534
1535 /*
1536  * Writes to the file and ensures that no writes are reordered across this
1537  * request (acts as a barrier)
1538  *
1539  * Returns 0 on success, -errno in error cases.
1540  */
1541 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1542     const void *buf, int count)
1543 {
1544     int ret;
1545
1546     ret = bdrv_pwrite(bs, offset, buf, count);
1547     if (ret < 0) {
1548         return ret;
1549     }
1550
1551     /* No flush needed for cache modes that use O_DSYNC */
1552     if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1553         bdrv_flush(bs);
1554     }
1555
1556     return 0;
1557 }
1558
1559 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1560         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1561 {
1562     /* Perform I/O through a temporary buffer so that users who scribble over
1563      * their read buffer while the operation is in progress do not end up
1564      * modifying the image file.  This is critical for zero-copy guest I/O
1565      * where anything might happen inside guest memory.
1566      */
1567     void *bounce_buffer;
1568
1569     BlockDriver *drv = bs->drv;
1570     struct iovec iov;
1571     QEMUIOVector bounce_qiov;
1572     int64_t cluster_sector_num;
1573     int cluster_nb_sectors;
1574     size_t skip_bytes;
1575     int ret;
1576
1577     /* Cover entire cluster so no additional backing file I/O is required when
1578      * allocating cluster in the image file.
1579      */
1580     round_to_clusters(bs, sector_num, nb_sectors,
1581                       &cluster_sector_num, &cluster_nb_sectors);
1582
1583     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1584                                    cluster_sector_num, cluster_nb_sectors);
1585
1586     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1587     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1588     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1589
1590     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1591                              &bounce_qiov);
1592     if (ret < 0) {
1593         goto err;
1594     }
1595
1596     if (drv->bdrv_co_write_zeroes &&
1597         buffer_is_zero(bounce_buffer, iov.iov_len)) {
1598         ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1599                                         cluster_nb_sectors);
1600     } else {
1601         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1602                                   &bounce_qiov);
1603     }
1604
1605     if (ret < 0) {
1606         /* It might be okay to ignore write errors for guest requests.  If this
1607          * is a deliberate copy-on-read then we don't want to ignore the error.
1608          * Simply report it in all cases.
1609          */
1610         goto err;
1611     }
1612
1613     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1614     qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1615                            nb_sectors * BDRV_SECTOR_SIZE);
1616
1617 err:
1618     qemu_vfree(bounce_buffer);
1619     return ret;
1620 }
1621
1622 /*
1623  * Handle a read request in coroutine context
1624  */
1625 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1626     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1627     BdrvRequestFlags flags)
1628 {
1629     BlockDriver *drv = bs->drv;
1630     BdrvTrackedRequest req;
1631     int ret;
1632
1633     if (!drv) {
1634         return -ENOMEDIUM;
1635     }
1636     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1637         return -EIO;
1638     }
1639
1640     /* throttling disk read I/O */
1641     if (bs->io_limits_enabled) {
1642         bdrv_io_limits_intercept(bs, false, nb_sectors);
1643     }
1644
1645     if (bs->copy_on_read) {
1646         flags |= BDRV_REQ_COPY_ON_READ;
1647     }
1648     if (flags & BDRV_REQ_COPY_ON_READ) {
1649         bs->copy_on_read_in_flight++;
1650     }
1651
1652     if (bs->copy_on_read_in_flight) {
1653         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1654     }
1655
1656     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1657
1658     if (flags & BDRV_REQ_COPY_ON_READ) {
1659         int pnum;
1660
1661         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1662         if (ret < 0) {
1663             goto out;
1664         }
1665
1666         if (!ret || pnum != nb_sectors) {
1667             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1668             goto out;
1669         }
1670     }
1671
1672     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1673
1674 out:
1675     tracked_request_end(&req);
1676
1677     if (flags & BDRV_REQ_COPY_ON_READ) {
1678         bs->copy_on_read_in_flight--;
1679     }
1680
1681     return ret;
1682 }
1683
1684 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1685     int nb_sectors, QEMUIOVector *qiov)
1686 {
1687     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1688
1689     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1690 }
1691
1692 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1693     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1694 {
1695     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1696
1697     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1698                             BDRV_REQ_COPY_ON_READ);
1699 }
1700
1701 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1702     int64_t sector_num, int nb_sectors)
1703 {
1704     BlockDriver *drv = bs->drv;
1705     QEMUIOVector qiov;
1706     struct iovec iov;
1707     int ret;
1708
1709     /* First try the efficient write zeroes operation */
1710     if (drv->bdrv_co_write_zeroes) {
1711         return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1712     }
1713
1714     /* Fall back to bounce buffer if write zeroes is unsupported */
1715     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
1716     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1717     memset(iov.iov_base, 0, iov.iov_len);
1718     qemu_iovec_init_external(&qiov, &iov, 1);
1719
1720     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1721
1722     qemu_vfree(iov.iov_base);
1723     return ret;
1724 }
1725
1726 /*
1727  * Handle a write request in coroutine context
1728  */
1729 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1730     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1731     BdrvRequestFlags flags)
1732 {
1733     BlockDriver *drv = bs->drv;
1734     BdrvTrackedRequest req;
1735     int ret;
1736
1737     if (!bs->drv) {
1738         return -ENOMEDIUM;
1739     }
1740     if (bs->read_only) {
1741         return -EACCES;
1742     }
1743     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1744         return -EIO;
1745     }
1746
1747     /* throttling disk write I/O */
1748     if (bs->io_limits_enabled) {
1749         bdrv_io_limits_intercept(bs, true, nb_sectors);
1750     }
1751
1752     if (bs->copy_on_read_in_flight) {
1753         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1754     }
1755
1756     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1757
1758     if (flags & BDRV_REQ_ZERO_WRITE) {
1759         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1760     } else {
1761         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1762     }
1763
1764     if (bs->dirty_bitmap) {
1765         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1766     }
1767
1768     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1769         bs->wr_highest_sector = sector_num + nb_sectors - 1;
1770     }
1771
1772     tracked_request_end(&req);
1773
1774     return ret;
1775 }
1776
1777 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1778     int nb_sectors, QEMUIOVector *qiov)
1779 {
1780     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1781
1782     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1783 }
1784
1785 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1786                                       int64_t sector_num, int nb_sectors)
1787 {
1788     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1789
1790     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1791                              BDRV_REQ_ZERO_WRITE);
1792 }
1793
1794 /**
1795  * Truncate file to 'offset' bytes (needed only for file protocols)
1796  */
1797 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1798 {
1799     BlockDriver *drv = bs->drv;
1800     int ret;
1801     if (!drv)
1802         return -ENOMEDIUM;
1803     if (!drv->bdrv_truncate)
1804         return -ENOTSUP;
1805     if (bs->read_only)
1806         return -EACCES;
1807     if (bdrv_in_use(bs))
1808         return -EBUSY;
1809     ret = drv->bdrv_truncate(bs, offset);
1810     if (ret == 0) {
1811         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1812         bdrv_dev_resize_cb(bs);
1813     }
1814     return ret;
1815 }
1816
1817 /**
1818  * Length of a allocated file in bytes. Sparse files are counted by actual
1819  * allocated space. Return < 0 if error or unknown.
1820  */
1821 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1822 {
1823     BlockDriver *drv = bs->drv;
1824     if (!drv) {
1825         return -ENOMEDIUM;
1826     }
1827     if (drv->bdrv_get_allocated_file_size) {
1828         return drv->bdrv_get_allocated_file_size(bs);
1829     }
1830     if (bs->file) {
1831         return bdrv_get_allocated_file_size(bs->file);
1832     }
1833     return -ENOTSUP;
1834 }
1835
1836 /**
1837  * Length of a file in bytes. Return < 0 if error or unknown.
1838  */
1839 int64_t bdrv_getlength(BlockDriverState *bs)
1840 {
1841     BlockDriver *drv = bs->drv;
1842     if (!drv)
1843         return -ENOMEDIUM;
1844
1845     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1846         if (drv->bdrv_getlength) {
1847             return drv->bdrv_getlength(bs);
1848         }
1849     }
1850     return bs->total_sectors * BDRV_SECTOR_SIZE;
1851 }
1852
1853 /* return 0 as number of sectors if no device present or error */
1854 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1855 {
1856     int64_t length;
1857     length = bdrv_getlength(bs);
1858     if (length < 0)
1859         length = 0;
1860     else
1861         length = length >> BDRV_SECTOR_BITS;
1862     *nb_sectors_ptr = length;
1863 }
1864
1865 struct partition {
1866         uint8_t boot_ind;           /* 0x80 - active */
1867         uint8_t head;               /* starting head */
1868         uint8_t sector;             /* starting sector */
1869         uint8_t cyl;                /* starting cylinder */
1870         uint8_t sys_ind;            /* What partition type */
1871         uint8_t end_head;           /* end head */
1872         uint8_t end_sector;         /* end sector */
1873         uint8_t end_cyl;            /* end cylinder */
1874         uint32_t start_sect;        /* starting sector counting from 0 */
1875         uint32_t nr_sects;          /* nr of sectors in partition */
1876 } QEMU_PACKED;
1877
1878 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1879 static int guess_disk_lchs(BlockDriverState *bs,
1880                            int *pcylinders, int *pheads, int *psectors)
1881 {
1882     uint8_t buf[BDRV_SECTOR_SIZE];
1883     int ret, i, heads, sectors, cylinders;
1884     struct partition *p;
1885     uint32_t nr_sects;
1886     uint64_t nb_sectors;
1887
1888     bdrv_get_geometry(bs, &nb_sectors);
1889
1890     ret = bdrv_read(bs, 0, buf, 1);
1891     if (ret < 0)
1892         return -1;
1893     /* test msdos magic */
1894     if (buf[510] != 0x55 || buf[511] != 0xaa)
1895         return -1;
1896     for(i = 0; i < 4; i++) {
1897         p = ((struct partition *)(buf + 0x1be)) + i;
1898         nr_sects = le32_to_cpu(p->nr_sects);
1899         if (nr_sects && p->end_head) {
1900             /* We make the assumption that the partition terminates on
1901                a cylinder boundary */
1902             heads = p->end_head + 1;
1903             sectors = p->end_sector & 63;
1904             if (sectors == 0)
1905                 continue;
1906             cylinders = nb_sectors / (heads * sectors);
1907             if (cylinders < 1 || cylinders > 16383)
1908                 continue;
1909             *pheads = heads;
1910             *psectors = sectors;
1911             *pcylinders = cylinders;
1912 #if 0
1913             printf("guessed geometry: LCHS=%d %d %d\n",
1914                    cylinders, heads, sectors);
1915 #endif
1916             return 0;
1917         }
1918     }
1919     return -1;
1920 }
1921
1922 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
1923 {
1924     int translation, lba_detected = 0;
1925     int cylinders, heads, secs;
1926     uint64_t nb_sectors;
1927
1928     /* if a geometry hint is available, use it */
1929     bdrv_get_geometry(bs, &nb_sectors);
1930     bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
1931     translation = bdrv_get_translation_hint(bs);
1932     if (cylinders != 0) {
1933         *pcyls = cylinders;
1934         *pheads = heads;
1935         *psecs = secs;
1936     } else {
1937         if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
1938             if (heads > 16) {
1939                 /* if heads > 16, it means that a BIOS LBA
1940                    translation was active, so the default
1941                    hardware geometry is OK */
1942                 lba_detected = 1;
1943                 goto default_geometry;
1944             } else {
1945                 *pcyls = cylinders;
1946                 *pheads = heads;
1947                 *psecs = secs;
1948                 /* disable any translation to be in sync with
1949                    the logical geometry */
1950                 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
1951                     bdrv_set_translation_hint(bs,
1952                                               BIOS_ATA_TRANSLATION_NONE);
1953                 }
1954             }
1955         } else {
1956         default_geometry:
1957             /* if no geometry, use a standard physical disk geometry */
1958             cylinders = nb_sectors / (16 * 63);
1959
1960             if (cylinders > 16383)
1961                 cylinders = 16383;
1962             else if (cylinders < 2)
1963                 cylinders = 2;
1964             *pcyls = cylinders;
1965             *pheads = 16;
1966             *psecs = 63;
1967             if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
1968                 if ((*pcyls * *pheads) <= 131072) {
1969                     bdrv_set_translation_hint(bs,
1970                                               BIOS_ATA_TRANSLATION_LARGE);
1971                 } else {
1972                     bdrv_set_translation_hint(bs,
1973                                               BIOS_ATA_TRANSLATION_LBA);
1974                 }
1975             }
1976         }
1977         bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
1978     }
1979 }
1980
1981 void bdrv_set_geometry_hint(BlockDriverState *bs,
1982                             int cyls, int heads, int secs)
1983 {
1984     bs->cyls = cyls;
1985     bs->heads = heads;
1986     bs->secs = secs;
1987 }
1988
1989 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
1990 {
1991     bs->translation = translation;
1992 }
1993
1994 void bdrv_get_geometry_hint(BlockDriverState *bs,
1995                             int *pcyls, int *pheads, int *psecs)
1996 {
1997     *pcyls = bs->cyls;
1998     *pheads = bs->heads;
1999     *psecs = bs->secs;
2000 }
2001
2002 /* throttling disk io limits */
2003 void bdrv_set_io_limits(BlockDriverState *bs,
2004                         BlockIOLimit *io_limits)
2005 {
2006     bs->io_limits = *io_limits;
2007     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2008 }
2009
2010 /* Recognize floppy formats */
2011 typedef struct FDFormat {
2012     FDriveType drive;
2013     uint8_t last_sect;
2014     uint8_t max_track;
2015     uint8_t max_head;
2016     FDriveRate rate;
2017 } FDFormat;
2018
2019 static const FDFormat fd_formats[] = {
2020     /* First entry is default format */
2021     /* 1.44 MB 3"1/2 floppy disks */
2022     { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2023     { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2024     { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2025     { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2026     { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2027     { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2028     { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2029     { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2030     /* 2.88 MB 3"1/2 floppy disks */
2031     { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2032     { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2033     { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2034     { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2035     { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2036     /* 720 kB 3"1/2 floppy disks */
2037     { FDRIVE_DRV_144,  9, 80, 1, FDRIVE_RATE_250K, },
2038     { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2039     { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2040     { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2041     { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2042     { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2043     /* 1.2 MB 5"1/4 floppy disks */
2044     { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2045     { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2046     { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2047     { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2048     { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2049     /* 720 kB 5"1/4 floppy disks */
2050     { FDRIVE_DRV_120,  9, 80, 1, FDRIVE_RATE_250K, },
2051     { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2052     /* 360 kB 5"1/4 floppy disks */
2053     { FDRIVE_DRV_120,  9, 40, 1, FDRIVE_RATE_300K, },
2054     { FDRIVE_DRV_120,  9, 40, 0, FDRIVE_RATE_300K, },
2055     { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2056     { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2057     /* 320 kB 5"1/4 floppy disks */
2058     { FDRIVE_DRV_120,  8, 40, 1, FDRIVE_RATE_250K, },
2059     { FDRIVE_DRV_120,  8, 40, 0, FDRIVE_RATE_250K, },
2060     /* 360 kB must match 5"1/4 better than 3"1/2... */
2061     { FDRIVE_DRV_144,  9, 80, 0, FDRIVE_RATE_250K, },
2062     /* end */
2063     { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2064 };
2065
2066 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2067                                    int *max_track, int *last_sect,
2068                                    FDriveType drive_in, FDriveType *drive,
2069                                    FDriveRate *rate)
2070 {
2071     const FDFormat *parse;
2072     uint64_t nb_sectors, size;
2073     int i, first_match, match;
2074
2075     bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2076     if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2077         /* User defined disk */
2078         *rate = FDRIVE_RATE_500K;
2079     } else {
2080         bdrv_get_geometry(bs, &nb_sectors);
2081         match = -1;
2082         first_match = -1;
2083         for (i = 0; ; i++) {
2084             parse = &fd_formats[i];
2085             if (parse->drive == FDRIVE_DRV_NONE) {
2086                 break;
2087             }
2088             if (drive_in == parse->drive ||
2089                 drive_in == FDRIVE_DRV_NONE) {
2090                 size = (parse->max_head + 1) * parse->max_track *
2091                     parse->last_sect;
2092                 if (nb_sectors == size) {
2093                     match = i;
2094                     break;
2095                 }
2096                 if (first_match == -1) {
2097                     first_match = i;
2098                 }
2099             }
2100         }
2101         if (match == -1) {
2102             if (first_match == -1) {
2103                 match = 1;
2104             } else {
2105                 match = first_match;
2106             }
2107             parse = &fd_formats[match];
2108         }
2109         *nb_heads = parse->max_head + 1;
2110         *max_track = parse->max_track;
2111         *last_sect = parse->last_sect;
2112         *drive = parse->drive;
2113         *rate = parse->rate;
2114     }
2115 }
2116
2117 int bdrv_get_translation_hint(BlockDriverState *bs)
2118 {
2119     return bs->translation;
2120 }
2121
2122 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2123                        BlockErrorAction on_write_error)
2124 {
2125     bs->on_read_error = on_read_error;
2126     bs->on_write_error = on_write_error;
2127 }
2128
2129 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2130 {
2131     return is_read ? bs->on_read_error : bs->on_write_error;
2132 }
2133
2134 int bdrv_is_read_only(BlockDriverState *bs)
2135 {
2136     return bs->read_only;
2137 }
2138
2139 int bdrv_is_sg(BlockDriverState *bs)
2140 {
2141     return bs->sg;
2142 }
2143
2144 int bdrv_enable_write_cache(BlockDriverState *bs)
2145 {
2146     return bs->enable_write_cache;
2147 }
2148
2149 int bdrv_is_encrypted(BlockDriverState *bs)
2150 {
2151     if (bs->backing_hd && bs->backing_hd->encrypted)
2152         return 1;
2153     return bs->encrypted;
2154 }
2155
2156 int bdrv_key_required(BlockDriverState *bs)
2157 {
2158     BlockDriverState *backing_hd = bs->backing_hd;
2159
2160     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2161         return 1;
2162     return (bs->encrypted && !bs->valid_key);
2163 }
2164
2165 int bdrv_set_key(BlockDriverState *bs, const char *key)
2166 {
2167     int ret;
2168     if (bs->backing_hd && bs->backing_hd->encrypted) {
2169         ret = bdrv_set_key(bs->backing_hd, key);
2170         if (ret < 0)
2171             return ret;
2172         if (!bs->encrypted)
2173             return 0;
2174     }
2175     if (!bs->encrypted) {
2176         return -EINVAL;
2177     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2178         return -ENOMEDIUM;
2179     }
2180     ret = bs->drv->bdrv_set_key(bs, key);
2181     if (ret < 0) {
2182         bs->valid_key = 0;
2183     } else if (!bs->valid_key) {
2184         bs->valid_key = 1;
2185         /* call the change callback now, we skipped it on open */
2186         bdrv_dev_change_media_cb(bs, true);
2187     }
2188     return ret;
2189 }
2190
2191 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2192 {
2193     if (!bs->drv) {
2194         buf[0] = '\0';
2195     } else {
2196         pstrcpy(buf, buf_size, bs->drv->format_name);
2197     }
2198 }
2199
2200 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2201                          void *opaque)
2202 {
2203     BlockDriver *drv;
2204
2205     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2206         it(opaque, drv->format_name);
2207     }
2208 }
2209
2210 BlockDriverState *bdrv_find(const char *name)
2211 {
2212     BlockDriverState *bs;
2213
2214     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2215         if (!strcmp(name, bs->device_name)) {
2216             return bs;
2217         }
2218     }
2219     return NULL;
2220 }
2221
2222 BlockDriverState *bdrv_next(BlockDriverState *bs)
2223 {
2224     if (!bs) {
2225         return QTAILQ_FIRST(&bdrv_states);
2226     }
2227     return QTAILQ_NEXT(bs, list);
2228 }
2229
2230 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2231 {
2232     BlockDriverState *bs;
2233
2234     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2235         it(opaque, bs);
2236     }
2237 }
2238
2239 const char *bdrv_get_device_name(BlockDriverState *bs)
2240 {
2241     return bs->device_name;
2242 }
2243
2244 void bdrv_flush_all(void)
2245 {
2246     BlockDriverState *bs;
2247
2248     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2249         if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2250             bdrv_flush(bs);
2251         }
2252     }
2253 }
2254
2255 int bdrv_has_zero_init(BlockDriverState *bs)
2256 {
2257     assert(bs->drv);
2258
2259     if (bs->drv->bdrv_has_zero_init) {
2260         return bs->drv->bdrv_has_zero_init(bs);
2261     }
2262
2263     return 1;
2264 }
2265
2266 typedef struct BdrvCoIsAllocatedData {
2267     BlockDriverState *bs;
2268     int64_t sector_num;
2269     int nb_sectors;
2270     int *pnum;
2271     int ret;
2272     bool done;
2273 } BdrvCoIsAllocatedData;
2274
2275 /*
2276  * Returns true iff the specified sector is present in the disk image. Drivers
2277  * not implementing the functionality are assumed to not support backing files,
2278  * hence all their sectors are reported as allocated.
2279  *
2280  * If 'sector_num' is beyond the end of the disk image the return value is 0
2281  * and 'pnum' is set to 0.
2282  *
2283  * 'pnum' is set to the number of sectors (including and immediately following
2284  * the specified sector) that are known to be in the same
2285  * allocated/unallocated state.
2286  *
2287  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2288  * beyond the end of the disk image it will be clamped.
2289  */
2290 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2291                                       int nb_sectors, int *pnum)
2292 {
2293     int64_t n;
2294
2295     if (sector_num >= bs->total_sectors) {
2296         *pnum = 0;
2297         return 0;
2298     }
2299
2300     n = bs->total_sectors - sector_num;
2301     if (n < nb_sectors) {
2302         nb_sectors = n;
2303     }
2304
2305     if (!bs->drv->bdrv_co_is_allocated) {
2306         *pnum = nb_sectors;
2307         return 1;
2308     }
2309
2310     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2311 }
2312
2313 /* Coroutine wrapper for bdrv_is_allocated() */
2314 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2315 {
2316     BdrvCoIsAllocatedData *data = opaque;
2317     BlockDriverState *bs = data->bs;
2318
2319     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2320                                      data->pnum);
2321     data->done = true;
2322 }
2323
2324 /*
2325  * Synchronous wrapper around bdrv_co_is_allocated().
2326  *
2327  * See bdrv_co_is_allocated() for details.
2328  */
2329 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2330                       int *pnum)
2331 {
2332     Coroutine *co;
2333     BdrvCoIsAllocatedData data = {
2334         .bs = bs,
2335         .sector_num = sector_num,
2336         .nb_sectors = nb_sectors,
2337         .pnum = pnum,
2338         .done = false,
2339     };
2340
2341     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2342     qemu_coroutine_enter(co, &data);
2343     while (!data.done) {
2344         qemu_aio_wait();
2345     }
2346     return data.ret;
2347 }
2348
2349 BlockInfoList *qmp_query_block(Error **errp)
2350 {
2351     BlockInfoList *head = NULL, *cur_item = NULL;
2352     BlockDriverState *bs;
2353
2354     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2355         BlockInfoList *info = g_malloc0(sizeof(*info));
2356
2357         info->value = g_malloc0(sizeof(*info->value));
2358         info->value->device = g_strdup(bs->device_name);
2359         info->value->type = g_strdup("unknown");
2360         info->value->locked = bdrv_dev_is_medium_locked(bs);
2361         info->value->removable = bdrv_dev_has_removable_media(bs);
2362
2363         if (bdrv_dev_has_removable_media(bs)) {
2364             info->value->has_tray_open = true;
2365             info->value->tray_open = bdrv_dev_is_tray_open(bs);
2366         }
2367
2368         if (bdrv_iostatus_is_enabled(bs)) {
2369             info->value->has_io_status = true;
2370             info->value->io_status = bs->iostatus;
2371         }
2372
2373         if (bs->drv) {
2374             info->value->has_inserted = true;
2375             info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2376             info->value->inserted->file = g_strdup(bs->filename);
2377             info->value->inserted->ro = bs->read_only;
2378             info->value->inserted->drv = g_strdup(bs->drv->format_name);
2379             info->value->inserted->encrypted = bs->encrypted;
2380             if (bs->backing_file[0]) {
2381                 info->value->inserted->has_backing_file = true;
2382                 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2383             }
2384
2385             if (bs->io_limits_enabled) {
2386                 info->value->inserted->bps =
2387                                bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2388                 info->value->inserted->bps_rd =
2389                                bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2390                 info->value->inserted->bps_wr =
2391                                bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2392                 info->value->inserted->iops =
2393                                bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2394                 info->value->inserted->iops_rd =
2395                                bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2396                 info->value->inserted->iops_wr =
2397                                bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2398             }
2399         }
2400
2401         /* XXX: waiting for the qapi to support GSList */
2402         if (!cur_item) {
2403             head = cur_item = info;
2404         } else {
2405             cur_item->next = info;
2406             cur_item = info;
2407         }
2408     }
2409
2410     return head;
2411 }
2412
2413 /* Consider exposing this as a full fledged QMP command */
2414 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2415 {
2416     BlockStats *s;
2417
2418     s = g_malloc0(sizeof(*s));
2419
2420     if (bs->device_name[0]) {
2421         s->has_device = true;
2422         s->device = g_strdup(bs->device_name);
2423     }
2424
2425     s->stats = g_malloc0(sizeof(*s->stats));
2426     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2427     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2428     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2429     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2430     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2431     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2432     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2433     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2434     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2435
2436     if (bs->file) {
2437         s->has_parent = true;
2438         s->parent = qmp_query_blockstat(bs->file, NULL);
2439     }
2440
2441     return s;
2442 }
2443
2444 BlockStatsList *qmp_query_blockstats(Error **errp)
2445 {
2446     BlockStatsList *head = NULL, *cur_item = NULL;
2447     BlockDriverState *bs;
2448
2449     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2450         BlockStatsList *info = g_malloc0(sizeof(*info));
2451         info->value = qmp_query_blockstat(bs, NULL);
2452
2453         /* XXX: waiting for the qapi to support GSList */
2454         if (!cur_item) {
2455             head = cur_item = info;
2456         } else {
2457             cur_item->next = info;
2458             cur_item = info;
2459         }
2460     }
2461
2462     return head;
2463 }
2464
2465 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2466 {
2467     if (bs->backing_hd && bs->backing_hd->encrypted)
2468         return bs->backing_file;
2469     else if (bs->encrypted)
2470         return bs->filename;
2471     else
2472         return NULL;
2473 }
2474
2475 void bdrv_get_backing_filename(BlockDriverState *bs,
2476                                char *filename, int filename_size)
2477 {
2478     pstrcpy(filename, filename_size, bs->backing_file);
2479 }
2480
2481 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2482                           const uint8_t *buf, int nb_sectors)
2483 {
2484     BlockDriver *drv = bs->drv;
2485     if (!drv)
2486         return -ENOMEDIUM;
2487     if (!drv->bdrv_write_compressed)
2488         return -ENOTSUP;
2489     if (bdrv_check_request(bs, sector_num, nb_sectors))
2490         return -EIO;
2491
2492     if (bs->dirty_bitmap) {
2493         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2494     }
2495
2496     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2497 }
2498
2499 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2500 {
2501     BlockDriver *drv = bs->drv;
2502     if (!drv)
2503         return -ENOMEDIUM;
2504     if (!drv->bdrv_get_info)
2505         return -ENOTSUP;
2506     memset(bdi, 0, sizeof(*bdi));
2507     return drv->bdrv_get_info(bs, bdi);
2508 }
2509
2510 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2511                       int64_t pos, int size)
2512 {
2513     BlockDriver *drv = bs->drv;
2514     if (!drv)
2515         return -ENOMEDIUM;
2516     if (drv->bdrv_save_vmstate)
2517         return drv->bdrv_save_vmstate(bs, buf, pos, size);
2518     if (bs->file)
2519         return bdrv_save_vmstate(bs->file, buf, pos, size);
2520     return -ENOTSUP;
2521 }
2522
2523 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2524                       int64_t pos, int size)
2525 {
2526     BlockDriver *drv = bs->drv;
2527     if (!drv)
2528         return -ENOMEDIUM;
2529     if (drv->bdrv_load_vmstate)
2530         return drv->bdrv_load_vmstate(bs, buf, pos, size);
2531     if (bs->file)
2532         return bdrv_load_vmstate(bs->file, buf, pos, size);
2533     return -ENOTSUP;
2534 }
2535
2536 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2537 {
2538     BlockDriver *drv = bs->drv;
2539
2540     if (!drv || !drv->bdrv_debug_event) {
2541         return;
2542     }
2543
2544     return drv->bdrv_debug_event(bs, event);
2545
2546 }
2547
2548 /**************************************************************/
2549 /* handling of snapshots */
2550
2551 int bdrv_can_snapshot(BlockDriverState *bs)
2552 {
2553     BlockDriver *drv = bs->drv;
2554     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2555         return 0;
2556     }
2557
2558     if (!drv->bdrv_snapshot_create) {
2559         if (bs->file != NULL) {
2560             return bdrv_can_snapshot(bs->file);
2561         }
2562         return 0;
2563     }
2564
2565     return 1;
2566 }
2567
2568 int bdrv_is_snapshot(BlockDriverState *bs)
2569 {
2570     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2571 }
2572
2573 BlockDriverState *bdrv_snapshots(void)
2574 {
2575     BlockDriverState *bs;
2576
2577     if (bs_snapshots) {
2578         return bs_snapshots;
2579     }
2580
2581     bs = NULL;
2582     while ((bs = bdrv_next(bs))) {
2583         if (bdrv_can_snapshot(bs)) {
2584             bs_snapshots = bs;
2585             return bs;
2586         }
2587     }
2588     return NULL;
2589 }
2590
2591 int bdrv_snapshot_create(BlockDriverState *bs,
2592                          QEMUSnapshotInfo *sn_info)
2593 {
2594     BlockDriver *drv = bs->drv;
2595     if (!drv)
2596         return -ENOMEDIUM;
2597     if (drv->bdrv_snapshot_create)
2598         return drv->bdrv_snapshot_create(bs, sn_info);
2599     if (bs->file)
2600         return bdrv_snapshot_create(bs->file, sn_info);
2601     return -ENOTSUP;
2602 }
2603
2604 int bdrv_snapshot_goto(BlockDriverState *bs,
2605                        const char *snapshot_id)
2606 {
2607     BlockDriver *drv = bs->drv;
2608     int ret, open_ret;
2609
2610     if (!drv)
2611         return -ENOMEDIUM;
2612     if (drv->bdrv_snapshot_goto)
2613         return drv->bdrv_snapshot_goto(bs, snapshot_id);
2614
2615     if (bs->file) {
2616         drv->bdrv_close(bs);
2617         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2618         open_ret = drv->bdrv_open(bs, bs->open_flags);
2619         if (open_ret < 0) {
2620             bdrv_delete(bs->file);
2621             bs->drv = NULL;
2622             return open_ret;
2623         }
2624         return ret;
2625     }
2626
2627     return -ENOTSUP;
2628 }
2629
2630 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2631 {
2632     BlockDriver *drv = bs->drv;
2633     if (!drv)
2634         return -ENOMEDIUM;
2635     if (drv->bdrv_snapshot_delete)
2636         return drv->bdrv_snapshot_delete(bs, snapshot_id);
2637     if (bs->file)
2638         return bdrv_snapshot_delete(bs->file, snapshot_id);
2639     return -ENOTSUP;
2640 }
2641
2642 int bdrv_snapshot_list(BlockDriverState *bs,
2643                        QEMUSnapshotInfo **psn_info)
2644 {
2645     BlockDriver *drv = bs->drv;
2646     if (!drv)
2647         return -ENOMEDIUM;
2648     if (drv->bdrv_snapshot_list)
2649         return drv->bdrv_snapshot_list(bs, psn_info);
2650     if (bs->file)
2651         return bdrv_snapshot_list(bs->file, psn_info);
2652     return -ENOTSUP;
2653 }
2654
2655 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2656         const char *snapshot_name)
2657 {
2658     BlockDriver *drv = bs->drv;
2659     if (!drv) {
2660         return -ENOMEDIUM;
2661     }
2662     if (!bs->read_only) {
2663         return -EINVAL;
2664     }
2665     if (drv->bdrv_snapshot_load_tmp) {
2666         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2667     }
2668     return -ENOTSUP;
2669 }
2670
2671 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2672         const char *backing_file)
2673 {
2674     if (!bs->drv) {
2675         return NULL;
2676     }
2677
2678     if (bs->backing_hd) {
2679         if (strcmp(bs->backing_file, backing_file) == 0) {
2680             return bs->backing_hd;
2681         } else {
2682             return bdrv_find_backing_image(bs->backing_hd, backing_file);
2683         }
2684     }
2685
2686     return NULL;
2687 }
2688
2689 #define NB_SUFFIXES 4
2690
2691 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2692 {
2693     static const char suffixes[NB_SUFFIXES] = "KMGT";
2694     int64_t base;
2695     int i;
2696
2697     if (size <= 999) {
2698         snprintf(buf, buf_size, "%" PRId64, size);
2699     } else {
2700         base = 1024;
2701         for(i = 0; i < NB_SUFFIXES; i++) {
2702             if (size < (10 * base)) {
2703                 snprintf(buf, buf_size, "%0.1f%c",
2704                          (double)size / base,
2705                          suffixes[i]);
2706                 break;
2707             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2708                 snprintf(buf, buf_size, "%" PRId64 "%c",
2709                          ((size + (base >> 1)) / base),
2710                          suffixes[i]);
2711                 break;
2712             }
2713             base = base * 1024;
2714         }
2715     }
2716     return buf;
2717 }
2718
2719 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2720 {
2721     char buf1[128], date_buf[128], clock_buf[128];
2722 #ifdef _WIN32
2723     struct tm *ptm;
2724 #else
2725     struct tm tm;
2726 #endif
2727     time_t ti;
2728     int64_t secs;
2729
2730     if (!sn) {
2731         snprintf(buf, buf_size,
2732                  "%-10s%-20s%7s%20s%15s",
2733                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2734     } else {
2735         ti = sn->date_sec;
2736 #ifdef _WIN32
2737         ptm = localtime(&ti);
2738         strftime(date_buf, sizeof(date_buf),
2739                  "%Y-%m-%d %H:%M:%S", ptm);
2740 #else
2741         localtime_r(&ti, &tm);
2742         strftime(date_buf, sizeof(date_buf),
2743                  "%Y-%m-%d %H:%M:%S", &tm);
2744 #endif
2745         secs = sn->vm_clock_nsec / 1000000000;
2746         snprintf(clock_buf, sizeof(clock_buf),
2747                  "%02d:%02d:%02d.%03d",
2748                  (int)(secs / 3600),
2749                  (int)((secs / 60) % 60),
2750                  (int)(secs % 60),
2751                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
2752         snprintf(buf, buf_size,
2753                  "%-10s%-20s%7s%20s%15s",
2754                  sn->id_str, sn->name,
2755                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2756                  date_buf,
2757                  clock_buf);
2758     }
2759     return buf;
2760 }
2761
2762 /**************************************************************/
2763 /* async I/Os */
2764
2765 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2766                                  QEMUIOVector *qiov, int nb_sectors,
2767                                  BlockDriverCompletionFunc *cb, void *opaque)
2768 {
2769     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2770
2771     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2772                                  cb, opaque, false);
2773 }
2774
2775 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2776                                   QEMUIOVector *qiov, int nb_sectors,
2777                                   BlockDriverCompletionFunc *cb, void *opaque)
2778 {
2779     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2780
2781     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2782                                  cb, opaque, true);
2783 }
2784
2785
2786 typedef struct MultiwriteCB {
2787     int error;
2788     int num_requests;
2789     int num_callbacks;
2790     struct {
2791         BlockDriverCompletionFunc *cb;
2792         void *opaque;
2793         QEMUIOVector *free_qiov;
2794     } callbacks[];
2795 } MultiwriteCB;
2796
2797 static void multiwrite_user_cb(MultiwriteCB *mcb)
2798 {
2799     int i;
2800
2801     for (i = 0; i < mcb->num_callbacks; i++) {
2802         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2803         if (mcb->callbacks[i].free_qiov) {
2804             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2805         }
2806         g_free(mcb->callbacks[i].free_qiov);
2807     }
2808 }
2809
2810 static void multiwrite_cb(void *opaque, int ret)
2811 {
2812     MultiwriteCB *mcb = opaque;
2813
2814     trace_multiwrite_cb(mcb, ret);
2815
2816     if (ret < 0 && !mcb->error) {
2817         mcb->error = ret;
2818     }
2819
2820     mcb->num_requests--;
2821     if (mcb->num_requests == 0) {
2822         multiwrite_user_cb(mcb);
2823         g_free(mcb);
2824     }
2825 }
2826
2827 static int multiwrite_req_compare(const void *a, const void *b)
2828 {
2829     const BlockRequest *req1 = a, *req2 = b;
2830
2831     /*
2832      * Note that we can't simply subtract req2->sector from req1->sector
2833      * here as that could overflow the return value.
2834      */
2835     if (req1->sector > req2->sector) {
2836         return 1;
2837     } else if (req1->sector < req2->sector) {
2838         return -1;
2839     } else {
2840         return 0;
2841     }
2842 }
2843
2844 /*
2845  * Takes a bunch of requests and tries to merge them. Returns the number of
2846  * requests that remain after merging.
2847  */
2848 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2849     int num_reqs, MultiwriteCB *mcb)
2850 {
2851     int i, outidx;
2852
2853     // Sort requests by start sector
2854     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2855
2856     // Check if adjacent requests touch the same clusters. If so, combine them,
2857     // filling up gaps with zero sectors.
2858     outidx = 0;
2859     for (i = 1; i < num_reqs; i++) {
2860         int merge = 0;
2861         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2862
2863         // Handle exactly sequential writes and overlapping writes.
2864         if (reqs[i].sector <= oldreq_last) {
2865             merge = 1;
2866         }
2867
2868         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2869             merge = 0;
2870         }
2871
2872         if (merge) {
2873             size_t size;
2874             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2875             qemu_iovec_init(qiov,
2876                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2877
2878             // Add the first request to the merged one. If the requests are
2879             // overlapping, drop the last sectors of the first request.
2880             size = (reqs[i].sector - reqs[outidx].sector) << 9;
2881             qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2882
2883             // We should need to add any zeros between the two requests
2884             assert (reqs[i].sector <= oldreq_last);
2885
2886             // Add the second request
2887             qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2888
2889             reqs[outidx].nb_sectors = qiov->size >> 9;
2890             reqs[outidx].qiov = qiov;
2891
2892             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2893         } else {
2894             outidx++;
2895             reqs[outidx].sector     = reqs[i].sector;
2896             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2897             reqs[outidx].qiov       = reqs[i].qiov;
2898         }
2899     }
2900
2901     return outidx + 1;
2902 }
2903
2904 /*
2905  * Submit multiple AIO write requests at once.
2906  *
2907  * On success, the function returns 0 and all requests in the reqs array have
2908  * been submitted. In error case this function returns -1, and any of the
2909  * requests may or may not be submitted yet. In particular, this means that the
2910  * callback will be called for some of the requests, for others it won't. The
2911  * caller must check the error field of the BlockRequest to wait for the right
2912  * callbacks (if error != 0, no callback will be called).
2913  *
2914  * The implementation may modify the contents of the reqs array, e.g. to merge
2915  * requests. However, the fields opaque and error are left unmodified as they
2916  * are used to signal failure for a single request to the caller.
2917  */
2918 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
2919 {
2920     MultiwriteCB *mcb;
2921     int i;
2922
2923     /* don't submit writes if we don't have a medium */
2924     if (bs->drv == NULL) {
2925         for (i = 0; i < num_reqs; i++) {
2926             reqs[i].error = -ENOMEDIUM;
2927         }
2928         return -1;
2929     }
2930
2931     if (num_reqs == 0) {
2932         return 0;
2933     }
2934
2935     // Create MultiwriteCB structure
2936     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2937     mcb->num_requests = 0;
2938     mcb->num_callbacks = num_reqs;
2939
2940     for (i = 0; i < num_reqs; i++) {
2941         mcb->callbacks[i].cb = reqs[i].cb;
2942         mcb->callbacks[i].opaque = reqs[i].opaque;
2943     }
2944
2945     // Check for mergable requests
2946     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2947
2948     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2949
2950     /* Run the aio requests. */
2951     mcb->num_requests = num_reqs;
2952     for (i = 0; i < num_reqs; i++) {
2953         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
2954             reqs[i].nb_sectors, multiwrite_cb, mcb);
2955     }
2956
2957     return 0;
2958 }
2959
2960 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
2961 {
2962     acb->pool->cancel(acb);
2963 }
2964
2965 /* block I/O throttling */
2966 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
2967                  bool is_write, double elapsed_time, uint64_t *wait)
2968 {
2969     uint64_t bps_limit = 0;
2970     double   bytes_limit, bytes_base, bytes_res;
2971     double   slice_time, wait_time;
2972
2973     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2974         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2975     } else if (bs->io_limits.bps[is_write]) {
2976         bps_limit = bs->io_limits.bps[is_write];
2977     } else {
2978         if (wait) {
2979             *wait = 0;
2980         }
2981
2982         return false;
2983     }
2984
2985     slice_time = bs->slice_end - bs->slice_start;
2986     slice_time /= (NANOSECONDS_PER_SECOND);
2987     bytes_limit = bps_limit * slice_time;
2988     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
2989     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
2990         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
2991     }
2992
2993     /* bytes_base: the bytes of data which have been read/written; and
2994      *             it is obtained from the history statistic info.
2995      * bytes_res: the remaining bytes of data which need to be read/written.
2996      * (bytes_base + bytes_res) / bps_limit: used to calcuate
2997      *             the total time for completing reading/writting all data.
2998      */
2999     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3000
3001     if (bytes_base + bytes_res <= bytes_limit) {
3002         if (wait) {
3003             *wait = 0;
3004         }
3005
3006         return false;
3007     }
3008
3009     /* Calc approx time to dispatch */
3010     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3011
3012     /* When the I/O rate at runtime exceeds the limits,
3013      * bs->slice_end need to be extended in order that the current statistic
3014      * info can be kept until the timer fire, so it is increased and tuned
3015      * based on the result of experiment.
3016      */
3017     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3018     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3019     if (wait) {
3020         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3021     }
3022
3023     return true;
3024 }
3025
3026 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3027                              double elapsed_time, uint64_t *wait)
3028 {
3029     uint64_t iops_limit = 0;
3030     double   ios_limit, ios_base;
3031     double   slice_time, wait_time;
3032
3033     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3034         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3035     } else if (bs->io_limits.iops[is_write]) {
3036         iops_limit = bs->io_limits.iops[is_write];
3037     } else {
3038         if (wait) {
3039             *wait = 0;
3040         }
3041
3042         return false;
3043     }
3044
3045     slice_time = bs->slice_end - bs->slice_start;
3046     slice_time /= (NANOSECONDS_PER_SECOND);
3047     ios_limit  = iops_limit * slice_time;
3048     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3049     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3050         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3051     }
3052
3053     if (ios_base + 1 <= ios_limit) {
3054         if (wait) {
3055             *wait = 0;
3056         }
3057
3058         return false;
3059     }
3060
3061     /* Calc approx time to dispatch */
3062     wait_time = (ios_base + 1) / iops_limit;
3063     if (wait_time > elapsed_time) {
3064         wait_time = wait_time - elapsed_time;
3065     } else {
3066         wait_time = 0;
3067     }
3068
3069     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3070     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3071     if (wait) {
3072         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3073     }
3074
3075     return true;
3076 }
3077
3078 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3079                            bool is_write, int64_t *wait)
3080 {
3081     int64_t  now, max_wait;
3082     uint64_t bps_wait = 0, iops_wait = 0;
3083     double   elapsed_time;
3084     int      bps_ret, iops_ret;
3085
3086     now = qemu_get_clock_ns(vm_clock);
3087     if ((bs->slice_start < now)
3088         && (bs->slice_end > now)) {
3089         bs->slice_end = now + bs->slice_time;
3090     } else {
3091         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3092         bs->slice_start = now;
3093         bs->slice_end   = now + bs->slice_time;
3094
3095         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3096         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3097
3098         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3099         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3100     }
3101
3102     elapsed_time  = now - bs->slice_start;
3103     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3104
3105     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3106                                       is_write, elapsed_time, &bps_wait);
3107     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3108                                       elapsed_time, &iops_wait);
3109     if (bps_ret || iops_ret) {
3110         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3111         if (wait) {
3112             *wait = max_wait;
3113         }
3114
3115         now = qemu_get_clock_ns(vm_clock);
3116         if (bs->slice_end < now + max_wait) {
3117             bs->slice_end = now + max_wait;
3118         }
3119
3120         return true;
3121     }
3122
3123     if (wait) {
3124         *wait = 0;
3125     }
3126
3127     return false;
3128 }
3129
3130 /**************************************************************/
3131 /* async block device emulation */
3132
3133 typedef struct BlockDriverAIOCBSync {
3134     BlockDriverAIOCB common;
3135     QEMUBH *bh;
3136     int ret;
3137     /* vector translation state */
3138     QEMUIOVector *qiov;
3139     uint8_t *bounce;
3140     int is_write;
3141 } BlockDriverAIOCBSync;
3142
3143 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3144 {
3145     BlockDriverAIOCBSync *acb =
3146         container_of(blockacb, BlockDriverAIOCBSync, common);
3147     qemu_bh_delete(acb->bh);
3148     acb->bh = NULL;
3149     qemu_aio_release(acb);
3150 }
3151
3152 static AIOPool bdrv_em_aio_pool = {
3153     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3154     .cancel             = bdrv_aio_cancel_em,
3155 };
3156
3157 static void bdrv_aio_bh_cb(void *opaque)
3158 {
3159     BlockDriverAIOCBSync *acb = opaque;
3160
3161     if (!acb->is_write)
3162         qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3163     qemu_vfree(acb->bounce);
3164     acb->common.cb(acb->common.opaque, acb->ret);
3165     qemu_bh_delete(acb->bh);
3166     acb->bh = NULL;
3167     qemu_aio_release(acb);
3168 }
3169
3170 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3171                                             int64_t sector_num,
3172                                             QEMUIOVector *qiov,
3173                                             int nb_sectors,
3174                                             BlockDriverCompletionFunc *cb,
3175                                             void *opaque,
3176                                             int is_write)
3177
3178 {
3179     BlockDriverAIOCBSync *acb;
3180
3181     acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3182     acb->is_write = is_write;
3183     acb->qiov = qiov;
3184     acb->bounce = qemu_blockalign(bs, qiov->size);
3185     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3186
3187     if (is_write) {
3188         qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3189         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3190     } else {
3191         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3192     }
3193
3194     qemu_bh_schedule(acb->bh);
3195
3196     return &acb->common;
3197 }
3198
3199 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3200         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3201         BlockDriverCompletionFunc *cb, void *opaque)
3202 {
3203     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3204 }
3205
3206 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3207         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3208         BlockDriverCompletionFunc *cb, void *opaque)
3209 {
3210     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3211 }
3212
3213
3214 typedef struct BlockDriverAIOCBCoroutine {
3215     BlockDriverAIOCB common;
3216     BlockRequest req;
3217     bool is_write;
3218     QEMUBH* bh;
3219 } BlockDriverAIOCBCoroutine;
3220
3221 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3222 {
3223     qemu_aio_flush();
3224 }
3225
3226 static AIOPool bdrv_em_co_aio_pool = {
3227     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3228     .cancel             = bdrv_aio_co_cancel_em,
3229 };
3230
3231 static void bdrv_co_em_bh(void *opaque)
3232 {
3233     BlockDriverAIOCBCoroutine *acb = opaque;
3234
3235     acb->common.cb(acb->common.opaque, acb->req.error);
3236     qemu_bh_delete(acb->bh);
3237     qemu_aio_release(acb);
3238 }
3239
3240 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3241 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3242 {
3243     BlockDriverAIOCBCoroutine *acb = opaque;
3244     BlockDriverState *bs = acb->common.bs;
3245
3246     if (!acb->is_write) {
3247         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3248             acb->req.nb_sectors, acb->req.qiov, 0);
3249     } else {
3250         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3251             acb->req.nb_sectors, acb->req.qiov, 0);
3252     }
3253
3254     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3255     qemu_bh_schedule(acb->bh);
3256 }
3257
3258 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3259                                                int64_t sector_num,
3260                                                QEMUIOVector *qiov,
3261                                                int nb_sectors,
3262                                                BlockDriverCompletionFunc *cb,
3263                                                void *opaque,
3264                                                bool is_write)
3265 {
3266     Coroutine *co;
3267     BlockDriverAIOCBCoroutine *acb;
3268
3269     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3270     acb->req.sector = sector_num;
3271     acb->req.nb_sectors = nb_sectors;
3272     acb->req.qiov = qiov;
3273     acb->is_write = is_write;
3274
3275     co = qemu_coroutine_create(bdrv_co_do_rw);
3276     qemu_coroutine_enter(co, acb);
3277
3278     return &acb->common;
3279 }
3280
3281 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3282 {
3283     BlockDriverAIOCBCoroutine *acb = opaque;
3284     BlockDriverState *bs = acb->common.bs;
3285
3286     acb->req.error = bdrv_co_flush(bs);
3287     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3288     qemu_bh_schedule(acb->bh);
3289 }
3290
3291 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3292         BlockDriverCompletionFunc *cb, void *opaque)
3293 {
3294     trace_bdrv_aio_flush(bs, opaque);
3295
3296     Coroutine *co;
3297     BlockDriverAIOCBCoroutine *acb;
3298
3299     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3300     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3301     qemu_coroutine_enter(co, acb);
3302
3303     return &acb->common;
3304 }
3305
3306 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3307 {
3308     BlockDriverAIOCBCoroutine *acb = opaque;
3309     BlockDriverState *bs = acb->common.bs;
3310
3311     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3312     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3313     qemu_bh_schedule(acb->bh);
3314 }
3315
3316 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3317         int64_t sector_num, int nb_sectors,
3318         BlockDriverCompletionFunc *cb, void *opaque)
3319 {
3320     Coroutine *co;
3321     BlockDriverAIOCBCoroutine *acb;
3322
3323     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3324
3325     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3326     acb->req.sector = sector_num;
3327     acb->req.nb_sectors = nb_sectors;
3328     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3329     qemu_coroutine_enter(co, acb);
3330
3331     return &acb->common;
3332 }
3333
3334 void bdrv_init(void)
3335 {
3336     module_call_init(MODULE_INIT_BLOCK);
3337 }
3338
3339 void bdrv_init_with_whitelist(void)
3340 {
3341     use_bdrv_whitelist = 1;
3342     bdrv_init();
3343 }
3344
3345 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3346                    BlockDriverCompletionFunc *cb, void *opaque)
3347 {
3348     BlockDriverAIOCB *acb;
3349
3350     if (pool->free_aiocb) {
3351         acb = pool->free_aiocb;
3352         pool->free_aiocb = acb->next;
3353     } else {
3354         acb = g_malloc0(pool->aiocb_size);
3355         acb->pool = pool;
3356     }
3357     acb->bs = bs;
3358     acb->cb = cb;
3359     acb->opaque = opaque;
3360     return acb;
3361 }
3362
3363 void qemu_aio_release(void *p)
3364 {
3365     BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3366     AIOPool *pool = acb->pool;
3367     acb->next = pool->free_aiocb;
3368     pool->free_aiocb = acb;
3369 }
3370
3371 /**************************************************************/
3372 /* Coroutine block device emulation */
3373
3374 typedef struct CoroutineIOCompletion {
3375     Coroutine *coroutine;
3376     int ret;
3377 } CoroutineIOCompletion;
3378
3379 static void bdrv_co_io_em_complete(void *opaque, int ret)
3380 {
3381     CoroutineIOCompletion *co = opaque;
3382
3383     co->ret = ret;
3384     qemu_coroutine_enter(co->coroutine, NULL);
3385 }
3386
3387 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3388                                       int nb_sectors, QEMUIOVector *iov,
3389                                       bool is_write)
3390 {
3391     CoroutineIOCompletion co = {
3392         .coroutine = qemu_coroutine_self(),
3393     };
3394     BlockDriverAIOCB *acb;
3395
3396     if (is_write) {
3397         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3398                                        bdrv_co_io_em_complete, &co);
3399     } else {
3400         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3401                                       bdrv_co_io_em_complete, &co);
3402     }
3403
3404     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3405     if (!acb) {
3406         return -EIO;
3407     }
3408     qemu_coroutine_yield();
3409
3410     return co.ret;
3411 }
3412
3413 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3414                                          int64_t sector_num, int nb_sectors,
3415                                          QEMUIOVector *iov)
3416 {
3417     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3418 }
3419
3420 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3421                                          int64_t sector_num, int nb_sectors,
3422                                          QEMUIOVector *iov)
3423 {
3424     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3425 }
3426
3427 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3428 {
3429     RwCo *rwco = opaque;
3430
3431     rwco->ret = bdrv_co_flush(rwco->bs);
3432 }
3433
3434 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3435 {
3436     int ret;
3437
3438     if (!bs->drv) {
3439         return 0;
3440     }
3441
3442     /* Write back cached data to the OS even with cache=unsafe */
3443     if (bs->drv->bdrv_co_flush_to_os) {
3444         ret = bs->drv->bdrv_co_flush_to_os(bs);
3445         if (ret < 0) {
3446             return ret;
3447         }
3448     }
3449
3450     /* But don't actually force it to the disk with cache=unsafe */
3451     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3452         return 0;
3453     }
3454
3455     if (bs->drv->bdrv_co_flush_to_disk) {
3456         return bs->drv->bdrv_co_flush_to_disk(bs);
3457     } else if (bs->drv->bdrv_aio_flush) {
3458         BlockDriverAIOCB *acb;
3459         CoroutineIOCompletion co = {
3460             .coroutine = qemu_coroutine_self(),
3461         };
3462
3463         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3464         if (acb == NULL) {
3465             return -EIO;
3466         } else {
3467             qemu_coroutine_yield();
3468             return co.ret;
3469         }
3470     } else {
3471         /*
3472          * Some block drivers always operate in either writethrough or unsafe
3473          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3474          * know how the server works (because the behaviour is hardcoded or
3475          * depends on server-side configuration), so we can't ensure that
3476          * everything is safe on disk. Returning an error doesn't work because
3477          * that would break guests even if the server operates in writethrough
3478          * mode.
3479          *
3480          * Let's hope the user knows what he's doing.
3481          */
3482         return 0;
3483     }
3484 }
3485
3486 void bdrv_invalidate_cache(BlockDriverState *bs)
3487 {
3488     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3489         bs->drv->bdrv_invalidate_cache(bs);
3490     }
3491 }
3492
3493 void bdrv_invalidate_cache_all(void)
3494 {
3495     BlockDriverState *bs;
3496
3497     QTAILQ_FOREACH(bs, &bdrv_states, list) {
3498         bdrv_invalidate_cache(bs);
3499     }
3500 }
3501
3502 int bdrv_flush(BlockDriverState *bs)
3503 {
3504     Coroutine *co;
3505     RwCo rwco = {
3506         .bs = bs,
3507         .ret = NOT_DONE,
3508     };
3509
3510     if (qemu_in_coroutine()) {
3511         /* Fast-path if already in coroutine context */
3512         bdrv_flush_co_entry(&rwco);
3513     } else {
3514         co = qemu_coroutine_create(bdrv_flush_co_entry);
3515         qemu_coroutine_enter(co, &rwco);
3516         while (rwco.ret == NOT_DONE) {
3517             qemu_aio_wait();
3518         }
3519     }
3520
3521     return rwco.ret;
3522 }
3523
3524 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3525 {
3526     RwCo *rwco = opaque;
3527
3528     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3529 }
3530
3531 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3532                                  int nb_sectors)
3533 {
3534     if (!bs->drv) {
3535         return -ENOMEDIUM;
3536     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3537         return -EIO;
3538     } else if (bs->read_only) {
3539         return -EROFS;
3540     } else if (bs->drv->bdrv_co_discard) {
3541         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3542     } else if (bs->drv->bdrv_aio_discard) {
3543         BlockDriverAIOCB *acb;
3544         CoroutineIOCompletion co = {
3545             .coroutine = qemu_coroutine_self(),
3546         };
3547
3548         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3549                                         bdrv_co_io_em_complete, &co);
3550         if (acb == NULL) {
3551             return -EIO;
3552         } else {
3553             qemu_coroutine_yield();
3554             return co.ret;
3555         }
3556     } else {
3557         return 0;
3558     }
3559 }
3560
3561 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3562 {
3563     Coroutine *co;
3564     RwCo rwco = {
3565         .bs = bs,
3566         .sector_num = sector_num,
3567         .nb_sectors = nb_sectors,
3568         .ret = NOT_DONE,
3569     };
3570
3571     if (qemu_in_coroutine()) {
3572         /* Fast-path if already in coroutine context */
3573         bdrv_discard_co_entry(&rwco);
3574     } else {
3575         co = qemu_coroutine_create(bdrv_discard_co_entry);
3576         qemu_coroutine_enter(co, &rwco);
3577         while (rwco.ret == NOT_DONE) {
3578             qemu_aio_wait();
3579         }
3580     }
3581
3582     return rwco.ret;
3583 }
3584
3585 /**************************************************************/
3586 /* removable device support */
3587
3588 /**
3589  * Return TRUE if the media is present
3590  */
3591 int bdrv_is_inserted(BlockDriverState *bs)
3592 {
3593     BlockDriver *drv = bs->drv;
3594
3595     if (!drv)
3596         return 0;
3597     if (!drv->bdrv_is_inserted)
3598         return 1;
3599     return drv->bdrv_is_inserted(bs);
3600 }
3601
3602 /**
3603  * Return whether the media changed since the last call to this
3604  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
3605  */
3606 int bdrv_media_changed(BlockDriverState *bs)
3607 {
3608     BlockDriver *drv = bs->drv;
3609
3610     if (drv && drv->bdrv_media_changed) {
3611         return drv->bdrv_media_changed(bs);
3612     }
3613     return -ENOTSUP;
3614 }
3615
3616 /**
3617  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3618  */
3619 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3620 {
3621     BlockDriver *drv = bs->drv;
3622
3623     if (drv && drv->bdrv_eject) {
3624         drv->bdrv_eject(bs, eject_flag);
3625     }
3626
3627     if (bs->device_name[0] != '\0') {
3628         bdrv_emit_qmp_eject_event(bs, eject_flag);
3629     }
3630 }
3631
3632 /**
3633  * Lock or unlock the media (if it is locked, the user won't be able
3634  * to eject it manually).
3635  */
3636 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3637 {
3638     BlockDriver *drv = bs->drv;
3639
3640     trace_bdrv_lock_medium(bs, locked);
3641
3642     if (drv && drv->bdrv_lock_medium) {
3643         drv->bdrv_lock_medium(bs, locked);
3644     }
3645 }
3646
3647 /* needed for generic scsi interface */
3648
3649 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3650 {
3651     BlockDriver *drv = bs->drv;
3652
3653     if (drv && drv->bdrv_ioctl)
3654         return drv->bdrv_ioctl(bs, req, buf);
3655     return -ENOTSUP;
3656 }
3657
3658 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3659         unsigned long int req, void *buf,
3660         BlockDriverCompletionFunc *cb, void *opaque)
3661 {
3662     BlockDriver *drv = bs->drv;
3663
3664     if (drv && drv->bdrv_aio_ioctl)
3665         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3666     return NULL;
3667 }
3668
3669 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3670 {
3671     bs->buffer_alignment = align;
3672 }
3673
3674 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3675 {
3676     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3677 }
3678
3679 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3680 {
3681     int64_t bitmap_size;
3682
3683     bs->dirty_count = 0;
3684     if (enable) {
3685         if (!bs->dirty_bitmap) {
3686             bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3687                     BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3688             bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3689
3690             bs->dirty_bitmap = g_malloc0(bitmap_size);
3691         }
3692     } else {
3693         if (bs->dirty_bitmap) {
3694             g_free(bs->dirty_bitmap);
3695             bs->dirty_bitmap = NULL;
3696         }
3697     }
3698 }
3699
3700 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3701 {
3702     int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3703
3704     if (bs->dirty_bitmap &&
3705         (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3706         return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3707             (1UL << (chunk % (sizeof(unsigned long) * 8))));
3708     } else {
3709         return 0;
3710     }
3711 }
3712
3713 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3714                       int nr_sectors)
3715 {
3716     set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3717 }
3718
3719 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3720 {
3721     return bs->dirty_count;
3722 }
3723
3724 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3725 {
3726     assert(bs->in_use != in_use);
3727     bs->in_use = in_use;
3728 }
3729
3730 int bdrv_in_use(BlockDriverState *bs)
3731 {
3732     return bs->in_use;
3733 }
3734
3735 void bdrv_iostatus_enable(BlockDriverState *bs)
3736 {
3737     bs->iostatus_enabled = true;
3738     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3739 }
3740
3741 /* The I/O status is only enabled if the drive explicitly
3742  * enables it _and_ the VM is configured to stop on errors */
3743 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3744 {
3745     return (bs->iostatus_enabled &&
3746            (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3747             bs->on_write_error == BLOCK_ERR_STOP_ANY    ||
3748             bs->on_read_error == BLOCK_ERR_STOP_ANY));
3749 }
3750
3751 void bdrv_iostatus_disable(BlockDriverState *bs)
3752 {
3753     bs->iostatus_enabled = false;
3754 }
3755
3756 void bdrv_iostatus_reset(BlockDriverState *bs)
3757 {
3758     if (bdrv_iostatus_is_enabled(bs)) {
3759         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3760     }
3761 }
3762
3763 /* XXX: Today this is set by device models because it makes the implementation
3764    quite simple. However, the block layer knows about the error, so it's
3765    possible to implement this without device models being involved */
3766 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3767 {
3768     if (bdrv_iostatus_is_enabled(bs) &&
3769         bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3770         assert(error >= 0);
3771         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3772                                          BLOCK_DEVICE_IO_STATUS_FAILED;
3773     }
3774 }
3775
3776 void
3777 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3778         enum BlockAcctType type)
3779 {
3780     assert(type < BDRV_MAX_IOTYPE);
3781
3782     cookie->bytes = bytes;
3783     cookie->start_time_ns = get_clock();
3784     cookie->type = type;
3785 }
3786
3787 void
3788 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3789 {
3790     assert(cookie->type < BDRV_MAX_IOTYPE);
3791
3792     bs->nr_bytes[cookie->type] += cookie->bytes;
3793     bs->nr_ops[cookie->type]++;
3794     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3795 }
3796
3797 int bdrv_img_create(const char *filename, const char *fmt,
3798                     const char *base_filename, const char *base_fmt,
3799                     char *options, uint64_t img_size, int flags)
3800 {
3801     QEMUOptionParameter *param = NULL, *create_options = NULL;
3802     QEMUOptionParameter *backing_fmt, *backing_file, *size;
3803     BlockDriverState *bs = NULL;
3804     BlockDriver *drv, *proto_drv;
3805     BlockDriver *backing_drv = NULL;
3806     int ret = 0;
3807
3808     /* Find driver and parse its options */
3809     drv = bdrv_find_format(fmt);
3810     if (!drv) {
3811         error_report("Unknown file format '%s'", fmt);
3812         ret = -EINVAL;
3813         goto out;
3814     }
3815
3816     proto_drv = bdrv_find_protocol(filename);
3817     if (!proto_drv) {
3818         error_report("Unknown protocol '%s'", filename);
3819         ret = -EINVAL;
3820         goto out;
3821     }
3822
3823     create_options = append_option_parameters(create_options,
3824                                               drv->create_options);
3825     create_options = append_option_parameters(create_options,
3826                                               proto_drv->create_options);
3827
3828     /* Create parameter list with default values */
3829     param = parse_option_parameters("", create_options, param);
3830
3831     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3832
3833     /* Parse -o options */
3834     if (options) {
3835         param = parse_option_parameters(options, create_options, param);
3836         if (param == NULL) {
3837             error_report("Invalid options for file format '%s'.", fmt);
3838             ret = -EINVAL;
3839             goto out;
3840         }
3841     }
3842
3843     if (base_filename) {
3844         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3845                                  base_filename)) {
3846             error_report("Backing file not supported for file format '%s'",
3847                          fmt);
3848             ret = -EINVAL;
3849             goto out;
3850         }
3851     }
3852
3853     if (base_fmt) {
3854         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3855             error_report("Backing file format not supported for file "
3856                          "format '%s'", fmt);
3857             ret = -EINVAL;
3858             goto out;
3859         }
3860     }
3861
3862     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3863     if (backing_file && backing_file->value.s) {
3864         if (!strcmp(filename, backing_file->value.s)) {
3865             error_report("Error: Trying to create an image with the "
3866                          "same filename as the backing file");
3867             ret = -EINVAL;
3868             goto out;
3869         }
3870     }
3871
3872     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3873     if (backing_fmt && backing_fmt->value.s) {
3874         backing_drv = bdrv_find_format(backing_fmt->value.s);
3875         if (!backing_drv) {
3876             error_report("Unknown backing file format '%s'",
3877                          backing_fmt->value.s);
3878             ret = -EINVAL;
3879             goto out;
3880         }
3881     }
3882
3883     // The size for the image must always be specified, with one exception:
3884     // If we are using a backing file, we can obtain the size from there
3885     size = get_option_parameter(param, BLOCK_OPT_SIZE);
3886     if (size && size->value.n == -1) {
3887         if (backing_file && backing_file->value.s) {
3888             uint64_t size;
3889             char buf[32];
3890
3891             bs = bdrv_new("");
3892
3893             ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3894             if (ret < 0) {
3895                 error_report("Could not open '%s'", backing_file->value.s);
3896                 goto out;
3897             }
3898             bdrv_get_geometry(bs, &size);
3899             size *= 512;
3900
3901             snprintf(buf, sizeof(buf), "%" PRId64, size);
3902             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3903         } else {
3904             error_report("Image creation needs a size parameter");
3905             ret = -EINVAL;
3906             goto out;
3907         }
3908     }
3909
3910     printf("Formatting '%s', fmt=%s ", filename, fmt);
3911     print_option_parameters(param);
3912     puts("");
3913
3914     ret = bdrv_create(drv, filename, param);
3915
3916     if (ret < 0) {
3917         if (ret == -ENOTSUP) {
3918             error_report("Formatting or formatting option not supported for "
3919                          "file format '%s'", fmt);
3920         } else if (ret == -EFBIG) {
3921             error_report("The image size is too large for file format '%s'",
3922                          fmt);
3923         } else {
3924             error_report("%s: error while creating %s: %s", filename, fmt,
3925                          strerror(-ret));
3926         }
3927     }
3928
3929 out:
3930     free_option_parameters(create_options);
3931     free_option_parameters(param);
3932
3933     if (bs) {
3934         bdrv_delete(bs);
3935     }
3936
3937     return ret;
3938 }
3939
3940 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
3941                        BlockDriverCompletionFunc *cb, void *opaque)
3942 {
3943     BlockJob *job;
3944
3945     if (bs->job || bdrv_in_use(bs)) {
3946         return NULL;
3947     }
3948     bdrv_set_in_use(bs, 1);
3949
3950     job = g_malloc0(job_type->instance_size);
3951     job->job_type      = job_type;
3952     job->bs            = bs;
3953     job->cb            = cb;
3954     job->opaque        = opaque;
3955     bs->job = job;
3956     return job;
3957 }
3958
3959 void block_job_complete(BlockJob *job, int ret)
3960 {
3961     BlockDriverState *bs = job->bs;
3962
3963     assert(bs->job == job);
3964     job->cb(job->opaque, ret);
3965     bs->job = NULL;
3966     g_free(job);
3967     bdrv_set_in_use(bs, 0);
3968 }
3969
3970 int block_job_set_speed(BlockJob *job, int64_t value)
3971 {
3972     if (!job->job_type->set_speed) {
3973         return -ENOTSUP;
3974     }
3975     return job->job_type->set_speed(job, value);
3976 }
3977
3978 void block_job_cancel(BlockJob *job)
3979 {
3980     job->cancelled = true;
3981 }
3982
3983 bool block_job_is_cancelled(BlockJob *job)
3984 {
3985     return job->cancelled;
3986 }
This page took 0.237235 seconds and 2 git commands to generate.