4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
49 return cpu_memory_rw_debug(ENV_GET_CPU(env), addr, buf, len, is_write);
52 /* target_memory_rw_debug() defined in cpu.h */
64 GDB_SIGNAL_UNKNOWN = 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table[] = {
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
242 static int gdb_signal_table[] = {
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
259 return GDB_SIGNAL_UNKNOWN;
263 static int gdb_signal_to_target (int sig)
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
273 typedef struct GDBRegisterState {
279 struct GDBRegisterState *next;
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
316 static GDBState *gdbserver_state;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
327 static int get_char(GDBState *s)
333 ret = qemu_recv(s->fd, &ch, 1, 0);
335 if (errno == ECONNRESET)
337 if (errno != EINTR && errno != EAGAIN)
339 } else if (ret == 0) {
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
374 if (runstate_check(RUN_STATE_GUEST_PANICKED)) {
375 runstate_set(RUN_STATE_DEBUG);
377 if (!runstate_needs_reset()) {
383 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
385 #ifdef CONFIG_USER_ONLY
389 ret = send(s->fd, buf, len, 0);
391 if (errno != EINTR && errno != EAGAIN)
399 qemu_chr_fe_write(s->chr, buf, len);
403 static inline int fromhex(int v)
405 if (v >= '0' && v <= '9')
407 else if (v >= 'A' && v <= 'F')
409 else if (v >= 'a' && v <= 'f')
415 static inline int tohex(int v)
423 static void memtohex(char *buf, const uint8_t *mem, int len)
428 for(i = 0; i < len; i++) {
430 *q++ = tohex(c >> 4);
431 *q++ = tohex(c & 0xf);
436 static void hextomem(uint8_t *mem, const char *buf, int len)
440 for(i = 0; i < len; i++) {
441 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState *s, const char *buf, int len)
458 for(i = 0; i < len; i++) {
462 *(p++) = tohex((csum >> 4) & 0xf);
463 *(p++) = tohex((csum) & 0xf);
465 s->last_packet_len = p - s->last_packet;
466 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
468 #ifdef CONFIG_USER_ONLY
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState *s, const char *buf)
485 printf("reply='%s'\n", buf);
488 return put_packet_binary(s, buf, strlen(buf));
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
520 #if defined(TARGET_I386)
523 static const int gpr_map[16] = {
524 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
525 8, 9, 10, 11, 12, 13, 14, 15
528 #define gpr_map gpr_map32
530 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
541 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
543 if (n < CPU_NB_REGS) {
544 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
545 GET_REG64(env->regs[gpr_map[n]]);
546 } else if (n < CPU_NB_REGS32) {
547 GET_REG32(env->regs[gpr_map32[n]]);
549 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
554 memset(mem_buf, 0, 10);
557 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
559 if (n < CPU_NB_REGS32 ||
560 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
561 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
562 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
568 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
573 case IDX_FLAGS_REG: GET_REG32(env->eflags);
575 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
576 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
577 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
578 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
579 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
580 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
582 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
583 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
584 (env->fpstt & 0x7) << 11);
585 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
592 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
598 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
600 uint16_t selector = ldl_p(mem_buf);
602 if (selector != env->segs[sreg].selector) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env, sreg, selector);
606 unsigned int limit, flags;
609 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
610 base = selector << 4;
614 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
617 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
623 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
627 if (n < CPU_NB_REGS) {
628 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
629 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
630 return sizeof(target_ulong);
631 } else if (n < CPU_NB_REGS32) {
633 env->regs[n] &= ~0xffffffffUL;
634 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
637 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
643 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
645 if (n < CPU_NB_REGS32 ||
646 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
647 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
648 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
654 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
655 env->eip = ldq_p(mem_buf);
658 env->eip &= ~0xffffffffUL;
659 env->eip |= (uint32_t)ldl_p(mem_buf);
663 env->eflags = ldl_p(mem_buf);
666 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
667 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
668 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
669 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
670 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
671 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
673 case IDX_FP_REGS + 8:
674 env->fpuc = ldl_p(mem_buf);
676 case IDX_FP_REGS + 9:
677 tmp = ldl_p(mem_buf);
678 env->fpstt = (tmp >> 11) & 7;
679 env->fpus = tmp & ~0x3800;
681 case IDX_FP_REGS + 10: /* ftag */ return 4;
682 case IDX_FP_REGS + 11: /* fiseg */ return 4;
683 case IDX_FP_REGS + 12: /* fioff */ return 4;
684 case IDX_FP_REGS + 13: /* foseg */ return 4;
685 case IDX_FP_REGS + 14: /* fooff */ return 4;
686 case IDX_FP_REGS + 15: /* fop */ return 4;
689 env->mxcsr = ldl_p(mem_buf);
693 /* Unrecognised register. */
697 #elif defined (TARGET_PPC)
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
708 #define GDB_CORE_XML "power-core.xml"
711 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
715 GET_REGL(env->gpr[n]);
720 stfq_p(mem_buf, env->fpr[n-32]);
724 case 64: GET_REGL(env->nip);
725 case 65: GET_REGL(env->msr);
730 for (i = 0; i < 8; i++)
731 cr |= env->crf[i] << (32 - ((i + 1) * 4));
734 case 67: GET_REGL(env->lr);
735 case 68: GET_REGL(env->ctr);
736 case 69: GET_REGL(env->xer);
741 GET_REG32(env->fpscr);
748 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
752 env->gpr[n] = ldtul_p(mem_buf);
753 return sizeof(target_ulong);
758 env->fpr[n-32] = ldfq_p(mem_buf);
763 env->nip = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
766 ppc_store_msr(env, ldtul_p(mem_buf));
767 return sizeof(target_ulong);
770 uint32_t cr = ldl_p(mem_buf);
772 for (i = 0; i < 8; i++)
773 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
777 env->lr = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
780 env->ctr = ldtul_p(mem_buf);
781 return sizeof(target_ulong);
783 env->xer = ldtul_p(mem_buf);
784 return sizeof(target_ulong);
789 store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
790 return sizeof(target_ulong);
796 #elif defined (TARGET_SPARC)
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
801 #define NUM_CORE_REGS 72
805 #define GET_REGA(val) GET_REG32(val)
807 #define GET_REGA(val) GET_REGL(val)
810 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
814 GET_REGA(env->gregs[n]);
817 /* register window */
818 GET_REGA(env->regwptr[n - 8]);
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
824 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
826 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
831 case 64: GET_REGA(env->y);
832 case 65: GET_REGA(cpu_get_psr(env));
833 case 66: GET_REGA(env->wim);
834 case 67: GET_REGA(env->tbr);
835 case 68: GET_REGA(env->pc);
836 case 69: GET_REGA(env->npc);
837 case 70: GET_REGA(env->fsr);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
845 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
847 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env->fpr[(n - 32) / 2].ll);
855 case 80: GET_REGL(env->pc);
856 case 81: GET_REGL(env->npc);
857 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
858 ((env->asi & 0xff) << 24) |
859 ((env->pstate & 0xfff) << 8) |
861 case 83: GET_REGL(env->fsr);
862 case 84: GET_REGL(env->fprs);
863 case 85: GET_REGL(env->y);
869 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
871 #if defined(TARGET_ABI32)
874 tmp = ldl_p(mem_buf);
878 tmp = ldtul_p(mem_buf);
885 /* register window */
886 env->regwptr[n - 8] = tmp;
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
893 env->fpr[(n - 32) / 2].l.lower = tmp;
895 env->fpr[(n - 32) / 2].l.upper = tmp;
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
900 case 64: env->y = tmp; break;
901 case 65: cpu_put_psr(env, tmp); break;
902 case 66: env->wim = tmp; break;
903 case 67: env->tbr = tmp; break;
904 case 68: env->pc = tmp; break;
905 case 69: env->npc = tmp; break;
906 case 70: env->fsr = tmp; break;
914 tmp = ldl_p(mem_buf);
916 env->fpr[(n - 32) / 2].l.lower = tmp;
918 env->fpr[(n - 32) / 2].l.upper = tmp;
922 /* f32-f62 (double width, even numbers only) */
923 env->fpr[(n - 32) / 2].ll = tmp;
926 case 80: env->pc = tmp; break;
927 case 81: env->npc = tmp; break;
929 cpu_put_ccr(env, tmp >> 32);
930 env->asi = (tmp >> 24) & 0xff;
931 env->pstate = (tmp >> 8) & 0xfff;
932 cpu_put_cwp64(env, tmp & 0xff);
934 case 83: env->fsr = tmp; break;
935 case 84: env->fprs = tmp; break;
936 case 85: env->y = tmp; break;
943 #elif defined (TARGET_ARM)
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
953 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
956 /* Core integer register. */
957 GET_REG32(env->regs[n]);
963 memset(mem_buf, 0, 12);
968 /* FPA status register. */
974 GET_REG32(cpsr_read(env));
976 /* Unknown register. */
980 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
984 tmp = ldl_p(mem_buf);
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
992 /* Core integer register. */
996 if (n < 24) { /* 16-23 */
997 /* FPA registers (ignored). */
1004 /* FPA status register (ignored). */
1010 cpsr_write (env, tmp, 0xffffffff);
1013 /* Unknown register. */
1017 #elif defined (TARGET_M68K)
1019 #define NUM_CORE_REGS 18
1021 #define GDB_CORE_XML "cf-core.xml"
1023 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1027 GET_REG32(env->dregs[n]);
1028 } else if (n < 16) {
1030 GET_REG32(env->aregs[n - 8]);
1033 case 16: GET_REG32(env->sr);
1034 case 17: GET_REG32(env->pc);
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1042 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1046 tmp = ldl_p(mem_buf);
1050 env->dregs[n] = tmp;
1051 } else if (n < 16) {
1053 env->aregs[n - 8] = tmp;
1056 case 16: env->sr = tmp; break;
1057 case 17: env->pc = tmp; break;
1063 #elif defined (TARGET_MIPS)
1065 #define NUM_CORE_REGS 73
1067 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1070 GET_REGL(env->active_tc.gpr[n]);
1072 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1073 if (n >= 38 && n < 70) {
1074 if (env->CP0_Status & (1 << CP0St_FR))
1075 GET_REGL(env->active_fpu.fpr[n - 38].d);
1077 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1080 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1081 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1085 case 32: GET_REGL((int32_t)env->CP0_Status);
1086 case 33: GET_REGL(env->active_tc.LO[0]);
1087 case 34: GET_REGL(env->active_tc.HI[0]);
1088 case 35: GET_REGL(env->CP0_BadVAddr);
1089 case 36: GET_REGL((int32_t)env->CP0_Cause);
1090 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env->CP0_PRid);
1094 if (n >= 73 && n <= 88) {
1095 /* 16 embedded regs. */
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm[] =
1105 float_round_nearest_even,
1106 float_round_to_zero,
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1113 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1117 tmp = ldtul_p(mem_buf);
1120 env->active_tc.gpr[n] = tmp;
1121 return sizeof(target_ulong);
1123 if (env->CP0_Config1 & (1 << CP0C1_FP)
1124 && n >= 38 && n < 73) {
1126 if (env->CP0_Status & (1 << CP0St_FR))
1127 env->active_fpu.fpr[n - 38].d = tmp;
1129 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1133 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE;
1137 case 71: env->active_fpu.fcr0 = tmp; break;
1139 return sizeof(target_ulong);
1142 case 32: env->CP0_Status = tmp; break;
1143 case 33: env->active_tc.LO[0] = tmp; break;
1144 case 34: env->active_tc.HI[0] = tmp; break;
1145 case 35: env->CP0_BadVAddr = tmp; break;
1146 case 36: env->CP0_Cause = tmp; break;
1148 env->active_tc.PC = tmp & ~(target_ulong)1;
1150 env->hflags |= MIPS_HFLAG_M16;
1152 env->hflags &= ~(MIPS_HFLAG_M16);
1155 case 72: /* fp, ignored */ break;
1159 /* Other registers are readonly. Ignore writes. */
1163 return sizeof(target_ulong);
1165 #elif defined(TARGET_OPENRISC)
1167 #define NUM_CORE_REGS (32 + 3)
1169 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1172 GET_REG32(env->gpr[n]);
1176 GET_REG32(env->ppc);
1180 GET_REG32(env->npc);
1194 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1195 uint8_t *mem_buf, int n)
1199 if (n > NUM_CORE_REGS) {
1203 tmp = ldl_p(mem_buf);
1227 #elif defined (TARGET_SH4)
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1232 #define NUM_CORE_REGS 59
1234 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1238 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1239 GET_REGL(env->gregs[n + 16]);
1241 GET_REGL(env->gregs[n]);
1244 GET_REGL(env->gregs[n]);
1254 GET_REGL(env->mach);
1256 GET_REGL(env->macl);
1260 GET_REGL(env->fpul);
1262 GET_REGL(env->fpscr);
1264 if (env->fpscr & FPSCR_FR) {
1265 stfl_p(mem_buf, env->fregs[n - 9]);
1267 stfl_p(mem_buf, env->fregs[n - 25]);
1275 GET_REGL(env->gregs[n - 43]);
1277 GET_REGL(env->gregs[n - (51 - 16)]);
1283 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1287 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1288 env->gregs[n + 16] = ldl_p(mem_buf);
1290 env->gregs[n] = ldl_p(mem_buf);
1294 env->gregs[n] = ldl_p(mem_buf);
1297 env->pc = ldl_p(mem_buf);
1300 env->pr = ldl_p(mem_buf);
1303 env->gbr = ldl_p(mem_buf);
1306 env->vbr = ldl_p(mem_buf);
1309 env->mach = ldl_p(mem_buf);
1312 env->macl = ldl_p(mem_buf);
1315 env->sr = ldl_p(mem_buf);
1318 env->fpul = ldl_p(mem_buf);
1321 env->fpscr = ldl_p(mem_buf);
1324 if (env->fpscr & FPSCR_FR) {
1325 env->fregs[n - 9] = ldfl_p(mem_buf);
1327 env->fregs[n - 25] = ldfl_p(mem_buf);
1331 env->ssr = ldl_p(mem_buf);
1334 env->spc = ldl_p(mem_buf);
1337 env->gregs[n - 43] = ldl_p(mem_buf);
1340 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1347 #elif defined (TARGET_MICROBLAZE)
1349 #define NUM_CORE_REGS (32 + 5)
1351 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1354 GET_REG32(env->regs[n]);
1356 GET_REG32(env->sregs[n - 32]);
1361 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1365 if (n > NUM_CORE_REGS)
1368 tmp = ldl_p(mem_buf);
1373 env->sregs[n - 32] = tmp;
1377 #elif defined (TARGET_CRIS)
1379 #define NUM_CORE_REGS 49
1382 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1385 GET_REG32(env->regs[n]);
1395 GET_REG8(env->pregs[n - 16]);
1398 GET_REG8(env->pregs[n - 16]);
1402 GET_REG16(env->pregs[n - 16]);
1406 GET_REG32(env->pregs[n - 16]);
1414 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1418 if (env->pregs[PR_VR] < 32)
1419 return read_register_crisv10(env, mem_buf, n);
1421 srs = env->pregs[PR_SRS];
1423 GET_REG32(env->regs[n]);
1426 if (n >= 21 && n < 32) {
1427 GET_REG32(env->pregs[n - 16]);
1429 if (n >= 33 && n < 49) {
1430 GET_REG32(env->sregs[srs][n - 33]);
1433 case 16: GET_REG8(env->pregs[0]);
1434 case 17: GET_REG8(env->pregs[1]);
1435 case 18: GET_REG32(env->pregs[2]);
1436 case 19: GET_REG8(srs);
1437 case 20: GET_REG16(env->pregs[4]);
1438 case 32: GET_REG32(env->pc);
1444 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1451 tmp = ldl_p(mem_buf);
1457 if (n >= 21 && n < 32) {
1458 env->pregs[n - 16] = tmp;
1461 /* FIXME: Should support function regs be writable? */
1465 case 18: env->pregs[PR_PID] = tmp; break;
1468 case 32: env->pc = tmp; break;
1473 #elif defined (TARGET_ALPHA)
1475 #define NUM_CORE_REGS 67
1477 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1487 d.d = env->fir[n - 32];
1491 val = cpu_alpha_load_fpcr(env);
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1511 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1513 target_ulong tmp = ldtul_p(mem_buf);
1522 env->fir[n - 32] = d.d;
1525 cpu_alpha_store_fpcr(env, tmp);
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1543 #elif defined (TARGET_S390X)
1545 #define NUM_CORE_REGS S390_NUM_REGS
1547 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1553 case S390_PSWM_REGNUM:
1554 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1555 val = deposit64(env->psw.mask, 44, 2, cc_op);
1558 case S390_PSWA_REGNUM:
1559 GET_REGL(env->psw.addr);
1561 case S390_R0_REGNUM ... S390_R15_REGNUM:
1562 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1564 case S390_A0_REGNUM ... S390_A15_REGNUM:
1565 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1567 case S390_FPC_REGNUM:
1568 GET_REG32(env->fpc);
1570 case S390_F0_REGNUM ... S390_F15_REGNUM:
1571 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1578 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1583 tmpl = ldtul_p(mem_buf);
1584 tmp32 = ldl_p(mem_buf);
1587 case S390_PSWM_REGNUM:
1588 env->psw.mask = tmpl;
1589 env->cc_op = extract64(tmpl, 44, 2);
1591 case S390_PSWA_REGNUM:
1592 env->psw.addr = tmpl;
1594 case S390_R0_REGNUM ... S390_R15_REGNUM:
1595 env->regs[n-S390_R0_REGNUM] = tmpl;
1597 case S390_A0_REGNUM ... S390_A15_REGNUM:
1598 env->aregs[n-S390_A0_REGNUM] = tmp32;
1601 case S390_FPC_REGNUM:
1605 case S390_F0_REGNUM ... S390_F15_REGNUM:
1606 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1613 #elif defined (TARGET_LM32)
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1618 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1621 GET_REG32(env->regs[n]);
1627 /* FIXME: put in right exception ID */
1632 GET_REG32(env->eba);
1635 GET_REG32(env->deba);
1641 GET_REG32(lm32_pic_get_im(env->pic_state));
1644 GET_REG32(lm32_pic_get_ip(env->pic_state));
1651 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1655 if (n > NUM_CORE_REGS) {
1659 tmp = ldl_p(mem_buf);
1678 lm32_pic_set_im(env->pic_state, tmp);
1681 lm32_pic_set_ip(env->pic_state, tmp);
1687 #elif defined(TARGET_XTENSA)
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1697 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1699 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1701 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1705 switch (reg->type) {
1711 xtensa_sync_phys_from_window(env);
1712 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1716 GET_REG32(env->sregs[reg->targno & 0xff]);
1720 GET_REG32(env->uregs[reg->targno & 0xff]);
1724 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1728 GET_REG32(env->regs[reg->targno & 0x0f]);
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__, n, reg->type);
1738 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1741 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1743 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1747 tmp = ldl_p(mem_buf);
1749 switch (reg->type) {
1755 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1756 xtensa_sync_window_from_phys(env);
1760 env->sregs[reg->targno & 0xff] = tmp;
1764 env->uregs[reg->targno & 0xff] = tmp;
1768 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1772 env->regs[reg->targno & 0x0f] = tmp;
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__, n, reg->type);
1785 #define NUM_CORE_REGS 0
1787 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1792 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs = NUM_CORE_REGS;
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf, const char *mem, int len)
1813 case '#': case '$': case '*': case '}':
1825 static const char *get_feature_xml(const char *p, const char **newp)
1830 static char target_xml[1024];
1833 while (p[len] && p[len] != ':')
1838 if (strncmp(p, "target.xml", len) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml[0]) {
1841 GDBRegisterState *r;
1842 CPUArchState *env = first_cpu->env_ptr;
1844 snprintf(target_xml, sizeof(target_xml),
1845 "<?xml version=\"1.0\"?>"
1846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1848 "<xi:include href=\"%s\"/>",
1851 for (r = env->gdb_regs; r; r = r->next) {
1852 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1853 pstrcat(target_xml, sizeof(target_xml), r->xml);
1854 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1856 pstrcat(target_xml, sizeof(target_xml), "</target>");
1860 for (i = 0; ; i++) {
1861 name = xml_builtin[i][0];
1862 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1865 return name ? xml_builtin[i][1] : NULL;
1869 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
1871 CPUArchState *env = cpu->env_ptr;
1872 GDBRegisterState *r;
1874 if (reg < NUM_CORE_REGS)
1875 return cpu_gdb_read_register(env, mem_buf, reg);
1877 for (r = env->gdb_regs; r; r = r->next) {
1878 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1879 return r->get_reg(env, mem_buf, reg - r->base_reg);
1885 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
1887 CPUArchState *env = cpu->env_ptr;
1888 GDBRegisterState *r;
1890 if (reg < NUM_CORE_REGS)
1891 return cpu_gdb_write_register(env, mem_buf, reg);
1893 for (r = env->gdb_regs; r; r = r->next) {
1894 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1895 return r->set_reg(env, mem_buf, reg - r->base_reg);
1901 #if !defined(TARGET_XTENSA)
1902 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1903 specifies the first register number and these registers are included in
1904 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1905 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1908 void gdb_register_coprocessor(CPUArchState * env,
1909 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1910 int num_regs, const char *xml, int g_pos)
1912 GDBRegisterState *s;
1913 GDBRegisterState **p;
1914 static int last_reg = NUM_CORE_REGS;
1918 /* Check for duplicates. */
1919 if (strcmp((*p)->xml, xml) == 0)
1924 s = g_new0(GDBRegisterState, 1);
1925 s->base_reg = last_reg;
1926 s->num_regs = num_regs;
1927 s->get_reg = get_reg;
1928 s->set_reg = set_reg;
1931 /* Add to end of list. */
1932 last_reg += num_regs;
1935 if (g_pos != s->base_reg) {
1936 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1937 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1939 num_g_regs = last_reg;
1945 #ifndef CONFIG_USER_ONLY
1946 static const int xlat_gdb_type[] = {
1947 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1948 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1949 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1953 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1959 if (kvm_enabled()) {
1960 return kvm_insert_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
1965 case GDB_BREAKPOINT_SW:
1966 case GDB_BREAKPOINT_HW:
1967 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1969 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1974 #ifndef CONFIG_USER_ONLY
1975 case GDB_WATCHPOINT_WRITE:
1976 case GDB_WATCHPOINT_READ:
1977 case GDB_WATCHPOINT_ACCESS:
1978 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1980 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1992 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1998 if (kvm_enabled()) {
1999 return kvm_remove_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu),
2004 case GDB_BREAKPOINT_SW:
2005 case GDB_BREAKPOINT_HW:
2006 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2008 err = cpu_breakpoint_remove(env, addr, BP_GDB);
2013 #ifndef CONFIG_USER_ONLY
2014 case GDB_WATCHPOINT_WRITE:
2015 case GDB_WATCHPOINT_READ:
2016 case GDB_WATCHPOINT_ACCESS:
2017 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2019 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2030 static void gdb_breakpoint_remove_all(void)
2035 if (kvm_enabled()) {
2036 kvm_remove_all_breakpoints(ENV_GET_CPU(gdbserver_state->c_cpu));
2040 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2042 cpu_breakpoint_remove_all(env, BP_GDB);
2043 #ifndef CONFIG_USER_ONLY
2044 cpu_watchpoint_remove_all(env, BP_GDB);
2049 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2051 CPUState *cpu = ENV_GET_CPU(s->c_cpu);
2052 CPUClass *cc = CPU_GET_CLASS(cpu);
2054 cpu_synchronize_state(cpu);
2056 cc->set_pc(cpu, pc);
2060 static CPUArchState *find_cpu(uint32_t thread_id)
2064 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2065 if (cpu_index(cpu) == thread_id) {
2066 return cpu->env_ptr;
2073 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2078 int ch, reg_size, type, res;
2079 char buf[MAX_PACKET_LENGTH];
2080 uint8_t mem_buf[MAX_PACKET_LENGTH];
2082 target_ulong addr, len;
2085 printf("command='%s'\n", line_buf);
2091 /* TODO: Make this return the correct value for user-mode. */
2092 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2093 cpu_index(ENV_GET_CPU(s->c_cpu)));
2095 /* Remove all the breakpoints when this query is issued,
2096 * because gdb is doing and initial connect and the state
2097 * should be cleaned up.
2099 gdb_breakpoint_remove_all();
2103 addr = strtoull(p, (char **)&p, 16);
2104 gdb_set_cpu_pc(s, addr);
2110 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2111 if (s->signal == -1)
2116 if (strncmp(p, "Cont", 4) == 0) {
2117 int res_signal, res_thread;
2121 put_packet(s, "vCont;c;C;s;S");
2136 if (action == 'C' || action == 'S') {
2137 signal = strtoul(p, (char **)&p, 16);
2138 } else if (action != 'c' && action != 's') {
2144 thread = strtoull(p+1, (char **)&p, 16);
2146 action = tolower(action);
2147 if (res == 0 || (res == 'c' && action == 's')) {
2149 res_signal = signal;
2150 res_thread = thread;
2154 if (res_thread != -1 && res_thread != 0) {
2155 env = find_cpu(res_thread);
2157 put_packet(s, "E22");
2163 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2165 s->signal = res_signal;
2171 goto unknown_command;
2174 #ifdef CONFIG_USER_ONLY
2175 /* Kill the target */
2176 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2181 gdb_breakpoint_remove_all();
2182 gdb_syscall_mode = GDB_SYS_DISABLED;
2184 put_packet(s, "OK");
2188 addr = strtoull(p, (char **)&p, 16);
2189 gdb_set_cpu_pc(s, addr);
2191 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags);
2199 ret = strtoull(p, (char **)&p, 16);
2202 err = strtoull(p, (char **)&p, 16);
2209 if (s->current_syscall_cb) {
2210 s->current_syscall_cb(ENV_GET_CPU(s->c_cpu), ret, err);
2211 s->current_syscall_cb = NULL;
2214 put_packet(s, "T02");
2221 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2224 for (addr = 0; addr < num_g_regs; addr++) {
2225 reg_size = gdb_read_register(ENV_GET_CPU(s->g_cpu),
2226 mem_buf + len, addr);
2229 memtohex(buf, mem_buf, len);
2233 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2235 registers = mem_buf;
2236 len = strlen(p) / 2;
2237 hextomem((uint8_t *)registers, p, len);
2238 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2239 reg_size = gdb_write_register(ENV_GET_CPU(s->g_cpu), registers,
2242 registers += reg_size;
2244 put_packet(s, "OK");
2247 addr = strtoull(p, (char **)&p, 16);
2250 len = strtoull(p, NULL, 16);
2251 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2252 put_packet (s, "E14");
2254 memtohex(buf, mem_buf, len);
2259 addr = strtoull(p, (char **)&p, 16);
2262 len = strtoull(p, (char **)&p, 16);
2265 hextomem(mem_buf, p, len);
2266 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2267 put_packet(s, "E14");
2269 put_packet(s, "OK");
2273 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2274 This works, but can be very slow. Anything new enough to
2275 understand XML also knows how to use this properly. */
2277 goto unknown_command;
2278 addr = strtoull(p, (char **)&p, 16);
2279 reg_size = gdb_read_register(ENV_GET_CPU(s->g_cpu), mem_buf, addr);
2281 memtohex(buf, mem_buf, reg_size);
2284 put_packet(s, "E14");
2289 goto unknown_command;
2290 addr = strtoull(p, (char **)&p, 16);
2293 reg_size = strlen(p) / 2;
2294 hextomem(mem_buf, p, reg_size);
2295 gdb_write_register(ENV_GET_CPU(s->g_cpu), mem_buf, addr);
2296 put_packet(s, "OK");
2300 type = strtoul(p, (char **)&p, 16);
2303 addr = strtoull(p, (char **)&p, 16);
2306 len = strtoull(p, (char **)&p, 16);
2308 res = gdb_breakpoint_insert(addr, len, type);
2310 res = gdb_breakpoint_remove(addr, len, type);
2312 put_packet(s, "OK");
2313 else if (res == -ENOSYS)
2316 put_packet(s, "E22");
2320 thread = strtoull(p, (char **)&p, 16);
2321 if (thread == -1 || thread == 0) {
2322 put_packet(s, "OK");
2325 env = find_cpu(thread);
2327 put_packet(s, "E22");
2333 put_packet(s, "OK");
2337 put_packet(s, "OK");
2340 put_packet(s, "E22");
2345 thread = strtoull(p, (char **)&p, 16);
2346 env = find_cpu(thread);
2349 put_packet(s, "OK");
2351 put_packet(s, "E22");
2356 /* parse any 'q' packets here */
2357 if (!strcmp(p,"qemu.sstepbits")) {
2358 /* Query Breakpoint bit definitions */
2359 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2365 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2366 /* Display or change the sstep_flags */
2369 /* Display current setting */
2370 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2375 type = strtoul(p, (char **)&p, 16);
2377 put_packet(s, "OK");
2379 } else if (strcmp(p,"C") == 0) {
2380 /* "Current thread" remains vague in the spec, so always return
2381 * the first CPU (gdb returns the first thread). */
2382 put_packet(s, "QC1");
2384 } else if (strcmp(p,"fThreadInfo") == 0) {
2385 s->query_cpu = first_cpu;
2386 goto report_cpuinfo;
2387 } else if (strcmp(p,"sThreadInfo") == 0) {
2390 snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu));
2392 s->query_cpu = s->query_cpu->next_cpu;
2396 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2397 thread = strtoull(p+16, (char **)&p, 16);
2398 env = find_cpu(thread);
2400 CPUState *cpu = ENV_GET_CPU(env);
2401 cpu_synchronize_state(cpu);
2402 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2403 "CPU#%d [%s]", cpu->cpu_index,
2404 cpu->halted ? "halted " : "running");
2405 memtohex(buf, mem_buf, len);
2410 #ifdef CONFIG_USER_ONLY
2411 else if (strncmp(p, "Offsets", 7) == 0) {
2412 TaskState *ts = s->c_cpu->opaque;
2414 snprintf(buf, sizeof(buf),
2415 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2416 ";Bss=" TARGET_ABI_FMT_lx,
2417 ts->info->code_offset,
2418 ts->info->data_offset,
2419 ts->info->data_offset);
2423 #else /* !CONFIG_USER_ONLY */
2424 else if (strncmp(p, "Rcmd,", 5) == 0) {
2425 int len = strlen(p + 5);
2427 if ((len % 2) != 0) {
2428 put_packet(s, "E01");
2431 hextomem(mem_buf, p + 5, len);
2434 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2435 put_packet(s, "OK");
2438 #endif /* !CONFIG_USER_ONLY */
2439 if (strncmp(p, "Supported", 9) == 0) {
2440 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2442 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2448 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2450 target_ulong total_len;
2454 xml = get_feature_xml(p, &p);
2456 snprintf(buf, sizeof(buf), "E00");
2463 addr = strtoul(p, (char **)&p, 16);
2466 len = strtoul(p, (char **)&p, 16);
2468 total_len = strlen(xml);
2469 if (addr > total_len) {
2470 snprintf(buf, sizeof(buf), "E00");
2474 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2475 len = (MAX_PACKET_LENGTH - 5) / 2;
2476 if (len < total_len - addr) {
2478 len = memtox(buf + 1, xml + addr, len);
2481 len = memtox(buf + 1, xml + addr, total_len - addr);
2483 put_packet_binary(s, buf, len + 1);
2487 /* Unrecognised 'q' command. */
2488 goto unknown_command;
2492 /* put empty packet */
2500 void gdb_set_stop_cpu(CPUState *cpu)
2502 CPUArchState *env = cpu->env_ptr;
2504 gdbserver_state->c_cpu = env;
2505 gdbserver_state->g_cpu = env;
2508 #ifndef CONFIG_USER_ONLY
2509 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2511 GDBState *s = gdbserver_state;
2512 CPUArchState *env = s->c_cpu;
2513 CPUState *cpu = ENV_GET_CPU(env);
2518 if (running || s->state == RS_INACTIVE) {
2521 /* Is there a GDB syscall waiting to be sent? */
2522 if (s->current_syscall_cb) {
2523 put_packet(s, s->syscall_buf);
2527 case RUN_STATE_DEBUG:
2528 if (env->watchpoint_hit) {
2529 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2540 snprintf(buf, sizeof(buf),
2541 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2542 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2543 env->watchpoint_hit->vaddr);
2544 env->watchpoint_hit = NULL;
2548 ret = GDB_SIGNAL_TRAP;
2550 case RUN_STATE_PAUSED:
2551 ret = GDB_SIGNAL_INT;
2553 case RUN_STATE_SHUTDOWN:
2554 ret = GDB_SIGNAL_QUIT;
2556 case RUN_STATE_IO_ERROR:
2557 ret = GDB_SIGNAL_IO;
2559 case RUN_STATE_WATCHDOG:
2560 ret = GDB_SIGNAL_ALRM;
2562 case RUN_STATE_INTERNAL_ERROR:
2563 ret = GDB_SIGNAL_ABRT;
2565 case RUN_STATE_SAVE_VM:
2566 case RUN_STATE_RESTORE_VM:
2568 case RUN_STATE_FINISH_MIGRATE:
2569 ret = GDB_SIGNAL_XCPU;
2572 ret = GDB_SIGNAL_UNKNOWN;
2575 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2580 /* disable single step if it was enabled */
2581 cpu_single_step(cpu, 0);
2585 /* Send a gdb syscall request.
2586 This accepts limited printf-style format specifiers, specifically:
2587 %x - target_ulong argument printed in hex.
2588 %lx - 64-bit argument printed in hex.
2589 %s - string pointer (target_ulong) and length (int) pair. */
2590 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2599 s = gdbserver_state;
2602 s->current_syscall_cb = cb;
2603 #ifndef CONFIG_USER_ONLY
2604 vm_stop(RUN_STATE_DEBUG);
2608 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2615 addr = va_arg(va, target_ulong);
2616 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2619 if (*(fmt++) != 'x')
2621 i64 = va_arg(va, uint64_t);
2622 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2625 addr = va_arg(va, target_ulong);
2626 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2627 addr, va_arg(va, int));
2631 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2641 #ifdef CONFIG_USER_ONLY
2642 put_packet(s, s->syscall_buf);
2643 gdb_handlesig(ENV_GET_CPU(s->c_cpu), 0);
2645 /* In this case wait to send the syscall packet until notification that
2646 the CPU has stopped. This must be done because if the packet is sent
2647 now the reply from the syscall request could be received while the CPU
2648 is still in the running state, which can cause packets to be dropped
2649 and state transition 'T' packets to be sent while the syscall is still
2651 cpu_exit(ENV_GET_CPU(s->c_cpu));
2655 static void gdb_read_byte(GDBState *s, int ch)
2660 #ifndef CONFIG_USER_ONLY
2661 if (s->last_packet_len) {
2662 /* Waiting for a response to the last packet. If we see the start
2663 of a new command then abandon the previous response. */
2666 printf("Got NACK, retransmitting\n");
2668 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2672 printf("Got ACK\n");
2674 printf("Got '%c' when expecting ACK/NACK\n", ch);
2676 if (ch == '+' || ch == '$')
2677 s->last_packet_len = 0;
2681 if (runstate_is_running()) {
2682 /* when the CPU is running, we cannot do anything except stop
2683 it when receiving a char */
2684 vm_stop(RUN_STATE_PAUSED);
2691 s->line_buf_index = 0;
2692 s->state = RS_GETLINE;
2697 s->state = RS_CHKSUM1;
2698 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2701 s->line_buf[s->line_buf_index++] = ch;
2705 s->line_buf[s->line_buf_index] = '\0';
2706 s->line_csum = fromhex(ch) << 4;
2707 s->state = RS_CHKSUM2;
2710 s->line_csum |= fromhex(ch);
2712 for(i = 0; i < s->line_buf_index; i++) {
2713 csum += s->line_buf[i];
2715 if (s->line_csum != (csum & 0xff)) {
2717 put_buffer(s, &reply, 1);
2721 put_buffer(s, &reply, 1);
2722 s->state = gdb_handle_packet(s, s->line_buf);
2731 /* Tell the remote gdb that the process has exited. */
2732 void gdb_exit(CPUArchState *env, int code)
2737 s = gdbserver_state;
2741 #ifdef CONFIG_USER_ONLY
2742 if (gdbserver_fd < 0 || s->fd < 0) {
2747 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2750 #ifndef CONFIG_USER_ONLY
2752 qemu_chr_delete(s->chr);
2757 #ifdef CONFIG_USER_ONLY
2763 s = gdbserver_state;
2765 if (gdbserver_fd < 0 || s->fd < 0)
2772 gdb_handlesig(CPUState *cpu, int sig)
2774 CPUArchState *env = cpu->env_ptr;
2779 s = gdbserver_state;
2780 if (gdbserver_fd < 0 || s->fd < 0) {
2784 /* disable single step if it was enabled */
2785 cpu_single_step(cpu, 0);
2789 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2792 /* put_packet() might have detected that the peer terminated the
2800 s->running_state = 0;
2801 while (s->running_state == 0) {
2802 n = read(s->fd, buf, 256);
2806 for (i = 0; i < n; i++) {
2807 gdb_read_byte(s, buf[i]);
2809 } else if (n == 0 || errno != EAGAIN) {
2810 /* XXX: Connection closed. Should probably wait for another
2811 connection before continuing. */
2820 /* Tell the remote gdb that the process has exited due to SIG. */
2821 void gdb_signalled(CPUArchState *env, int sig)
2826 s = gdbserver_state;
2827 if (gdbserver_fd < 0 || s->fd < 0) {
2831 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2835 static void gdb_accept(void)
2838 struct sockaddr_in sockaddr;
2843 len = sizeof(sockaddr);
2844 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2845 if (fd < 0 && errno != EINTR) {
2848 } else if (fd >= 0) {
2850 fcntl(fd, F_SETFD, FD_CLOEXEC);
2856 /* set short latency */
2857 socket_set_nodelay(fd);
2859 s = g_malloc0(sizeof(GDBState));
2860 s->c_cpu = first_cpu->env_ptr;
2861 s->g_cpu = first_cpu->env_ptr;
2865 gdbserver_state = s;
2867 fcntl(fd, F_SETFL, O_NONBLOCK);
2870 static int gdbserver_open(int port)
2872 struct sockaddr_in sockaddr;
2875 fd = socket(PF_INET, SOCK_STREAM, 0);
2881 fcntl(fd, F_SETFD, FD_CLOEXEC);
2884 /* allow fast reuse */
2886 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
2888 sockaddr.sin_family = AF_INET;
2889 sockaddr.sin_port = htons(port);
2890 sockaddr.sin_addr.s_addr = 0;
2891 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2897 ret = listen(fd, 0);
2906 int gdbserver_start(int port)
2908 gdbserver_fd = gdbserver_open(port);
2909 if (gdbserver_fd < 0)
2911 /* accept connections */
2916 /* Disable gdb stub for child processes. */
2917 void gdbserver_fork(CPUArchState *env)
2919 GDBState *s = gdbserver_state;
2920 if (gdbserver_fd < 0 || s->fd < 0)
2924 cpu_breakpoint_remove_all(env, BP_GDB);
2925 cpu_watchpoint_remove_all(env, BP_GDB);
2928 static int gdb_chr_can_receive(void *opaque)
2930 /* We can handle an arbitrarily large amount of data.
2931 Pick the maximum packet size, which is as good as anything. */
2932 return MAX_PACKET_LENGTH;
2935 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2939 for (i = 0; i < size; i++) {
2940 gdb_read_byte(gdbserver_state, buf[i]);
2944 static void gdb_chr_event(void *opaque, int event)
2947 case CHR_EVENT_OPENED:
2948 vm_stop(RUN_STATE_PAUSED);
2956 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2958 char buf[MAX_PACKET_LENGTH];
2961 if (len > (MAX_PACKET_LENGTH/2) - 1)
2962 len = (MAX_PACKET_LENGTH/2) - 1;
2963 memtohex(buf + 1, (uint8_t *)msg, len);
2967 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2969 const char *p = (const char *)buf;
2972 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2974 if (len <= max_sz) {
2975 gdb_monitor_output(gdbserver_state, p, len);
2978 gdb_monitor_output(gdbserver_state, p, max_sz);
2986 static void gdb_sigterm_handler(int signal)
2988 if (runstate_is_running()) {
2989 vm_stop(RUN_STATE_PAUSED);
2994 int gdbserver_start(const char *device)
2997 char gdbstub_device_name[128];
2998 CharDriverState *chr = NULL;
2999 CharDriverState *mon_chr;
3003 if (strcmp(device, "none") != 0) {
3004 if (strstart(device, "tcp:", NULL)) {
3005 /* enforce required TCP attributes */
3006 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3007 "%s,nowait,nodelay,server", device);
3008 device = gdbstub_device_name;
3011 else if (strcmp(device, "stdio") == 0) {
3012 struct sigaction act;
3014 memset(&act, 0, sizeof(act));
3015 act.sa_handler = gdb_sigterm_handler;
3016 sigaction(SIGINT, &act, NULL);
3019 chr = qemu_chr_new("gdb", device, NULL);
3023 qemu_chr_fe_claim_no_fail(chr);
3024 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3025 gdb_chr_event, NULL);
3028 s = gdbserver_state;
3030 s = g_malloc0(sizeof(GDBState));
3031 gdbserver_state = s;
3033 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3035 /* Initialize a monitor terminal for gdb */
3036 mon_chr = g_malloc0(sizeof(*mon_chr));
3037 mon_chr->chr_write = gdb_monitor_write;
3038 monitor_init(mon_chr, 0);
3041 qemu_chr_delete(s->chr);
3042 mon_chr = s->mon_chr;
3043 memset(s, 0, sizeof(GDBState));
3045 s->c_cpu = first_cpu->env_ptr;
3046 s->g_cpu = first_cpu->env_ptr;
3048 s->state = chr ? RS_IDLE : RS_INACTIVE;
3049 s->mon_chr = mon_chr;
3050 s->current_syscall_cb = NULL;