2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
32 #ifndef M25P80_ERR_DEBUG
33 #define M25P80_ERR_DEBUG 0
36 #define DB_PRINT_L(level, ...) do { \
37 if (M25P80_ERR_DEBUG > (level)) { \
38 fprintf(stderr, ": %s: ", __func__); \
39 fprintf(stderr, ## __VA_ARGS__); \
43 /* Fields for FlashPartInfo->flags */
45 /* erase capabilities */
48 /* set to allow the page program command to write 0s back to 1. Useful for
49 * modelling EEPROM with SPI flash command set
53 /* 16 MiB max in 3 byte address mode */
54 #define MAX_3BYTES_SIZE 0x1000000
56 #define SPI_NOR_MAX_ID_LEN 6
58 typedef struct FlashPartInfo {
59 const char *part_name;
61 * This array stores the ID bytes.
62 * The first three bytes are the JEDIC ID.
63 * JEDEC ID zero means "no ID" (mostly older chips).
65 uint8_t id[SPI_NOR_MAX_ID_LEN];
67 /* there is confusion between manufacturers as to what a sector is. In this
68 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
69 * command (opcode 0xd8).
77 /* adapted from linux */
78 /* Used when the "_ext_id" is two bytes at most */
79 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
80 .part_name = _part_name,\
82 ((_jedec_id) >> 16) & 0xff,\
83 ((_jedec_id) >> 8) & 0xff,\
85 ((_ext_id) >> 8) & 0xff,\
88 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
89 .sector_size = (_sector_size),\
90 .n_sectors = (_n_sectors),\
94 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
95 .part_name = _part_name,\
97 ((_jedec_id) >> 16) & 0xff,\
98 ((_jedec_id) >> 8) & 0xff,\
100 ((_ext_id) >> 16) & 0xff,\
101 ((_ext_id) >> 8) & 0xff,\
105 .sector_size = (_sector_size),\
106 .n_sectors = (_n_sectors),\
110 #define JEDEC_NUMONYX 0x20
111 #define JEDEC_WINBOND 0xEF
112 #define JEDEC_SPANSION 0x01
114 /* Numonyx (Micron) Configuration register macros */
115 #define VCFG_DUMMY 0x1
116 #define VCFG_WRAP_SEQUENTIAL 0x2
117 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
118 #define NVCFG_XIP_MODE_MASK (7 << 9)
119 #define VCFG_XIP_MODE_ENABLED (1 << 3)
120 #define CFG_DUMMY_CLK_LEN 4
121 #define NVCFG_DUMMY_CLK_POS 12
122 #define VCFG_DUMMY_CLK_POS 4
123 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
124 #define EVCFG_VPP_ACCELERATOR (1 << 3)
125 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
126 #define NVCFG_DUAL_IO_MASK (1 << 2)
127 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
128 #define NVCFG_QUAD_IO_MASK (1 << 3)
129 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
130 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
131 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
133 /* Numonyx (Micron) Flag Status Register macros */
134 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
135 #define FSR_FLASH_READY (1 << 7)
137 /* Spansion configuration registers macros. */
138 #define SPANSION_QUAD_CFG_POS 0
139 #define SPANSION_QUAD_CFG_LEN 1
140 #define SPANSION_DUMMY_CLK_POS 0
141 #define SPANSION_DUMMY_CLK_LEN 4
142 #define SPANSION_ADDR_LEN_POS 7
143 #define SPANSION_ADDR_LEN_LEN 1
146 * Spansion read mode command length in bytes,
147 * the mode is currently not supported.
150 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152 static const FlashPartInfo known_devices[] = {
153 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
154 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
155 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
157 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
158 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
159 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
161 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
162 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
163 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
164 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
166 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
168 /* Atmel EEPROMS - it is assumed, that don't care bit in command
169 * is set to 0. Block protection is not supported.
171 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
172 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
175 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
176 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
177 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
178 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
179 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
182 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
183 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
185 /* Intel/Numonyx -- xxxs33b */
186 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
187 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
188 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
189 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
192 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
193 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
194 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
195 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
196 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
197 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
198 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
199 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
200 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
201 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
202 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
203 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
206 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
207 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
208 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
209 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
210 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
211 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
212 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
213 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
214 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
215 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
216 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
217 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) },
218 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) },
220 /* Spansion -- single (large) sector size only, at least
221 * for the chips listed here (without boot sectors).
223 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
224 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
225 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
226 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
227 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
228 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
229 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
230 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
231 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
232 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
233 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
234 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
235 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
236 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
237 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
238 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
239 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
241 /* Spansion -- boot sectors support */
242 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
243 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
245 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
246 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
247 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
248 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
249 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
250 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
251 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
252 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
253 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
254 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
256 /* ST Microelectronics -- newer production may have feature updates */
257 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
258 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
259 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
260 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
261 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
262 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
263 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
264 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
265 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
266 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
268 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
269 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
270 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
272 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
273 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
274 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
276 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
277 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
278 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
279 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
281 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
282 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
283 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
284 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
285 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
286 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
287 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
288 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
289 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
290 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
291 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
292 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
293 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
294 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
332 ERASE4_SECTOR = 0xdc,
334 EN_4BYTE_ADDR = 0xB7,
335 EX_4BYTE_ADDR = 0xE9,
337 EXTEND_ADDR_READ = 0xC8,
338 EXTEND_ADDR_WRITE = 0xC5,
344 * Micron: 0x35 - enable QPI
345 * Spansion: 0x35 - read control register
364 STATE_COLLECTING_DATA,
365 STATE_COLLECTING_VAR_LEN_DATA,
377 typedef struct Flash {
390 uint8_t needed_bytes;
391 uint8_t cmd_in_progress;
393 uint32_t nonvolatile_cfg;
394 /* Configuration register for Macronix */
395 uint32_t volatile_cfg;
396 uint32_t enh_volatile_cfg;
397 /* Spansion cfg registers. */
398 uint8_t spansion_cr1nv;
399 uint8_t spansion_cr2nv;
400 uint8_t spansion_cr3nv;
401 uint8_t spansion_cr4nv;
402 uint8_t spansion_cr1v;
403 uint8_t spansion_cr2v;
404 uint8_t spansion_cr3v;
405 uint8_t spansion_cr4v;
407 bool four_bytes_address_mode;
414 const FlashPartInfo *pi;
418 typedef struct M25P80Class {
419 SSISlaveClass parent_class;
423 #define TYPE_M25P80 "m25p80-generic"
424 #define M25P80(obj) \
425 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
426 #define M25P80_CLASS(klass) \
427 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
428 #define M25P80_GET_CLASS(obj) \
429 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
431 static inline Manufacturer get_man(Flash *s)
433 switch (s->pi->id[0]) {
447 static void blk_sync_complete(void *opaque, int ret)
449 /* do nothing. Masters do not directly interact with the backing store,
450 * only the working copy so no mutexing required.
454 static void flash_sync_page(Flash *s, int page)
458 if (!s->blk || blk_is_read_only(s->blk)) {
462 qemu_iovec_init(&iov, 1);
463 qemu_iovec_add(&iov, s->storage + page * s->pi->page_size,
465 blk_aio_pwritev(s->blk, page * s->pi->page_size, &iov, 0,
466 blk_sync_complete, NULL);
469 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
473 if (!s->blk || blk_is_read_only(s->blk)) {
477 assert(!(len % BDRV_SECTOR_SIZE));
478 qemu_iovec_init(&iov, 1);
479 qemu_iovec_add(&iov, s->storage + off, len);
480 blk_aio_pwritev(s->blk, off, &iov, 0, blk_sync_complete, NULL);
483 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
486 uint8_t capa_to_assert = 0;
492 capa_to_assert = ER_4K;
497 capa_to_assert = ER_32K;
501 len = s->pi->sector_size;
510 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
511 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
512 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
516 if (!s->write_enable) {
517 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
520 memset(s->storage + offset, 0xff, len);
521 flash_sync_area(s, offset, len);
524 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
526 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
527 flash_sync_page(s, s->dirty_page);
528 s->dirty_page = newpage;
533 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
535 int64_t page = addr / s->pi->page_size;
536 uint8_t prev = s->storage[s->cur_addr];
538 if (!s->write_enable) {
539 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
542 if ((prev ^ data) & data) {
543 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
544 " -> %" PRIx8 "\n", addr, prev, data);
547 if (s->pi->flags & EEPROM) {
548 s->storage[s->cur_addr] = data;
550 s->storage[s->cur_addr] &= data;
553 flash_sync_dirty(s, page);
554 s->dirty_page = page;
557 static inline int get_addr_length(Flash *s)
559 /* check if eeprom is in use */
560 if (s->pi->flags == EEPROM) {
564 switch (s->cmd_in_progress) {
578 return s->four_bytes_address_mode ? 4 : 3;
582 static void complete_collecting_data(Flash *s)
588 for (i = 0; i < get_addr_length(s); ++i) {
590 s->cur_addr |= s->data[i];
593 if (get_addr_length(s) == 3) {
594 s->cur_addr += s->ear * MAX_3BYTES_SIZE;
597 s->state = STATE_IDLE;
599 switch (s->cmd_in_progress) {
605 s->state = STATE_PAGE_PROGRAM;
619 s->state = STATE_READ;
627 flash_erase(s, s->cur_addr, s->cmd_in_progress);
630 switch (get_man(s)) {
632 s->quad_enable = !!(s->data[1] & 0x02);
635 s->quad_enable = extract32(s->data[0], 6, 1);
637 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
643 if (s->write_enable) {
644 s->write_enable = false;
647 case EXTEND_ADDR_WRITE:
651 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
654 s->volatile_cfg = s->data[0];
657 s->enh_volatile_cfg = s->data[0];
664 static void reset_memory(Flash *s)
666 s->cmd_in_progress = NOP;
669 s->four_bytes_address_mode = false;
673 s->state = STATE_IDLE;
674 s->write_enable = false;
675 s->reset_enable = false;
676 s->quad_enable = false;
678 switch (get_man(s)) {
681 s->volatile_cfg |= VCFG_DUMMY;
682 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
683 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
684 != NVCFG_XIP_MODE_DISABLED) {
685 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
687 s->volatile_cfg |= deposit32(s->volatile_cfg,
690 extract32(s->nonvolatile_cfg,
695 s->enh_volatile_cfg = 0;
696 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
697 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
698 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
699 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
700 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
702 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
703 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
705 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
706 s->four_bytes_address_mode = true;
708 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
709 s->ear = s->size / MAX_3BYTES_SIZE - 1;
713 s->volatile_cfg = 0x7;
716 s->spansion_cr1v = s->spansion_cr1nv;
717 s->spansion_cr2v = s->spansion_cr2nv;
718 s->spansion_cr3v = s->spansion_cr3nv;
719 s->spansion_cr4v = s->spansion_cr4nv;
720 s->quad_enable = extract32(s->spansion_cr1v,
721 SPANSION_QUAD_CFG_POS,
722 SPANSION_QUAD_CFG_LEN
724 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
725 SPANSION_ADDR_LEN_POS,
726 SPANSION_ADDR_LEN_LEN
733 DB_PRINT_L(0, "Reset done.\n");
736 static void decode_fast_read_cmd(Flash *s)
738 s->needed_bytes = get_addr_length(s);
739 switch (get_man(s)) {
740 /* Dummy cycles - modeled with bytes writes instead of bits */
742 s->needed_bytes += 8;
745 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
748 if (extract32(s->volatile_cfg, 6, 2) == 1) {
749 s->needed_bytes += 6;
751 s->needed_bytes += 8;
755 s->needed_bytes += extract32(s->spansion_cr2v,
756 SPANSION_DUMMY_CLK_POS,
757 SPANSION_DUMMY_CLK_LEN
765 s->state = STATE_COLLECTING_DATA;
768 static void decode_dio_read_cmd(Flash *s)
770 s->needed_bytes = get_addr_length(s);
771 /* Dummy cycles modeled with bytes writes instead of bits */
772 switch (get_man(s)) {
774 s->needed_bytes += 8;
777 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
778 s->needed_bytes += extract32(s->spansion_cr2v,
779 SPANSION_DUMMY_CLK_POS,
780 SPANSION_DUMMY_CLK_LEN
784 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
787 switch (extract32(s->volatile_cfg, 6, 2)) {
789 s->needed_bytes += 6;
792 s->needed_bytes += 8;
795 s->needed_bytes += 4;
804 s->state = STATE_COLLECTING_DATA;
807 static void decode_qio_read_cmd(Flash *s)
809 s->needed_bytes = get_addr_length(s);
810 /* Dummy cycles modeled with bytes writes instead of bits */
811 switch (get_man(s)) {
813 s->needed_bytes += 8;
816 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
817 s->needed_bytes += extract32(s->spansion_cr2v,
818 SPANSION_DUMMY_CLK_POS,
819 SPANSION_DUMMY_CLK_LEN
823 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
826 switch (extract32(s->volatile_cfg, 6, 2)) {
828 s->needed_bytes += 4;
831 s->needed_bytes += 8;
834 s->needed_bytes += 6;
843 s->state = STATE_COLLECTING_DATA;
846 static void decode_new_cmd(Flash *s, uint32_t value)
848 s->cmd_in_progress = value;
850 DB_PRINT_L(0, "decoded new command:%x\n", value);
852 if (value != RESET_MEMORY) {
853 s->reset_enable = false;
871 s->needed_bytes = get_addr_length(s);
874 s->state = STATE_COLLECTING_DATA;
883 decode_fast_read_cmd(s);
888 decode_dio_read_cmd(s);
893 decode_qio_read_cmd(s);
897 if (s->write_enable) {
898 switch (get_man(s)) {
901 s->state = STATE_COLLECTING_DATA;
905 s->state = STATE_COLLECTING_VAR_LEN_DATA;
909 s->state = STATE_COLLECTING_DATA;
916 s->write_enable = false;
919 s->write_enable = true;
923 s->data[0] = (!!s->write_enable) << 1;
924 if (get_man(s) == MAN_MACRONIX) {
925 s->data[0] |= (!!s->quad_enable) << 6;
929 s->state = STATE_READING_DATA;
933 s->data[0] = FSR_FLASH_READY;
934 if (s->four_bytes_address_mode) {
935 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
939 s->state = STATE_READING_DATA;
943 DB_PRINT_L(0, "populated jedec code\n");
944 for (i = 0; i < s->pi->id_len; i++) {
945 s->data[i] = s->pi->id[i];
948 s->len = s->pi->id_len;
950 s->state = STATE_READING_DATA;
954 s->data[0] = s->volatile_cfg & 0xFF;
955 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
958 s->state = STATE_READING_DATA;
962 if (s->write_enable) {
963 DB_PRINT_L(0, "chip erase\n");
964 flash_erase(s, 0, BULK_ERASE);
966 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
973 s->four_bytes_address_mode = true;
976 s->four_bytes_address_mode = false;
978 case EXTEND_ADDR_READ:
982 s->state = STATE_READING_DATA;
984 case EXTEND_ADDR_WRITE:
985 if (s->write_enable) {
989 s->state = STATE_COLLECTING_DATA;
993 s->data[0] = s->nonvolatile_cfg & 0xFF;
994 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
997 s->state = STATE_READING_DATA;
1000 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1001 s->needed_bytes = 2;
1004 s->state = STATE_COLLECTING_DATA;
1008 s->data[0] = s->volatile_cfg & 0xFF;
1011 s->state = STATE_READING_DATA;
1014 if (s->write_enable) {
1015 s->needed_bytes = 1;
1018 s->state = STATE_COLLECTING_DATA;
1022 s->data[0] = s->enh_volatile_cfg & 0xFF;
1025 s->state = STATE_READING_DATA;
1028 if (s->write_enable) {
1029 s->needed_bytes = 1;
1032 s->state = STATE_COLLECTING_DATA;
1036 s->reset_enable = true;
1039 if (s->reset_enable) {
1044 switch (get_man(s)) {
1046 s->data[0] = (!!s->quad_enable) << 1;
1049 s->state = STATE_READING_DATA;
1052 s->quad_enable = true;
1059 s->quad_enable = false;
1062 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1067 static int m25p80_cs(SSISlave *ss, bool select)
1069 Flash *s = M25P80(ss);
1072 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1073 complete_collecting_data(s);
1077 s->state = STATE_IDLE;
1078 flash_sync_dirty(s, -1);
1081 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1086 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1088 Flash *s = M25P80(ss);
1093 case STATE_PAGE_PROGRAM:
1094 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
1095 s->cur_addr, (uint8_t)tx);
1096 flash_write8(s, s->cur_addr, (uint8_t)tx);
1101 r = s->storage[s->cur_addr];
1102 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
1104 s->cur_addr = (s->cur_addr + 1) % s->size;
1107 case STATE_COLLECTING_DATA:
1108 case STATE_COLLECTING_VAR_LEN_DATA:
1109 s->data[s->len] = (uint8_t)tx;
1112 if (s->len == s->needed_bytes) {
1113 complete_collecting_data(s);
1117 case STATE_READING_DATA:
1118 r = s->data[s->pos];
1120 if (s->pos == s->len) {
1122 s->state = STATE_IDLE;
1128 decode_new_cmd(s, (uint8_t)tx);
1135 static int m25p80_init(SSISlave *ss)
1138 Flash *s = M25P80(ss);
1139 M25P80Class *mc = M25P80_GET_CLASS(s);
1143 s->size = s->pi->sector_size * s->pi->n_sectors;
1146 /* FIXME use a qdev drive property instead of drive_get_next() */
1147 dinfo = drive_get_next(IF_MTD);
1150 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1151 s->blk = blk_by_legacy_dinfo(dinfo);
1152 blk_attach_dev_nofail(s->blk, s);
1154 s->storage = blk_blockalign(s->blk, s->size);
1156 /* FIXME: Move to late init */
1157 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1158 fprintf(stderr, "Failed to initialize SPI flash!\n");
1162 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1163 s->storage = blk_blockalign(NULL, s->size);
1164 memset(s->storage, 0xFF, s->size);
1170 static void m25p80_reset(DeviceState *d)
1172 Flash *s = M25P80(d);
1177 static void m25p80_pre_save(void *opaque)
1179 flash_sync_dirty((Flash *)opaque, -1);
1182 static Property m25p80_properties[] = {
1183 /* This is default value for Micron flash */
1184 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1185 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1186 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1187 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1188 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1189 DEFINE_PROP_END_OF_LIST(),
1192 static const VMStateDescription vmstate_m25p80 = {
1193 .name = "xilinx_spi",
1195 .minimum_version_id = 1,
1196 .pre_save = m25p80_pre_save,
1197 .fields = (VMStateField[]) {
1198 VMSTATE_UINT8(state, Flash),
1199 VMSTATE_UINT8_ARRAY(data, Flash, 16),
1200 VMSTATE_UINT32(len, Flash),
1201 VMSTATE_UINT32(pos, Flash),
1202 VMSTATE_UINT8(needed_bytes, Flash),
1203 VMSTATE_UINT8(cmd_in_progress, Flash),
1204 VMSTATE_UINT64(cur_addr, Flash),
1205 VMSTATE_BOOL(write_enable, Flash),
1206 VMSTATE_BOOL_V(reset_enable, Flash, 2),
1207 VMSTATE_UINT8_V(ear, Flash, 2),
1208 VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1209 VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1210 VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1211 VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1212 VMSTATE_BOOL_V(quad_enable, Flash, 3),
1213 VMSTATE_UINT8_V(spansion_cr1nv, Flash, 3),
1214 VMSTATE_UINT8_V(spansion_cr2nv, Flash, 3),
1215 VMSTATE_UINT8_V(spansion_cr3nv, Flash, 3),
1216 VMSTATE_UINT8_V(spansion_cr4nv, Flash, 3),
1217 VMSTATE_END_OF_LIST()
1221 static void m25p80_class_init(ObjectClass *klass, void *data)
1223 DeviceClass *dc = DEVICE_CLASS(klass);
1224 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1225 M25P80Class *mc = M25P80_CLASS(klass);
1227 k->init = m25p80_init;
1228 k->transfer = m25p80_transfer8;
1229 k->set_cs = m25p80_cs;
1230 k->cs_polarity = SSI_CS_LOW;
1231 dc->vmsd = &vmstate_m25p80;
1232 dc->props = m25p80_properties;
1233 dc->reset = m25p80_reset;
1237 static const TypeInfo m25p80_info = {
1238 .name = TYPE_M25P80,
1239 .parent = TYPE_SSI_SLAVE,
1240 .instance_size = sizeof(Flash),
1241 .class_size = sizeof(M25P80Class),
1245 static void m25p80_register_types(void)
1249 type_register_static(&m25p80_info);
1250 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1252 .name = known_devices[i].part_name,
1253 .parent = TYPE_M25P80,
1254 .class_init = m25p80_class_init,
1255 .class_data = (void *)&known_devices[i],
1261 type_init(m25p80_register_types)