2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
30 #include "hw/fw-path-provider.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
39 #include "migration/migration.h"
40 #include "mmu-hash64.h"
43 #include "hw/boards.h"
44 #include "hw/ppc/ppc.h"
45 #include "hw/loader.h"
47 #include "hw/ppc/spapr.h"
48 #include "hw/ppc/spapr_vio.h"
49 #include "hw/pci-host/spapr.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/pci/msi.h"
53 #include "hw/pci/pci.h"
54 #include "hw/scsi/scsi.h"
55 #include "hw/virtio/virtio-scsi.h"
57 #include "exec/address-spaces.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
64 #include "hw/compat.h"
65 #include "qemu-common.h"
69 /* SLOF memory layout:
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
77 * We load our kernel at 4M, leaving space for SLOF initial image
79 #define FDT_MAX_SIZE 0x100000
80 #define RTAS_MAX_SIZE 0x10000
81 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
82 #define FW_MAX_SIZE 0x400000
83 #define FW_FILE_NAME "slof.bin"
84 #define FW_OVERHEAD 0x2800000
85 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87 #define MIN_RMA_SLOF 128UL
89 #define TIMEBASE_FREQ 512000000ULL
91 #define PHANDLE_XICP 0x00001111
93 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95 static XICSState *try_create_xics(const char *type, int nr_servers,
96 int nr_irqs, Error **errp)
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
110 return XICS_COMMON(dev);
113 static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
116 XICSState *icp = NULL;
121 if (machine_kernel_irqchip_allowed(machine)) {
122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124 if (machine_kernel_irqchip_required(machine) && !icp) {
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
131 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
137 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
141 uint32_t servers_prop[smt_threads];
142 uint32_t gservers_prop[smt_threads * 2];
143 int index = ppc_get_vcpu_dt_id(cpu);
145 if (cpu->cpu_version) {
146 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
152 /* Build interrupt servers and gservers properties */
153 for (i = 0; i < smt_threads; i++) {
154 servers_prop[i] = cpu_to_be32(index + i);
155 /* Hack, direct the group queues back to cpu 0 */
156 gservers_prop[i*2] = cpu_to_be32(index + i);
157 gservers_prop[i*2 + 1] = 0;
159 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
160 servers_prop, sizeof(servers_prop));
164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
165 gservers_prop, sizeof(gservers_prop));
170 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
173 PowerPCCPU *cpu = POWERPC_CPU(cs);
174 int index = ppc_get_vcpu_dt_id(cpu);
175 uint32_t associativity[] = {cpu_to_be32(0x5),
179 cpu_to_be32(cs->numa_node),
182 /* Advertise NUMA via ibm,associativity */
183 if (nb_numa_nodes > 1) {
184 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
185 sizeof(associativity));
191 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
193 int ret = 0, offset, cpus_offset;
196 int smt = kvmppc_smt_threads();
197 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
200 PowerPCCPU *cpu = POWERPC_CPU(cs);
201 DeviceClass *dc = DEVICE_GET_CLASS(cs);
202 int index = ppc_get_vcpu_dt_id(cpu);
204 if ((index % smt) != 0) {
208 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
210 cpus_offset = fdt_path_offset(fdt, "/cpus");
211 if (cpus_offset < 0) {
212 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
214 if (cpus_offset < 0) {
218 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
220 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
226 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
227 pft_size_prop, sizeof(pft_size_prop));
232 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
237 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
238 ppc_get_compat_smt_threads(cpu));
247 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
250 size_t maxcells = maxsize / sizeof(uint32_t);
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
257 if (!sps->page_shift) {
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 return (p - prop) * sizeof(uint32_t);
280 static hwaddr spapr_node0_size(void)
282 MachineState *machine = MACHINE(qdev_get_machine());
286 for (i = 0; i < nb_numa_nodes; ++i) {
287 if (numa_info[i].node_mem) {
288 return MIN(pow2floor(numa_info[i].node_mem),
293 return machine->ram_size;
300 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
301 #exp, fdt_strerror(ret)); \
306 static void add_str(GString *s, const gchar *s1)
308 g_string_append_len(s, s1, strlen(s1) + 1);
311 static void *spapr_create_fdt_skel(hwaddr initrd_base,
315 const char *kernel_cmdline,
319 uint32_t start_prop = cpu_to_be32(initrd_base);
320 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
321 GString *hypertas = g_string_sized_new(256);
322 GString *qemu_hypertas = g_string_sized_new(256);
323 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
324 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
325 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
328 add_str(hypertas, "hcall-pft");
329 add_str(hypertas, "hcall-term");
330 add_str(hypertas, "hcall-dabr");
331 add_str(hypertas, "hcall-interrupt");
332 add_str(hypertas, "hcall-tce");
333 add_str(hypertas, "hcall-vio");
334 add_str(hypertas, "hcall-splpar");
335 add_str(hypertas, "hcall-bulk");
336 add_str(hypertas, "hcall-set-mode");
337 add_str(qemu_hypertas, "hcall-memop1");
339 fdt = g_malloc0(FDT_MAX_SIZE);
340 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
343 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
346 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
348 _FDT((fdt_finish_reservemap(fdt)));
351 _FDT((fdt_begin_node(fdt, "")));
352 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
353 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
354 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
379 if (qemu_get_vm_name()) {
380 _FDT((fdt_property_string(fdt, "ibm,partition-name",
381 qemu_get_vm_name())));
384 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
385 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
388 _FDT((fdt_begin_node(fdt, "chosen")));
390 /* Set Form1_affinity */
391 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
393 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
394 _FDT((fdt_property(fdt, "linux,initrd-start",
395 &start_prop, sizeof(start_prop))));
396 _FDT((fdt_property(fdt, "linux,initrd-end",
397 &end_prop, sizeof(end_prop))));
399 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
400 cpu_to_be64(kernel_size) };
402 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
404 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
408 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
412 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
414 _FDT((fdt_end_node(fdt)));
417 _FDT((fdt_begin_node(fdt, "rtas")));
419 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
420 add_str(hypertas, "hcall-multi-tce");
422 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
424 g_string_free(hypertas, TRUE);
425 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
426 qemu_hypertas->len)));
427 g_string_free(qemu_hypertas, TRUE);
429 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430 refpoints, sizeof(refpoints))));
432 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
433 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
434 RTAS_EVENT_SCAN_RATE)));
437 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
441 * According to PAPR, rtas ibm,os-term does not guarantee a return
442 * back to the guest cpu.
444 * While an additional ibm,extended-os-term property indicates that
445 * rtas call return will always occur. Set this property.
447 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
449 _FDT((fdt_end_node(fdt)));
451 /* interrupt controller */
452 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
454 _FDT((fdt_property_string(fdt, "device_type",
455 "PowerPC-External-Interrupt-Presentation")));
456 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
457 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
458 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
459 interrupt_server_ranges_prop,
460 sizeof(interrupt_server_ranges_prop))));
461 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
462 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
463 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
465 _FDT((fdt_end_node(fdt)));
468 _FDT((fdt_begin_node(fdt, "vdevice")));
470 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
471 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
472 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
473 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
474 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
475 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
477 _FDT((fdt_end_node(fdt)));
480 spapr_events_fdt_skel(fdt, epow_irq);
482 /* /hypervisor node */
484 uint8_t hypercall[16];
486 /* indicate KVM hypercall interface */
487 _FDT((fdt_begin_node(fdt, "hypervisor")));
488 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
489 if (kvmppc_has_cap_fixup_hcalls()) {
491 * Older KVM versions with older guest kernels were broken with the
492 * magic page, don't allow the guest to map it.
494 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
496 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
497 sizeof(hypercall))));
499 _FDT((fdt_end_node(fdt)));
502 _FDT((fdt_end_node(fdt))); /* close root node */
503 _FDT((fdt_finish(fdt)));
508 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
511 uint32_t associativity[] = {
512 cpu_to_be32(0x4), /* length */
513 cpu_to_be32(0x0), cpu_to_be32(0x0),
514 cpu_to_be32(0x0), cpu_to_be32(nodeid)
517 uint64_t mem_reg_property[2];
520 mem_reg_property[0] = cpu_to_be64(start);
521 mem_reg_property[1] = cpu_to_be64(size);
523 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
524 off = fdt_add_subnode(fdt, 0, mem_name);
526 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
527 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
528 sizeof(mem_reg_property))));
529 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
530 sizeof(associativity))));
534 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
536 MachineState *machine = MACHINE(spapr);
537 hwaddr mem_start, node_size;
538 int i, nb_nodes = nb_numa_nodes;
539 NodeInfo *nodes = numa_info;
542 /* No NUMA nodes, assume there is just one node with whole RAM */
543 if (!nb_numa_nodes) {
545 ramnode.node_mem = machine->ram_size;
549 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
550 if (!nodes[i].node_mem) {
553 if (mem_start >= machine->ram_size) {
556 node_size = nodes[i].node_mem;
557 if (node_size > machine->ram_size - mem_start) {
558 node_size = machine->ram_size - mem_start;
562 /* ppc_spapr_init() checks for rma_size <= node0_size already */
563 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
564 mem_start += spapr->rma_size;
565 node_size -= spapr->rma_size;
567 for ( ; node_size; ) {
568 hwaddr sizetmp = pow2floor(node_size);
570 /* mem_start != 0 here */
571 if (ctzl(mem_start) < ctzl(sizetmp)) {
572 sizetmp = 1ULL << ctzl(mem_start);
575 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
576 node_size -= sizetmp;
577 mem_start += sizetmp;
584 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
585 sPAPRMachineState *spapr)
587 PowerPCCPU *cpu = POWERPC_CPU(cs);
588 CPUPPCState *env = &cpu->env;
589 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
590 int index = ppc_get_vcpu_dt_id(cpu);
591 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
592 0xffffffff, 0xffffffff};
593 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
594 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
595 uint32_t page_sizes_prop[64];
596 size_t page_sizes_prop_size;
597 uint32_t vcpus_per_socket = smp_threads * smp_cores;
598 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
600 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
601 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
603 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
604 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
605 env->dcache_line_size)));
606 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
607 env->dcache_line_size)));
608 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
609 env->icache_line_size)));
610 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
611 env->icache_line_size)));
613 if (pcc->l1_dcache_size) {
614 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
615 pcc->l1_dcache_size)));
617 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
619 if (pcc->l1_icache_size) {
620 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
621 pcc->l1_icache_size)));
623 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
626 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
627 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
628 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
629 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
630 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
632 if (env->spr_cb[SPR_PURR].oea_read) {
633 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
636 if (env->mmu_model & POWERPC_MMU_1TSEG) {
637 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
638 segs, sizeof(segs))));
641 /* Advertise VMX/VSX (vector extensions) if available
642 * 0 / no property == no vector extensions
643 * 1 == VMX / Altivec available
644 * 2 == VSX available */
645 if (env->insns_flags & PPC_ALTIVEC) {
646 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
648 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
651 /* Advertise DFP (Decimal Floating Point) if available
652 * 0 / no property == no DFP
653 * 1 == DFP available */
654 if (env->insns_flags2 & PPC2_DFP) {
655 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
658 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
659 sizeof(page_sizes_prop));
660 if (page_sizes_prop_size) {
661 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
662 page_sizes_prop, page_sizes_prop_size)));
665 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
666 cs->cpu_index / vcpus_per_socket)));
668 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
669 pft_size_prop, sizeof(pft_size_prop))));
671 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
673 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
674 ppc_get_compat_smt_threads(cpu)));
677 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
682 int smt = kvmppc_smt_threads();
684 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
686 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
687 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
690 * We walk the CPUs in reverse order to ensure that CPU DT nodes
691 * created by fdt_add_subnode() end up in the right order in FDT
692 * for the guest kernel the enumerate the CPUs correctly.
694 CPU_FOREACH_REVERSE(cs) {
695 PowerPCCPU *cpu = POWERPC_CPU(cs);
696 int index = ppc_get_vcpu_dt_id(cpu);
697 DeviceClass *dc = DEVICE_GET_CLASS(cs);
700 if ((index % smt) != 0) {
704 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
705 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
708 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
714 * Adds ibm,dynamic-reconfiguration-memory node.
715 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
716 * of this device tree node.
718 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
720 MachineState *machine = MACHINE(spapr);
722 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
723 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
724 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
725 uint32_t *int_buf, *cur_index, buf_len;
726 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
729 * Allocate enough buffer size to fit in ibm,dynamic-memory
730 * or ibm,associativity-lookup-arrays
732 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
734 cur_index = int_buf = g_malloc0(buf_len);
736 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
738 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
739 sizeof(prop_lmb_size));
744 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
749 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
754 /* ibm,dynamic-memory */
755 int_buf[0] = cpu_to_be32(nr_lmbs);
757 for (i = 0; i < nr_lmbs; i++) {
758 sPAPRDRConnector *drc;
759 sPAPRDRConnectorClass *drck;
760 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
761 uint32_t *dynamic_memory = cur_index;
763 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
766 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
768 dynamic_memory[0] = cpu_to_be32(addr >> 32);
769 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
770 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
771 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
772 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
773 if (addr < machine->ram_size ||
774 memory_region_present(get_system_memory(), addr)) {
775 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
777 dynamic_memory[5] = cpu_to_be32(0);
780 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
782 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
787 /* ibm,associativity-lookup-arrays */
789 int_buf[0] = cpu_to_be32(nr_nodes);
790 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
792 for (i = 0; i < nr_nodes; i++) {
793 uint32_t associativity[] = {
799 memcpy(cur_index, associativity, sizeof(associativity));
802 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
803 (cur_index - int_buf) * sizeof(uint32_t));
809 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
810 target_ulong addr, target_ulong size,
811 bool cpu_update, bool memory_update)
813 void *fdt, *fdt_skel;
814 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
815 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
819 /* Create sceleton */
820 fdt_skel = g_malloc0(size);
821 _FDT((fdt_create(fdt_skel, size)));
822 _FDT((fdt_begin_node(fdt_skel, "")));
823 _FDT((fdt_end_node(fdt_skel)));
824 _FDT((fdt_finish(fdt_skel)));
825 fdt = g_malloc0(size);
826 _FDT((fdt_open_into(fdt_skel, fdt, size)));
829 /* Fixup cpu nodes */
831 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
834 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
835 if (memory_update && smc->dr_lmb_enabled) {
836 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
839 /* Pack resulting tree */
840 _FDT((fdt_pack(fdt)));
842 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
843 trace_spapr_cas_failed(size);
847 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
848 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
849 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
855 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
860 MachineState *machine = MACHINE(qdev_get_machine());
861 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
862 const char *boot_device = machine->boot_order;
869 fdt = g_malloc(FDT_MAX_SIZE);
871 /* open out the base tree into a temp buffer for the final tweaks */
872 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
874 ret = spapr_populate_memory(spapr, fdt);
876 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
880 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
882 fprintf(stderr, "couldn't setup vio devices in fdt\n");
886 QLIST_FOREACH(phb, &spapr->phbs, list) {
887 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
891 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
896 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
898 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
902 spapr_populate_cpus_dt_node(fdt, spapr);
904 bootlist = get_boot_devices_list(&cb, true);
905 if (cb && bootlist) {
906 int offset = fdt_path_offset(fdt, "/chosen");
910 for (i = 0; i < cb; i++) {
911 if (bootlist[i] == '\n') {
916 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
919 if (boot_device && strlen(boot_device)) {
920 int offset = fdt_path_offset(fdt, "/chosen");
925 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
928 if (!spapr->has_graphics) {
929 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
932 if (smc->dr_lmb_enabled) {
933 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
936 _FDT((fdt_pack(fdt)));
938 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
939 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
940 fdt_totalsize(fdt), FDT_MAX_SIZE);
944 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
945 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
951 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
953 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
956 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
958 CPUPPCState *env = &cpu->env;
961 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
962 env->gpr[3] = H_PRIVILEGE;
964 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
968 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
969 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
970 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
971 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
972 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
974 static void spapr_reset_htab(sPAPRMachineState *spapr)
979 /* allocate hash page table. For now we always make this 16mb,
980 * later we should probably make it scale to the size of guest
983 shift = kvmppc_reset_htab(spapr->htab_shift);
986 /* Kernel handles htab, we don't need to allocate one */
987 spapr->htab_shift = shift;
988 kvmppc_kern_htab = true;
990 /* Tell readers to update their file descriptor */
991 if (spapr->htab_fd >= 0) {
992 spapr->htab_fd_stale = true;
996 /* Allocate an htab if we don't yet have one */
997 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1001 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1003 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1004 DIRTY_HPTE(HPTE(spapr->htab, index));
1008 /* Update the RMA size if necessary */
1009 if (spapr->vrma_adjust) {
1010 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1015 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1017 bool matched = false;
1019 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1024 error_report("Device %s is not supported by this machine yet.",
1025 qdev_fw_name(DEVICE(sbdev)));
1033 * A guest reset will cause spapr->htab_fd to become stale if being used.
1034 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1036 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1040 if (spapr->htab_fd_stale) {
1041 close(spapr->htab_fd);
1042 spapr->htab_fd = kvmppc_get_htab_fd(false);
1043 if (spapr->htab_fd < 0) {
1044 error_report("Unable to open fd for reading hash table from KVM: "
1045 "%s", strerror(errno));
1048 spapr->htab_fd_stale = false;
1054 static void ppc_spapr_reset(void)
1056 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1057 PowerPCCPU *first_ppc_cpu;
1058 uint32_t rtas_limit;
1060 /* Check for unknown sysbus devices */
1061 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1063 /* Reset the hash table & recalc the RMA */
1064 spapr_reset_htab(spapr);
1066 qemu_devices_reset();
1069 * We place the device tree and RTAS just below either the top of the RMA,
1070 * or just below 2GB, whichever is lowere, so that it can be
1071 * processed with 32-bit real mode code if necessary
1073 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1074 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1075 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1078 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1081 /* Copy RTAS over */
1082 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1085 /* Set up the entry state */
1086 first_ppc_cpu = POWERPC_CPU(first_cpu);
1087 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1088 first_ppc_cpu->env.gpr[5] = 0;
1089 first_cpu->halted = 0;
1090 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1094 static void spapr_cpu_reset(void *opaque)
1096 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1097 PowerPCCPU *cpu = opaque;
1098 CPUState *cs = CPU(cpu);
1099 CPUPPCState *env = &cpu->env;
1103 /* All CPUs start halted. CPU0 is unhalted from the machine level
1104 * reset code and the rest are explicitly started up by the guest
1105 * using an RTAS call */
1108 env->spr[SPR_HIOR] = 0;
1110 env->external_htab = (uint8_t *)spapr->htab;
1111 if (kvm_enabled() && !env->external_htab) {
1113 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1114 * functions do the right thing.
1116 env->external_htab = (void *)1;
1118 env->htab_base = -1;
1120 * htab_mask is the mask used to normalize hash value to PTEG index.
1121 * htab_shift is log2 of hash table size.
1122 * We have 8 hpte per group, and each hpte is 16 bytes.
1123 * ie have 128 bytes per hpte entry.
1125 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1126 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1127 (spapr->htab_shift - 18);
1130 static void spapr_create_nvram(sPAPRMachineState *spapr)
1132 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1133 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1136 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
1139 qdev_init_nofail(dev);
1141 spapr->nvram = (struct sPAPRNVRAM *)dev;
1144 static void spapr_rtc_create(sPAPRMachineState *spapr)
1146 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1148 qdev_init_nofail(dev);
1151 object_property_add_alias(qdev_get_machine(), "rtc-time",
1152 OBJECT(spapr->rtc), "date", NULL);
1155 /* Returns whether we want to use VGA or not */
1156 static int spapr_vga_init(PCIBus *pci_bus)
1158 switch (vga_interface_type) {
1164 return pci_vga_init(pci_bus) != NULL;
1166 fprintf(stderr, "This vga model is not supported,"
1167 "currently it only supports -vga std\n");
1172 static int spapr_post_load(void *opaque, int version_id)
1174 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1177 /* In earlier versions, there was no separate qdev for the PAPR
1178 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1179 * So when migrating from those versions, poke the incoming offset
1180 * value into the RTC device */
1181 if (version_id < 3) {
1182 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1188 static bool version_before_3(void *opaque, int version_id)
1190 return version_id < 3;
1193 static const VMStateDescription vmstate_spapr = {
1196 .minimum_version_id = 1,
1197 .post_load = spapr_post_load,
1198 .fields = (VMStateField[]) {
1199 /* used to be @next_irq */
1200 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1203 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1205 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1206 VMSTATE_END_OF_LIST()
1210 static int htab_save_setup(QEMUFile *f, void *opaque)
1212 sPAPRMachineState *spapr = opaque;
1214 /* "Iteration" header */
1215 qemu_put_be32(f, spapr->htab_shift);
1218 spapr->htab_save_index = 0;
1219 spapr->htab_first_pass = true;
1221 assert(kvm_enabled());
1223 spapr->htab_fd = kvmppc_get_htab_fd(false);
1224 spapr->htab_fd_stale = false;
1225 if (spapr->htab_fd < 0) {
1226 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1236 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1239 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1240 int index = spapr->htab_save_index;
1241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1243 assert(spapr->htab_first_pass);
1248 /* Consume invalid HPTEs */
1249 while ((index < htabslots)
1250 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1252 CLEAN_HPTE(HPTE(spapr->htab, index));
1255 /* Consume valid HPTEs */
1257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1258 && HPTE_VALID(HPTE(spapr->htab, index))) {
1260 CLEAN_HPTE(HPTE(spapr->htab, index));
1263 if (index > chunkstart) {
1264 int n_valid = index - chunkstart;
1266 qemu_put_be32(f, chunkstart);
1267 qemu_put_be16(f, n_valid);
1268 qemu_put_be16(f, 0);
1269 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1270 HASH_PTE_SIZE_64 * n_valid);
1272 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1276 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1278 if (index >= htabslots) {
1279 assert(index == htabslots);
1281 spapr->htab_first_pass = false;
1283 spapr->htab_save_index = index;
1286 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1289 bool final = max_ns < 0;
1290 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1291 int examined = 0, sent = 0;
1292 int index = spapr->htab_save_index;
1293 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1295 assert(!spapr->htab_first_pass);
1298 int chunkstart, invalidstart;
1300 /* Consume non-dirty HPTEs */
1301 while ((index < htabslots)
1302 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1308 /* Consume valid dirty HPTEs */
1309 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1310 && HPTE_DIRTY(HPTE(spapr->htab, index))
1311 && HPTE_VALID(HPTE(spapr->htab, index))) {
1312 CLEAN_HPTE(HPTE(spapr->htab, index));
1317 invalidstart = index;
1318 /* Consume invalid dirty HPTEs */
1319 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1320 && HPTE_DIRTY(HPTE(spapr->htab, index))
1321 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1322 CLEAN_HPTE(HPTE(spapr->htab, index));
1327 if (index > chunkstart) {
1328 int n_valid = invalidstart - chunkstart;
1329 int n_invalid = index - invalidstart;
1331 qemu_put_be32(f, chunkstart);
1332 qemu_put_be16(f, n_valid);
1333 qemu_put_be16(f, n_invalid);
1334 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1335 HASH_PTE_SIZE_64 * n_valid);
1336 sent += index - chunkstart;
1338 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1343 if (examined >= htabslots) {
1347 if (index >= htabslots) {
1348 assert(index == htabslots);
1351 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1353 if (index >= htabslots) {
1354 assert(index == htabslots);
1358 spapr->htab_save_index = index;
1360 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1363 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1364 #define MAX_KVM_BUF_SIZE 2048
1366 static int htab_save_iterate(QEMUFile *f, void *opaque)
1368 sPAPRMachineState *spapr = opaque;
1371 /* Iteration header */
1372 qemu_put_be32(f, 0);
1375 assert(kvm_enabled());
1377 rc = spapr_check_htab_fd(spapr);
1382 rc = kvmppc_save_htab(f, spapr->htab_fd,
1383 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1387 } else if (spapr->htab_first_pass) {
1388 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1390 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1394 qemu_put_be32(f, 0);
1395 qemu_put_be16(f, 0);
1396 qemu_put_be16(f, 0);
1401 static int htab_save_complete(QEMUFile *f, void *opaque)
1403 sPAPRMachineState *spapr = opaque;
1405 /* Iteration header */
1406 qemu_put_be32(f, 0);
1411 assert(kvm_enabled());
1413 rc = spapr_check_htab_fd(spapr);
1418 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1422 close(spapr->htab_fd);
1423 spapr->htab_fd = -1;
1425 htab_save_later_pass(f, spapr, -1);
1429 qemu_put_be32(f, 0);
1430 qemu_put_be16(f, 0);
1431 qemu_put_be16(f, 0);
1436 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1438 sPAPRMachineState *spapr = opaque;
1439 uint32_t section_hdr;
1442 if (version_id < 1 || version_id > 1) {
1443 fprintf(stderr, "htab_load() bad version\n");
1447 section_hdr = qemu_get_be32(f);
1450 /* First section, just the hash shift */
1451 if (spapr->htab_shift != section_hdr) {
1452 error_report("htab_shift mismatch: source %d target %d",
1453 section_hdr, spapr->htab_shift);
1460 assert(kvm_enabled());
1462 fd = kvmppc_get_htab_fd(true);
1464 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1471 uint16_t n_valid, n_invalid;
1473 index = qemu_get_be32(f);
1474 n_valid = qemu_get_be16(f);
1475 n_invalid = qemu_get_be16(f);
1477 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1482 if ((index + n_valid + n_invalid) >
1483 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1484 /* Bad index in stream */
1485 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1486 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1493 qemu_get_buffer(f, HPTE(spapr->htab, index),
1494 HASH_PTE_SIZE_64 * n_valid);
1497 memset(HPTE(spapr->htab, index + n_valid), 0,
1498 HASH_PTE_SIZE_64 * n_invalid);
1505 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1520 static SaveVMHandlers savevm_htab_handlers = {
1521 .save_live_setup = htab_save_setup,
1522 .save_live_iterate = htab_save_iterate,
1523 .save_live_complete = htab_save_complete,
1524 .load_state = htab_load,
1527 static void spapr_boot_set(void *opaque, const char *boot_device,
1530 MachineState *machine = MACHINE(qdev_get_machine());
1531 machine->boot_order = g_strdup(boot_device);
1534 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1536 CPUPPCState *env = &cpu->env;
1538 /* Set time-base frequency to 512 MHz */
1539 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1541 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1542 * MSR[IP] should never be set.
1544 env->msr_mask &= ~(1 << 6);
1546 /* Tell KVM that we're in PAPR mode */
1547 if (kvm_enabled()) {
1548 kvmppc_set_papr(cpu);
1551 if (cpu->max_compat) {
1552 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1557 xics_cpu_setup(spapr->icp, cpu);
1559 qemu_register_reset(spapr_cpu_reset, cpu);
1563 * Reset routine for LMB DR devices.
1565 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1566 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1567 * when it walks all its children devices. LMB devices reset occurs
1568 * as part of spapr_ppc_reset().
1570 static void spapr_drc_reset(void *opaque)
1572 sPAPRDRConnector *drc = opaque;
1573 DeviceState *d = DEVICE(drc);
1580 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1582 MachineState *machine = MACHINE(spapr);
1583 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1584 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1587 for (i = 0; i < nr_lmbs; i++) {
1588 sPAPRDRConnector *drc;
1591 addr = i * lmb_size + spapr->hotplug_memory.base;
1592 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1594 qemu_register_reset(spapr_drc_reset, drc);
1599 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1600 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1601 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1603 static void spapr_validate_node_memory(MachineState *machine)
1607 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1608 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1609 error_report("Can't support memory configuration where RAM size "
1610 "0x" RAM_ADDR_FMT " or maxmem size "
1611 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1612 machine->ram_size, machine->maxram_size,
1613 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1617 for (i = 0; i < nb_numa_nodes; i++) {
1618 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1619 error_report("Can't support memory configuration where memory size"
1620 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1621 numa_info[i].node_mem, i,
1622 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1628 /* pSeries LPAR / sPAPR hardware init */
1629 static void ppc_spapr_init(MachineState *machine)
1631 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1632 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1633 const char *kernel_filename = machine->kernel_filename;
1634 const char *kernel_cmdline = machine->kernel_cmdline;
1635 const char *initrd_filename = machine->initrd_filename;
1639 MemoryRegion *sysmem = get_system_memory();
1640 MemoryRegion *ram = g_new(MemoryRegion, 1);
1641 MemoryRegion *rma_region;
1643 hwaddr rma_alloc_size;
1644 hwaddr node0_size = spapr_node0_size();
1645 uint32_t initrd_base = 0;
1646 long kernel_size = 0, initrd_size = 0;
1647 long load_limit, fw_size;
1648 bool kernel_le = false;
1651 msi_supported = true;
1653 QLIST_INIT(&spapr->phbs);
1655 cpu_ppc_hypercall = emulate_spapr_hypercall;
1657 /* Allocate RMA if necessary */
1658 rma_alloc_size = kvmppc_alloc_rma(&rma);
1660 if (rma_alloc_size == -1) {
1661 error_report("Unable to create RMA");
1665 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1666 spapr->rma_size = rma_alloc_size;
1668 spapr->rma_size = node0_size;
1670 /* With KVM, we don't actually know whether KVM supports an
1671 * unbounded RMA (PR KVM) or is limited by the hash table size
1672 * (HV KVM using VRMA), so we always assume the latter
1674 * In that case, we also limit the initial allocations for RTAS
1675 * etc... to 256M since we have no way to know what the VRMA size
1676 * is going to be as it depends on the size of the hash table
1677 * isn't determined yet.
1679 if (kvm_enabled()) {
1680 spapr->vrma_adjust = 1;
1681 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1685 if (spapr->rma_size > node0_size) {
1686 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1691 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1692 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1694 /* We aim for a hash table of size 1/128 the size of RAM. The
1695 * normal rule of thumb is 1/64 the size of RAM, but that's much
1696 * more than needed for the Linux guests we support. */
1697 spapr->htab_shift = 18; /* Minimum architected size */
1698 while (spapr->htab_shift <= 46) {
1699 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1702 spapr->htab_shift++;
1705 /* Set up Interrupt Controller before we create the VCPUs */
1706 spapr->icp = xics_system_init(machine,
1707 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1711 if (smc->dr_lmb_enabled) {
1712 spapr_validate_node_memory(machine);
1716 if (machine->cpu_model == NULL) {
1717 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1719 for (i = 0; i < smp_cpus; i++) {
1720 cpu = cpu_ppc_init(machine->cpu_model);
1722 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1725 spapr_cpu_init(spapr, cpu);
1728 if (kvm_enabled()) {
1729 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1730 kvmppc_enable_logical_ci_hcalls();
1731 kvmppc_enable_set_mode_hcall();
1735 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1737 memory_region_add_subregion(sysmem, 0, ram);
1739 if (rma_alloc_size && rma) {
1740 rma_region = g_new(MemoryRegion, 1);
1741 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1742 rma_alloc_size, rma);
1743 vmstate_register_ram_global(rma_region);
1744 memory_region_add_subregion(sysmem, 0, rma_region);
1747 /* initialize hotplug memory address space */
1748 if (machine->ram_size < machine->maxram_size) {
1749 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1751 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1752 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1753 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1757 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1758 SPAPR_HOTPLUG_MEM_ALIGN);
1759 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1760 "hotplug-memory", hotplug_mem_size);
1761 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1762 &spapr->hotplug_memory.mr);
1765 if (smc->dr_lmb_enabled) {
1766 spapr_create_lmb_dr_connectors(spapr);
1769 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1771 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1774 spapr->rtas_size = get_image_size(filename);
1775 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1776 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1777 error_report("Could not load LPAR rtas '%s'", filename);
1780 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1781 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1782 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1787 /* Set up EPOW events infrastructure */
1788 spapr_events_init(spapr);
1790 /* Set up the RTC RTAS interfaces */
1791 spapr_rtc_create(spapr);
1793 /* Set up VIO bus */
1794 spapr->vio_bus = spapr_vio_bus_init();
1796 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1797 if (serial_hds[i]) {
1798 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1802 /* We always have at least the nvram device on VIO */
1803 spapr_create_nvram(spapr);
1806 spapr_pci_rtas_init();
1808 phb = spapr_create_phb(spapr, 0);
1810 for (i = 0; i < nb_nics; i++) {
1811 NICInfo *nd = &nd_table[i];
1814 nd->model = g_strdup("ibmveth");
1817 if (strcmp(nd->model, "ibmveth") == 0) {
1818 spapr_vlan_create(spapr->vio_bus, nd);
1820 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1824 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1825 spapr_vscsi_create(spapr->vio_bus);
1829 if (spapr_vga_init(phb->bus)) {
1830 spapr->has_graphics = true;
1831 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1835 pci_create_simple(phb->bus, -1, "pci-ohci");
1837 if (spapr->has_graphics) {
1838 USBBus *usb_bus = usb_bus_find(-1);
1840 usb_create_simple(usb_bus, "usb-kbd");
1841 usb_create_simple(usb_bus, "usb-mouse");
1845 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1846 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1847 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1851 if (kernel_filename) {
1852 uint64_t lowaddr = 0;
1854 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1855 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1856 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1857 kernel_size = load_elf(kernel_filename,
1858 translate_kernel_address, NULL,
1859 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1860 kernel_le = kernel_size > 0;
1862 if (kernel_size < 0) {
1863 fprintf(stderr, "qemu: error loading %s: %s\n",
1864 kernel_filename, load_elf_strerror(kernel_size));
1869 if (initrd_filename) {
1870 /* Try to locate the initrd in the gap between the kernel
1871 * and the firmware. Add a bit of space just in case
1873 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1874 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1875 load_limit - initrd_base);
1876 if (initrd_size < 0) {
1877 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1887 if (bios_name == NULL) {
1888 bios_name = FW_FILE_NAME;
1890 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1892 error_report("Could not find LPAR firmware '%s'", bios_name);
1895 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1897 error_report("Could not load LPAR firmware '%s'", filename);
1902 /* FIXME: Should register things through the MachineState's qdev
1903 * interface, this is a legacy from the sPAPREnvironment structure
1904 * which predated MachineState but had a similar function */
1905 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1906 register_savevm_live(NULL, "spapr/htab", -1, 1,
1907 &savevm_htab_handlers, spapr);
1909 /* Prepare the device tree */
1910 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1911 kernel_size, kernel_le,
1913 spapr->check_exception_irq);
1914 assert(spapr->fdt_skel != NULL);
1917 QTAILQ_INIT(&spapr->ccs_list);
1918 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1920 qemu_register_boot_set(spapr_boot_set, spapr);
1923 static int spapr_kvm_type(const char *vm_type)
1929 if (!strcmp(vm_type, "HV")) {
1933 if (!strcmp(vm_type, "PR")) {
1937 error_report("Unknown kvm-type specified '%s'", vm_type);
1942 * Implementation of an interface to adjust firmware path
1943 * for the bootindex property handling.
1945 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1948 #define CAST(type, obj, name) \
1949 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1950 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1951 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1954 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1955 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1956 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1960 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1961 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1962 * in the top 16 bits of the 64-bit LUN
1964 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1965 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1966 (uint64_t)id << 48);
1967 } else if (virtio) {
1969 * We use SRP luns of the form 01000000 | (target << 8) | lun
1970 * in the top 32 bits of the 64-bit LUN
1971 * Note: the quote above is from SLOF and it is wrong,
1972 * the actual binding is:
1973 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1975 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1976 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1977 (uint64_t)id << 32);
1980 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1981 * in the top 32 bits of the 64-bit LUN
1983 unsigned usb_port = atoi(usb->port->path);
1984 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1985 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1986 (uint64_t)id << 32);
1991 /* Replace "pci" with "pci@800000020000000" */
1992 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1998 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2000 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2002 return g_strdup(spapr->kvm_type);
2005 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2007 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2009 g_free(spapr->kvm_type);
2010 spapr->kvm_type = g_strdup(value);
2013 static void spapr_machine_initfn(Object *obj)
2015 object_property_add_str(obj, "kvm-type",
2016 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2017 object_property_set_description(obj, "kvm-type",
2018 "Specifies the KVM virtualization mode (HV, PR)",
2022 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2026 cpu_synchronize_state(cs);
2027 ppc_cpu_do_system_reset(cs);
2030 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2035 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2039 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2040 uint32_t node, Error **errp)
2042 sPAPRDRConnector *drc;
2043 sPAPRDRConnectorClass *drck;
2044 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2045 int i, fdt_offset, fdt_size;
2049 * Check for DRC connectors and send hotplug notification to the
2050 * guest only in case of hotplugged memory. This allows cold plugged
2051 * memory to be specified at boot time.
2053 if (!dev->hotplugged) {
2057 for (i = 0; i < nr_lmbs; i++) {
2058 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2059 addr/SPAPR_MEMORY_BLOCK_SIZE);
2062 fdt = create_device_tree(&fdt_size);
2063 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2064 SPAPR_MEMORY_BLOCK_SIZE);
2066 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2067 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2068 addr += SPAPR_MEMORY_BLOCK_SIZE;
2070 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2073 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2074 uint32_t node, Error **errp)
2076 Error *local_err = NULL;
2077 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2078 PCDIMMDevice *dimm = PC_DIMM(dev);
2079 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2080 MemoryRegion *mr = ddc->get_memory_region(dimm);
2081 uint64_t align = memory_region_get_alignment(mr);
2082 uint64_t size = memory_region_size(mr);
2085 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2086 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2087 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2091 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2096 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2098 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2102 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2105 error_propagate(errp, local_err);
2108 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2109 DeviceState *dev, Error **errp)
2111 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2113 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2116 if (!smc->dr_lmb_enabled) {
2117 error_setg(errp, "Memory hotplug not supported for this machine");
2120 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2126 * Currently PowerPC kernel doesn't allow hot-adding memory to
2127 * memory-less node, but instead will silently add the memory
2128 * to the first node that has some memory. This causes two
2129 * unexpected behaviours for the user.
2131 * - Memory gets hotplugged to a different node than what the user
2133 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2134 * to memory-less node, a reboot will set things accordingly
2135 * and the previously hotplugged memory now ends in the right node.
2136 * This appears as if some memory moved from one node to another.
2138 * So until kernel starts supporting memory hotplug to memory-less
2139 * nodes, just prevent such attempts upfront in QEMU.
2141 if (nb_numa_nodes && !numa_info[node].node_mem) {
2142 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2147 spapr_memory_plug(hotplug_dev, dev, node, errp);
2151 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2152 DeviceState *dev, Error **errp)
2154 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2155 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2159 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2162 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2163 return HOTPLUG_HANDLER(machine);
2168 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2170 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2171 * socket means much for the paravirtualized PAPR platform) */
2172 return cpu_index / smp_threads / smp_cores;
2175 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2177 MachineClass *mc = MACHINE_CLASS(oc);
2178 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2179 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2180 NMIClass *nc = NMI_CLASS(oc);
2181 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2183 mc->init = ppc_spapr_init;
2184 mc->reset = ppc_spapr_reset;
2185 mc->block_default_type = IF_SCSI;
2186 mc->max_cpus = MAX_CPUMASK_BITS;
2187 mc->no_parallel = 1;
2188 mc->default_boot_order = "";
2189 mc->default_ram_size = 512 * M_BYTE;
2190 mc->kvm_type = spapr_kvm_type;
2191 mc->has_dynamic_sysbus = true;
2192 mc->pci_allow_0_address = true;
2193 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2194 hc->plug = spapr_machine_device_plug;
2195 hc->unplug = spapr_machine_device_unplug;
2196 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2198 smc->dr_lmb_enabled = false;
2199 fwc->get_dev_path = spapr_get_fw_dev_path;
2200 nc->nmi_monitor_handler = spapr_nmi;
2203 static const TypeInfo spapr_machine_info = {
2204 .name = TYPE_SPAPR_MACHINE,
2205 .parent = TYPE_MACHINE,
2207 .instance_size = sizeof(sPAPRMachineState),
2208 .instance_init = spapr_machine_initfn,
2209 .class_size = sizeof(sPAPRMachineClass),
2210 .class_init = spapr_machine_class_init,
2211 .interfaces = (InterfaceInfo[]) {
2212 { TYPE_FW_PATH_PROVIDER },
2214 { TYPE_HOTPLUG_HANDLER },
2219 #define SPAPR_COMPAT_2_3 \
2222 .driver = "spapr-pci-host-bridge",\
2223 .property = "dynamic-reconfiguration",\
2227 #define SPAPR_COMPAT_2_2 \
2231 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2232 .property = "mem_win_size",\
2233 .value = "0x20000000",\
2236 #define SPAPR_COMPAT_2_1 \
2240 static void spapr_compat_2_3(Object *obj)
2242 savevm_skip_section_footers();
2243 global_state_set_optional();
2246 static void spapr_compat_2_2(Object *obj)
2248 spapr_compat_2_3(obj);
2251 static void spapr_compat_2_1(Object *obj)
2253 spapr_compat_2_2(obj);
2256 static void spapr_machine_2_3_instance_init(Object *obj)
2258 spapr_compat_2_3(obj);
2259 spapr_machine_initfn(obj);
2262 static void spapr_machine_2_2_instance_init(Object *obj)
2264 spapr_compat_2_2(obj);
2265 spapr_machine_initfn(obj);
2268 static void spapr_machine_2_1_instance_init(Object *obj)
2270 spapr_compat_2_1(obj);
2271 spapr_machine_initfn(obj);
2274 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2276 MachineClass *mc = MACHINE_CLASS(oc);
2277 static GlobalProperty compat_props[] = {
2279 { /* end of list */ }
2282 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
2283 mc->compat_props = compat_props;
2286 static const TypeInfo spapr_machine_2_1_info = {
2287 .name = MACHINE_TYPE_NAME("pseries-2.1"),
2288 .parent = TYPE_SPAPR_MACHINE,
2289 .class_init = spapr_machine_2_1_class_init,
2290 .instance_init = spapr_machine_2_1_instance_init,
2293 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2295 static GlobalProperty compat_props[] = {
2297 { /* end of list */ }
2299 MachineClass *mc = MACHINE_CLASS(oc);
2301 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
2302 mc->compat_props = compat_props;
2305 static const TypeInfo spapr_machine_2_2_info = {
2306 .name = MACHINE_TYPE_NAME("pseries-2.2"),
2307 .parent = TYPE_SPAPR_MACHINE,
2308 .class_init = spapr_machine_2_2_class_init,
2309 .instance_init = spapr_machine_2_2_instance_init,
2312 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2314 static GlobalProperty compat_props[] = {
2316 { /* end of list */ }
2318 MachineClass *mc = MACHINE_CLASS(oc);
2320 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
2321 mc->compat_props = compat_props;
2324 static const TypeInfo spapr_machine_2_3_info = {
2325 .name = MACHINE_TYPE_NAME("pseries-2.3"),
2326 .parent = TYPE_SPAPR_MACHINE,
2327 .class_init = spapr_machine_2_3_class_init,
2328 .instance_init = spapr_machine_2_3_instance_init,
2331 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2333 MachineClass *mc = MACHINE_CLASS(oc);
2335 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2336 mc->alias = "pseries";
2340 static const TypeInfo spapr_machine_2_4_info = {
2341 .name = MACHINE_TYPE_NAME("pseries-2.4"),
2342 .parent = TYPE_SPAPR_MACHINE,
2343 .class_init = spapr_machine_2_4_class_init,
2346 static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2348 MachineClass *mc = MACHINE_CLASS(oc);
2349 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2351 mc->name = "pseries-2.5";
2352 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2353 mc->alias = "pseries";
2355 smc->dr_lmb_enabled = true;
2358 static const TypeInfo spapr_machine_2_5_info = {
2359 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2360 .parent = TYPE_SPAPR_MACHINE,
2361 .class_init = spapr_machine_2_5_class_init,
2364 static void spapr_machine_register_types(void)
2366 type_register_static(&spapr_machine_info);
2367 type_register_static(&spapr_machine_2_1_info);
2368 type_register_static(&spapr_machine_2_2_info);
2369 type_register_static(&spapr_machine_2_3_info);
2370 type_register_static(&spapr_machine_2_4_info);
2371 type_register_static(&spapr_machine_2_5_info);
2374 type_init(spapr_machine_register_types)