]> Git Repo - qemu.git/blob - hw/intc/arm_gicv3_common.c
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-openbios-20180618' into...
[qemu.git] / hw / intc / arm_gicv3_common.c
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30 #include "sysemu/kvm.h"
31
32 static int gicv3_pre_save(void *opaque)
33 {
34     GICv3State *s = (GICv3State *)opaque;
35     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
36
37     if (c->pre_save) {
38         c->pre_save(s);
39     }
40
41     return 0;
42 }
43
44 static int gicv3_post_load(void *opaque, int version_id)
45 {
46     GICv3State *s = (GICv3State *)opaque;
47     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
48
49     if (c->post_load) {
50         c->post_load(s);
51     }
52     return 0;
53 }
54
55 static bool virt_state_needed(void *opaque)
56 {
57     GICv3CPUState *cs = opaque;
58
59     return cs->num_list_regs != 0;
60 }
61
62 static const VMStateDescription vmstate_gicv3_cpu_virt = {
63     .name = "arm_gicv3_cpu/virt",
64     .version_id = 1,
65     .minimum_version_id = 1,
66     .needed = virt_state_needed,
67     .fields = (VMStateField[]) {
68         VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
69         VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
70         VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
71         VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
72         VMSTATE_END_OF_LIST()
73     }
74 };
75
76 static int icc_sre_el1_reg_pre_load(void *opaque)
77 {
78     GICv3CPUState *cs = opaque;
79
80    /*
81     * If the sre_el1 subsection is not transferred this
82     * means SRE_EL1 is 0x7 (which might not be the same as
83     * our reset value).
84     */
85     cs->icc_sre_el1 = 0x7;
86     return 0;
87 }
88
89 static bool icc_sre_el1_reg_needed(void *opaque)
90 {
91     GICv3CPUState *cs = opaque;
92
93     return cs->icc_sre_el1 != 7;
94 }
95
96 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
97     .name = "arm_gicv3_cpu/sre_el1",
98     .version_id = 1,
99     .minimum_version_id = 1,
100     .pre_load = icc_sre_el1_reg_pre_load,
101     .needed = icc_sre_el1_reg_needed,
102     .fields = (VMStateField[]) {
103         VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
104         VMSTATE_END_OF_LIST()
105     }
106 };
107
108 static const VMStateDescription vmstate_gicv3_cpu = {
109     .name = "arm_gicv3_cpu",
110     .version_id = 1,
111     .minimum_version_id = 1,
112     .fields = (VMStateField[]) {
113         VMSTATE_UINT32(level, GICv3CPUState),
114         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
115         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
116         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
117         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
118         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
119         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
120         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
121         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
122         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
123         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
124         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
125         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
126         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
127         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
128         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
129         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
130         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
131         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
132         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
133         VMSTATE_END_OF_LIST()
134     },
135     .subsections = (const VMStateDescription * []) {
136         &vmstate_gicv3_cpu_virt,
137         NULL
138     },
139     .subsections = (const VMStateDescription * []) {
140         &vmstate_gicv3_cpu_sre_el1,
141         NULL
142     }
143 };
144
145 static int gicv3_gicd_no_migration_shift_bug_pre_load(void *opaque)
146 {
147     GICv3State *cs = opaque;
148
149    /*
150     * The gicd_no_migration_shift_bug flag is used for migration compatibility
151     * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
152     * Strictly, what we want to know is whether the migration source is using
153     * KVM. Since we don't have any way to determine that, we look at whether the
154     * destination is using KVM; this is close enough because for the older QEMU
155     * versions with this bug KVM -> TCG migration didn't work anyway. If the
156     * source is a newer QEMU without this bug it will transmit the migration
157     * subsection which sets the flag to true; otherwise it will remain set to
158     * the value we select here.
159     */
160     if (kvm_enabled()) {
161         cs->gicd_no_migration_shift_bug = false;
162     }
163
164     return 0;
165 }
166
167 static int gicv3_gicd_no_migration_shift_bug_post_load(void *opaque,
168                                                        int version_id)
169 {
170     GICv3State *cs = opaque;
171
172     if (cs->gicd_no_migration_shift_bug) {
173         return 0;
174     }
175
176     /* Older versions of QEMU had a bug in the handling of state save/restore
177      * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
178      * so that instead of the data for external interrupts 32 and up
179      * starting at bit position 32 in the bitmap, it started at bit
180      * position 64. If we're receiving data from a QEMU with that bug,
181      * we must move the data down into the right place.
182      */
183     memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
184             sizeof(cs->group) - GIC_INTERNAL / 8);
185     memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
186             sizeof(cs->grpmod) - GIC_INTERNAL / 8);
187     memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
188             sizeof(cs->enabled) - GIC_INTERNAL / 8);
189     memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
190             sizeof(cs->pending) - GIC_INTERNAL / 8);
191     memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
192             sizeof(cs->active) - GIC_INTERNAL / 8);
193     memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
194             sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
195
196     /*
197      * While this new version QEMU doesn't have this kind of bug as we fix it,
198      * so it needs to set the flag to true to indicate that and it's necessary
199      * for next migration to work from this new version QEMU.
200      */
201     cs->gicd_no_migration_shift_bug = true;
202
203     return 0;
204 }
205
206 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
207     .name = "arm_gicv3/gicd_no_migration_shift_bug",
208     .version_id = 1,
209     .minimum_version_id = 1,
210     .pre_load = gicv3_gicd_no_migration_shift_bug_pre_load,
211     .post_load = gicv3_gicd_no_migration_shift_bug_post_load,
212     .fields = (VMStateField[]) {
213         VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
214         VMSTATE_END_OF_LIST()
215     }
216 };
217
218 static const VMStateDescription vmstate_gicv3 = {
219     .name = "arm_gicv3",
220     .version_id = 1,
221     .minimum_version_id = 1,
222     .pre_save = gicv3_pre_save,
223     .post_load = gicv3_post_load,
224     .priority = MIG_PRI_GICV3,
225     .fields = (VMStateField[]) {
226         VMSTATE_UINT32(gicd_ctlr, GICv3State),
227         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
228         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
229         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
230         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
231         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
232         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
233         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
234         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
235         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
236         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
237         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
238                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
239         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
240                                              vmstate_gicv3_cpu, GICv3CPUState),
241         VMSTATE_END_OF_LIST()
242     },
243     .subsections = (const VMStateDescription * []) {
244         &vmstate_gicv3_gicd_no_migration_shift_bug,
245         NULL
246     }
247 };
248
249 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
250                               const MemoryRegionOps *ops)
251 {
252     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
253     int i;
254
255     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
256      * GPIO array layout is thus:
257      *  [0..N-1] spi
258      *  [N..N+31] PPIs for CPU 0
259      *  [N+32..N+63] PPIs for CPU 1
260      *   ...
261      */
262     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
263     qdev_init_gpio_in(DEVICE(s), handler, i);
264
265     for (i = 0; i < s->num_cpu; i++) {
266         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
267     }
268     for (i = 0; i < s->num_cpu; i++) {
269         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
270     }
271     for (i = 0; i < s->num_cpu; i++) {
272         sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
273     }
274     for (i = 0; i < s->num_cpu; i++) {
275         sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
276     }
277
278     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
279                           "gicv3_dist", 0x10000);
280     memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
281                           "gicv3_redist", 0x20000 * s->num_cpu);
282
283     sysbus_init_mmio(sbd, &s->iomem_dist);
284     sysbus_init_mmio(sbd, &s->iomem_redist);
285 }
286
287 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
288 {
289     GICv3State *s = ARM_GICV3_COMMON(dev);
290     int i;
291
292     /* revision property is actually reserved and currently used only in order
293      * to keep the interface compatible with GICv2 code, avoiding extra
294      * conditions. However, in future it could be used, for example, if we
295      * implement GICv4.
296      */
297     if (s->revision != 3) {
298         error_setg(errp, "unsupported GIC revision %d", s->revision);
299         return;
300     }
301
302     if (s->num_irq > GICV3_MAXIRQ) {
303         error_setg(errp,
304                    "requested %u interrupt lines exceeds GIC maximum %d",
305                    s->num_irq, GICV3_MAXIRQ);
306         return;
307     }
308     if (s->num_irq < GIC_INTERNAL) {
309         error_setg(errp,
310                    "requested %u interrupt lines is below GIC minimum %d",
311                    s->num_irq, GIC_INTERNAL);
312         return;
313     }
314
315     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
316      * implementation imposed restriction, not an architectural one,
317      * so we don't have to deal with bitfields where only some of the
318      * bits in a 32-bit word should be valid.
319      */
320     if (s->num_irq % 32) {
321         error_setg(errp,
322                    "%d interrupt lines unsupported: not divisible by 32",
323                    s->num_irq);
324         return;
325     }
326
327     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
328
329     for (i = 0; i < s->num_cpu; i++) {
330         CPUState *cpu = qemu_get_cpu(i);
331         uint64_t cpu_affid;
332         int last;
333
334         s->cpu[i].cpu = cpu;
335         s->cpu[i].gic = s;
336         /* Store GICv3CPUState in CPUARMState gicv3state pointer */
337         gicv3_set_gicv3state(cpu, &s->cpu[i]);
338
339         /* Pre-construct the GICR_TYPER:
340          * For our implementation:
341          *  Top 32 bits are the affinity value of the associated CPU
342          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
343          *  Processor_Number == CPU index starting from 0
344          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
345          *  Last == 1 if this is the last redistributor in a series of
346          *            contiguous redistributor pages
347          *  DirectLPI == 0 (direct injection of LPIs not supported)
348          *  VLPIS == 0 (virtual LPIs not supported)
349          *  PLPIS == 0 (physical LPIs not supported)
350          */
351         cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
352         last = (i == s->num_cpu - 1);
353
354         /* The CPU mp-affinity property is in MPIDR register format; squash
355          * the affinity bytes into 32 bits as the GICR_TYPER has them.
356          */
357         cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
358                      (cpu_affid & 0xFFFFFF);
359         s->cpu[i].gicr_typer = (cpu_affid << 32) |
360             (1 << 24) |
361             (i << 8) |
362             (last << 4);
363     }
364 }
365
366 static void arm_gicv3_common_reset(DeviceState *dev)
367 {
368     GICv3State *s = ARM_GICV3_COMMON(dev);
369     int i;
370
371     for (i = 0; i < s->num_cpu; i++) {
372         GICv3CPUState *cs = &s->cpu[i];
373
374         cs->level = 0;
375         cs->gicr_ctlr = 0;
376         cs->gicr_statusr[GICV3_S] = 0;
377         cs->gicr_statusr[GICV3_NS] = 0;
378         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
379         cs->gicr_propbaser = 0;
380         cs->gicr_pendbaser = 0;
381         /* If we're resetting a TZ-aware GIC as if secure firmware
382          * had set it up ready to start a kernel in non-secure, we
383          * need to set interrupts to group 1 so the kernel can use them.
384          * Otherwise they reset to group 0 like the hardware.
385          */
386         if (s->irq_reset_nonsecure) {
387             cs->gicr_igroupr0 = 0xffffffff;
388         } else {
389             cs->gicr_igroupr0 = 0;
390         }
391
392         cs->gicr_ienabler0 = 0;
393         cs->gicr_ipendr0 = 0;
394         cs->gicr_iactiver0 = 0;
395         cs->edge_trigger = 0xffff;
396         cs->gicr_igrpmodr0 = 0;
397         cs->gicr_nsacr = 0;
398         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
399
400         cs->hppi.prio = 0xff;
401
402         /* State in the CPU interface must *not* be reset here, because it
403          * is part of the CPU's reset domain, not the GIC device's.
404          */
405     }
406
407     /* For our implementation affinity routing is always enabled */
408     if (s->security_extn) {
409         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
410     } else {
411         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
412     }
413
414     s->gicd_statusr[GICV3_S] = 0;
415     s->gicd_statusr[GICV3_NS] = 0;
416
417     memset(s->group, 0, sizeof(s->group));
418     memset(s->grpmod, 0, sizeof(s->grpmod));
419     memset(s->enabled, 0, sizeof(s->enabled));
420     memset(s->pending, 0, sizeof(s->pending));
421     memset(s->active, 0, sizeof(s->active));
422     memset(s->level, 0, sizeof(s->level));
423     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
424     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
425     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
426     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
427     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
428      * write these to get sane behaviour and we need not populate the
429      * pointer cache here; however having the cache be different for
430      * "happened to be 0 from reset" and "guest wrote 0" would be
431      * too confusing.
432      */
433     gicv3_cache_all_target_cpustates(s);
434
435     if (s->irq_reset_nonsecure) {
436         /* If we're resetting a TZ-aware GIC as if secure firmware
437          * had set it up ready to start a kernel in non-secure, we
438          * need to set interrupts to group 1 so the kernel can use them.
439          * Otherwise they reset to group 0 like the hardware.
440          */
441         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
442             gicv3_gicd_group_set(s, i);
443         }
444     }
445     s->gicd_no_migration_shift_bug = true;
446 }
447
448 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
449                                       bool secure_boot)
450 {
451     GICv3State *s = ARM_GICV3_COMMON(obj);
452
453     if (s->security_extn && !secure_boot) {
454         /* We're directly booting a kernel into NonSecure. If this GIC
455          * implements the security extensions then we must configure it
456          * to have all the interrupts be NonSecure (this is a job that
457          * is done by the Secure boot firmware in real hardware, and in
458          * this mode QEMU is acting as a minimalist firmware-and-bootloader
459          * equivalent).
460          */
461         s->irq_reset_nonsecure = true;
462     }
463 }
464
465 static Property arm_gicv3_common_properties[] = {
466     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
467     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
468     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
469     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
470     DEFINE_PROP_END_OF_LIST(),
471 };
472
473 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
474 {
475     DeviceClass *dc = DEVICE_CLASS(klass);
476     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
477
478     dc->reset = arm_gicv3_common_reset;
479     dc->realize = arm_gicv3_common_realize;
480     dc->props = arm_gicv3_common_properties;
481     dc->vmsd = &vmstate_gicv3;
482     albifc->arm_linux_init = arm_gic_common_linux_init;
483 }
484
485 static const TypeInfo arm_gicv3_common_type = {
486     .name = TYPE_ARM_GICV3_COMMON,
487     .parent = TYPE_SYS_BUS_DEVICE,
488     .instance_size = sizeof(GICv3State),
489     .class_size = sizeof(ARMGICv3CommonClass),
490     .class_init = arm_gicv3_common_class_init,
491     .abstract = true,
492     .interfaces = (InterfaceInfo []) {
493         { TYPE_ARM_LINUX_BOOT_IF },
494         { },
495     },
496 };
497
498 static void register_types(void)
499 {
500     type_register_static(&arm_gicv3_common_type);
501 }
502
503 type_init(register_types)
This page took 0.055118 seconds and 4 git commands to generate.