2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
40 #include "hw/block/flash.h"
41 #include "block/block.h"
42 #include "qemu/timer.h"
43 #include "qemu/bitops.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/host-utils.h"
46 #include "hw/sysbus.h"
48 #define PFLASH_BUG(fmt, ...) \
50 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
54 /* #define PFLASH_DEBUG */
56 #define DPRINTF(fmt, ...) \
58 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
61 #define DPRINTF(fmt, ...) do { } while (0)
64 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
65 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
69 SysBusDevice parent_obj;
76 uint8_t device_width; /* If 0, device width not specified. */
77 uint8_t max_device_width; /* max device width in bytes */
79 uint8_t wcycle; /* if 0, the flash is read normally */
88 uint8_t cfi_table[0x52];
90 unsigned int writeblock_size;
97 static const VMStateDescription vmstate_pflash = {
98 .name = "pflash_cfi01",
100 .minimum_version_id = 1,
101 .fields = (VMStateField[]) {
102 VMSTATE_UINT8(wcycle, pflash_t),
103 VMSTATE_UINT8(cmd, pflash_t),
104 VMSTATE_UINT8(status, pflash_t),
105 VMSTATE_UINT64(counter, pflash_t),
106 VMSTATE_END_OF_LIST()
110 static void pflash_timer (void *opaque)
112 pflash_t *pfl = opaque;
114 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
117 memory_region_rom_device_set_romd(&pfl->mem, true);
122 /* Perform a CFI query based on the bank width of the flash.
123 * If this code is called we know we have a device_width set for
126 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
132 /* Adjust incoming offset to match expected device-width
133 * addressing. CFI query addresses are always specified in terms of
134 * the maximum supported width of the device. This means that x8
135 * devices and x8/x16 devices in x8 mode behave differently. For
136 * devices that are not used at their max width, we will be
137 * provided with addresses that use higher address bits than
138 * expected (based on the max width), so we will shift them lower
139 * so that they will match the addresses used when
140 * device_width==max_device_width.
142 boff = offset >> (ctz32(pfl->bank_width) +
143 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
145 if (boff > pfl->cfi_len) {
148 /* Now we will construct the CFI response generated by a single
149 * device, then replicate that for all devices that make up the
150 * bus. For wide parts used in x8 mode, CFI query responses
151 * are different than native byte-wide parts.
153 resp = pfl->cfi_table[boff];
154 if (pfl->device_width != pfl->max_device_width) {
155 /* The only case currently supported is x8 mode for a
158 if (pfl->device_width != 1 || pfl->bank_width > 4) {
159 DPRINTF("%s: Unsupported device configuration: "
160 "device_width=%d, max_device_width=%d\n",
161 __func__, pfl->device_width,
162 pfl->max_device_width);
165 /* CFI query data is repeated, rather than zero padded for
166 * wide devices used in x8 mode.
168 for (i = 1; i < pfl->max_device_width; i++) {
169 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
172 /* Replicate responses for each device in bank. */
173 if (pfl->device_width < pfl->bank_width) {
174 for (i = pfl->device_width;
175 i < pfl->bank_width; i += pfl->device_width) {
176 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
185 /* Perform a device id query based on the bank width of the flash. */
186 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
192 /* Adjust incoming offset to match expected device-width
193 * addressing. Device ID read addresses are always specified in
194 * terms of the maximum supported width of the device. This means
195 * that x8 devices and x8/x16 devices in x8 mode behave
196 * differently. For devices that are not used at their max width,
197 * we will be provided with addresses that use higher address bits
198 * than expected (based on the max width), so we will shift them
199 * lower so that they will match the addresses used when
200 * device_width==max_device_width.
202 boff = offset >> (ctz32(pfl->bank_width) +
203 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
205 /* Mask off upper bits which may be used in to query block
206 * or sector lock status at other addresses.
207 * Offsets 2/3 are block lock status, is not emulated.
209 switch (boff & 0xFF) {
212 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
216 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
219 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
224 /* Replicate responses for each device in bank. */
225 if (pfl->device_width < pfl->bank_width) {
226 for (i = pfl->device_width;
227 i < pfl->bank_width; i += pfl->device_width) {
228 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
235 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
245 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
246 __func__, offset, pfl->cmd, width);
250 /* This should never happen : reset state & treat it as a read */
251 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
254 /* fall through to read code */
256 /* Flash area read */
261 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
262 __func__, offset, ret);
266 ret = p[offset] << 8;
267 ret |= p[offset + 1];
270 ret |= p[offset + 1] << 8;
272 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
273 __func__, offset, ret);
277 ret = p[offset] << 24;
278 ret |= p[offset + 1] << 16;
279 ret |= p[offset + 2] << 8;
280 ret |= p[offset + 3];
283 ret |= p[offset + 1] << 8;
284 ret |= p[offset + 2] << 16;
285 ret |= p[offset + 3] << 24;
287 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
288 __func__, offset, ret);
291 DPRINTF("BUG in %s\n", __func__);
295 case 0x10: /* Single byte program */
296 case 0x20: /* Block erase */
297 case 0x28: /* Block erase */
298 case 0x40: /* single byte program */
299 case 0x50: /* Clear status register */
300 case 0x60: /* Block /un)lock */
301 case 0x70: /* Status Register */
302 case 0xe8: /* Write block */
303 /* Status register read. Return status from each device in
307 if (pfl->device_width && width > pfl->device_width) {
308 int shift = pfl->device_width * 8;
309 while (shift + pfl->device_width * 8 <= width * 8) {
310 ret |= pfl->status << shift;
311 shift += pfl->device_width * 8;
313 } else if (!pfl->device_width && width > 2) {
314 /* Handle 32 bit flash cases where device width is not
315 * set. (Existing behavior before device width added.)
317 ret |= pfl->status << 16;
319 DPRINTF("%s: status %x\n", __func__, ret);
322 if (!pfl->device_width) {
323 /* Preserve old behavior if device width not specified */
324 boff = offset & 0xFF;
325 if (pfl->bank_width == 2) {
327 } else if (pfl->bank_width == 4) {
333 ret = pfl->ident0 << 8 | pfl->ident1;
334 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
337 ret = pfl->ident2 << 8 | pfl->ident3;
338 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
341 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
347 /* If we have a read larger than the bank_width, combine multiple
348 * manufacturer/device ID queries into a single response.
351 for (i = 0; i < width; i += pfl->bank_width) {
352 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
353 pflash_devid_query(pfl,
354 offset + i * pfl->bank_width));
358 case 0x98: /* Query mode */
359 if (!pfl->device_width) {
360 /* Preserve old behavior if device width not specified */
361 boff = offset & 0xFF;
362 if (pfl->bank_width == 2) {
364 } else if (pfl->bank_width == 4) {
368 if (boff > pfl->cfi_len) {
371 ret = pfl->cfi_table[boff];
374 /* If we have a read larger than the bank_width, combine multiple
375 * CFI queries into a single response.
378 for (i = 0; i < width; i += pfl->bank_width) {
379 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
380 pflash_cfi_query(pfl,
381 offset + i * pfl->bank_width));
390 /* update flash content on disk */
391 static void pflash_update(pflash_t *pfl, int offset,
396 offset_end = offset + size;
397 /* round to sectors */
398 offset = offset >> 9;
399 offset_end = (offset_end + 511) >> 9;
400 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
401 offset_end - offset);
405 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
406 uint32_t value, int width, int be)
408 uint8_t *p = pfl->storage;
410 DPRINTF("%s: block write offset " TARGET_FMT_plx
411 " value %x counter %016" PRIx64 "\n",
412 __func__, offset, value, pfl->counter);
419 p[offset] = value >> 8;
420 p[offset + 1] = value;
423 p[offset + 1] = value >> 8;
428 p[offset] = value >> 24;
429 p[offset + 1] = value >> 16;
430 p[offset + 2] = value >> 8;
431 p[offset + 3] = value;
434 p[offset + 1] = value >> 8;
435 p[offset + 2] = value >> 16;
436 p[offset + 3] = value >> 24;
443 static void pflash_write(pflash_t *pfl, hwaddr offset,
444 uint32_t value, int width, int be)
451 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
452 __func__, offset, value, width, pfl->wcycle);
455 /* Set the device in I/O access mode */
456 memory_region_rom_device_set_romd(&pfl->mem, false);
459 switch (pfl->wcycle) {
465 case 0x10: /* Single Byte Program */
466 case 0x40: /* Single Byte Program */
467 DPRINTF("%s: Single Byte Program\n", __func__);
469 case 0x20: /* Block erase */
471 offset &= ~(pfl->sector_len - 1);
473 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
474 __func__, offset, (unsigned)pfl->sector_len);
477 memset(p + offset, 0xff, pfl->sector_len);
478 pflash_update(pfl, offset, pfl->sector_len);
480 pfl->status |= 0x20; /* Block erase error */
482 pfl->status |= 0x80; /* Ready! */
484 case 0x50: /* Clear status bits */
485 DPRINTF("%s: Clear status bits\n", __func__);
488 case 0x60: /* Block (un)lock */
489 DPRINTF("%s: Block unlock\n", __func__);
491 case 0x70: /* Status Register */
492 DPRINTF("%s: Read status register\n", __func__);
495 case 0x90: /* Read Device ID */
496 DPRINTF("%s: Read Device information\n", __func__);
499 case 0x98: /* CFI query */
500 DPRINTF("%s: CFI query\n", __func__);
502 case 0xe8: /* Write to buffer */
503 DPRINTF("%s: Write to buffer\n", __func__);
504 pfl->status |= 0x80; /* Ready! */
506 case 0xf0: /* Probe for AMD flash */
507 DPRINTF("%s: Probe for AMD flash\n", __func__);
509 case 0xff: /* Read array mode */
510 DPRINTF("%s: Read array mode\n", __func__);
520 case 0x10: /* Single Byte Program */
521 case 0x40: /* Single Byte Program */
522 DPRINTF("%s: Single Byte Program\n", __func__);
524 pflash_data_write(pfl, offset, value, width, be);
525 pflash_update(pfl, offset, width);
527 pfl->status |= 0x10; /* Programming error */
529 pfl->status |= 0x80; /* Ready! */
532 case 0x20: /* Block erase */
534 if (cmd == 0xd0) { /* confirm */
537 } else if (cmd == 0xff) { /* read array mode */
544 /* Mask writeblock size based on device width, or bank width if
545 * device width not specified.
547 if (pfl->device_width) {
548 value = extract32(value, 0, pfl->device_width * 8);
550 value = extract32(value, 0, pfl->bank_width * 8);
552 DPRINTF("%s: block write of %x bytes\n", __func__, value);
553 pfl->counter = value;
560 } else if (cmd == 0x01) {
563 } else if (cmd == 0xff) {
566 DPRINTF("%s: Unknown (un)locking command\n", __func__);
574 DPRINTF("%s: leaving query mode\n", __func__);
583 case 0xe8: /* Block write */
585 pflash_data_write(pfl, offset, value, width, be);
587 pfl->status |= 0x10; /* Programming error */
593 hwaddr mask = pfl->writeblock_size - 1;
596 DPRINTF("%s: block write finished\n", __func__);
599 /* Flush the entire write buffer onto backing storage. */
600 pflash_update(pfl, offset & mask, pfl->writeblock_size);
602 pfl->status |= 0x10; /* Programming error */
612 case 3: /* Confirm mode */
614 case 0xe8: /* Block write */
619 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
620 PFLASH_BUG("Write block confirm");
629 /* Should never happen */
630 DPRINTF("%s: invalid write state\n", __func__);
636 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
637 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
638 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
641 memory_region_rom_device_set_romd(&pfl->mem, true);
648 static uint32_t pflash_readb_be(void *opaque, hwaddr addr)
650 return pflash_read(opaque, addr, 1, 1);
653 static uint32_t pflash_readb_le(void *opaque, hwaddr addr)
655 return pflash_read(opaque, addr, 1, 0);
658 static uint32_t pflash_readw_be(void *opaque, hwaddr addr)
660 pflash_t *pfl = opaque;
662 return pflash_read(pfl, addr, 2, 1);
665 static uint32_t pflash_readw_le(void *opaque, hwaddr addr)
667 pflash_t *pfl = opaque;
669 return pflash_read(pfl, addr, 2, 0);
672 static uint32_t pflash_readl_be(void *opaque, hwaddr addr)
674 pflash_t *pfl = opaque;
676 return pflash_read(pfl, addr, 4, 1);
679 static uint32_t pflash_readl_le(void *opaque, hwaddr addr)
681 pflash_t *pfl = opaque;
683 return pflash_read(pfl, addr, 4, 0);
686 static void pflash_writeb_be(void *opaque, hwaddr addr,
689 pflash_write(opaque, addr, value, 1, 1);
692 static void pflash_writeb_le(void *opaque, hwaddr addr,
695 pflash_write(opaque, addr, value, 1, 0);
698 static void pflash_writew_be(void *opaque, hwaddr addr,
701 pflash_t *pfl = opaque;
703 pflash_write(pfl, addr, value, 2, 1);
706 static void pflash_writew_le(void *opaque, hwaddr addr,
709 pflash_t *pfl = opaque;
711 pflash_write(pfl, addr, value, 2, 0);
714 static void pflash_writel_be(void *opaque, hwaddr addr,
717 pflash_t *pfl = opaque;
719 pflash_write(pfl, addr, value, 4, 1);
722 static void pflash_writel_le(void *opaque, hwaddr addr,
725 pflash_t *pfl = opaque;
727 pflash_write(pfl, addr, value, 4, 0);
730 static const MemoryRegionOps pflash_cfi01_ops_be = {
732 .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
733 .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
735 .endianness = DEVICE_NATIVE_ENDIAN,
738 static const MemoryRegionOps pflash_cfi01_ops_le = {
740 .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
741 .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
743 .endianness = DEVICE_NATIVE_ENDIAN,
746 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
748 pflash_t *pfl = CFI_PFLASH01(dev);
752 total_len = pfl->sector_len * pfl->nb_blocs;
754 /* XXX: to be fixed */
756 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
757 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
761 memory_region_init_rom_device(
762 &pfl->mem, OBJECT(dev),
763 pfl->be ? &pflash_cfi01_ops_be : &pflash_cfi01_ops_le, pfl,
764 pfl->name, total_len);
765 vmstate_register_ram(&pfl->mem, DEVICE(pfl));
766 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
767 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
770 /* read the initial flash content */
771 ret = bdrv_read(pfl->bs, 0, pfl->storage, total_len >> 9);
774 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
775 memory_region_destroy(&pfl->mem);
776 error_setg(errp, "failed to read the initial flash content");
782 pfl->ro = bdrv_is_read_only(pfl->bs);
787 /* Default to devices being used at their maximum device width. This was
788 * assumed before the device_width support was added.
790 if (!pfl->max_device_width) {
791 pfl->max_device_width = pfl->device_width;
794 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
798 /* Hardcoded CFI table */
800 /* Standard "QRY" string */
801 pfl->cfi_table[0x10] = 'Q';
802 pfl->cfi_table[0x11] = 'R';
803 pfl->cfi_table[0x12] = 'Y';
804 /* Command set (Intel) */
805 pfl->cfi_table[0x13] = 0x01;
806 pfl->cfi_table[0x14] = 0x00;
807 /* Primary extended table address (none) */
808 pfl->cfi_table[0x15] = 0x31;
809 pfl->cfi_table[0x16] = 0x00;
810 /* Alternate command set (none) */
811 pfl->cfi_table[0x17] = 0x00;
812 pfl->cfi_table[0x18] = 0x00;
813 /* Alternate extended table (none) */
814 pfl->cfi_table[0x19] = 0x00;
815 pfl->cfi_table[0x1A] = 0x00;
817 pfl->cfi_table[0x1B] = 0x45;
819 pfl->cfi_table[0x1C] = 0x55;
820 /* Vpp min (no Vpp pin) */
821 pfl->cfi_table[0x1D] = 0x00;
822 /* Vpp max (no Vpp pin) */
823 pfl->cfi_table[0x1E] = 0x00;
825 pfl->cfi_table[0x1F] = 0x07;
826 /* Timeout for min size buffer write */
827 pfl->cfi_table[0x20] = 0x07;
828 /* Typical timeout for block erase */
829 pfl->cfi_table[0x21] = 0x0a;
830 /* Typical timeout for full chip erase (4096 ms) */
831 pfl->cfi_table[0x22] = 0x00;
833 pfl->cfi_table[0x23] = 0x04;
834 /* Max timeout for buffer write */
835 pfl->cfi_table[0x24] = 0x04;
836 /* Max timeout for block erase */
837 pfl->cfi_table[0x25] = 0x04;
838 /* Max timeout for chip erase */
839 pfl->cfi_table[0x26] = 0x00;
841 pfl->cfi_table[0x27] = ctz32(total_len); // + 1;
842 /* Flash device interface (8 & 16 bits) */
843 pfl->cfi_table[0x28] = 0x02;
844 pfl->cfi_table[0x29] = 0x00;
845 /* Max number of bytes in multi-bytes write */
846 if (pfl->bank_width == 1) {
847 pfl->cfi_table[0x2A] = 0x08;
849 pfl->cfi_table[0x2A] = 0x0B;
851 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
853 pfl->cfi_table[0x2B] = 0x00;
854 /* Number of erase block regions (uniform) */
855 pfl->cfi_table[0x2C] = 0x01;
856 /* Erase block region 1 */
857 pfl->cfi_table[0x2D] = pfl->nb_blocs - 1;
858 pfl->cfi_table[0x2E] = (pfl->nb_blocs - 1) >> 8;
859 pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
860 pfl->cfi_table[0x30] = pfl->sector_len >> 16;
863 pfl->cfi_table[0x31] = 'P';
864 pfl->cfi_table[0x32] = 'R';
865 pfl->cfi_table[0x33] = 'I';
867 pfl->cfi_table[0x34] = '1';
868 pfl->cfi_table[0x35] = '0';
870 pfl->cfi_table[0x36] = 0x00;
871 pfl->cfi_table[0x37] = 0x00;
872 pfl->cfi_table[0x38] = 0x00;
873 pfl->cfi_table[0x39] = 0x00;
875 pfl->cfi_table[0x3a] = 0x00;
877 pfl->cfi_table[0x3b] = 0x00;
878 pfl->cfi_table[0x3c] = 0x00;
880 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
883 static Property pflash_cfi01_properties[] = {
884 DEFINE_PROP_DRIVE("drive", struct pflash_t, bs),
885 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
886 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
887 /* width here is the overall width of this QEMU device in bytes.
888 * The QEMU device may be emulating a number of flash devices
889 * wired up in parallel; the width of each individual flash
890 * device should be specified via device-width. If the individual
891 * devices have a maximum width which is greater than the width
892 * they are being used for, this maximum width should be set via
893 * max-device-width (which otherwise defaults to device-width).
894 * So for instance a 32-bit wide QEMU flash device made from four
895 * 16-bit flash devices used in 8-bit wide mode would be configured
896 * with width = 4, device-width = 1, max-device-width = 2.
898 * If device-width is not specified we default to backwards
899 * compatible behaviour which is a bad emulation of two
900 * 16 bit devices making up a 32 bit wide QEMU device. This
901 * is deprecated for new uses of this device.
903 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
904 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
905 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
906 DEFINE_PROP_UINT8("big-endian", struct pflash_t, be, 0),
907 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
908 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
909 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
910 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
911 DEFINE_PROP_STRING("name", struct pflash_t, name),
912 DEFINE_PROP_END_OF_LIST(),
915 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
917 DeviceClass *dc = DEVICE_CLASS(klass);
919 dc->realize = pflash_cfi01_realize;
920 dc->props = pflash_cfi01_properties;
921 dc->vmsd = &vmstate_pflash;
922 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
926 static const TypeInfo pflash_cfi01_info = {
927 .name = TYPE_CFI_PFLASH01,
928 .parent = TYPE_SYS_BUS_DEVICE,
929 .instance_size = sizeof(struct pflash_t),
930 .class_init = pflash_cfi01_class_init,
933 static void pflash_cfi01_register_types(void)
935 type_register_static(&pflash_cfi01_info);
938 type_init(pflash_cfi01_register_types)
940 pflash_t *pflash_cfi01_register(hwaddr base,
941 DeviceState *qdev, const char *name,
943 BlockDriverState *bs,
944 uint32_t sector_len, int nb_blocs,
945 int bank_width, uint16_t id0, uint16_t id1,
946 uint16_t id2, uint16_t id3, int be)
948 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
950 if (bs && qdev_prop_set_drive(dev, "drive", bs)) {
953 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
954 qdev_prop_set_uint64(dev, "sector-length", sector_len);
955 qdev_prop_set_uint8(dev, "width", bank_width);
956 qdev_prop_set_uint8(dev, "big-endian", !!be);
957 qdev_prop_set_uint16(dev, "id0", id0);
958 qdev_prop_set_uint16(dev, "id1", id1);
959 qdev_prop_set_uint16(dev, "id2", id2);
960 qdev_prop_set_uint16(dev, "id3", id3);
961 qdev_prop_set_string(dev, "name", name);
962 qdev_init_nofail(dev);
964 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
965 return CFI_PFLASH01(dev);
968 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)